Skip to main content

Pediatric Obstructive Uropathy

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Congenital obstructive uropathy, a major cause of chronic kidney disease, is defined as kidney, ureter, and/or bladder injury associated with obstruction of the urinary tract. Congenital obstructive uropathy arises from malformation of the renal collecting system, constituted by the calices, pelvis, and ureter, the bladder and urethra, and the connections between the ureter and pelvis and the ureter and bladder. Congenital obstructive uropathy is caused by a polymorphic group of unilateral or bilateral upper and lower urinary tract malformations. Presenting most commonly as antenatal hydronephrosis, these disorders range in severity from self-resolving pelviectasis and/or hydroureter to a fixed physical obstruction of the ureteropelvic junction, ureterovesical junction, or urethra causing kidney injury. In this chapter, the clinical assessment of urinary tract obstruction and the pathobiology of obstructive uropathy-associated kidney injury are described from observations in animal models and descriptive analyses of human kidney tissue. Genes and genetic pathways that control the embryonic development of the ureter and its connections with the bladder are highlighted as well genetic mutations associated with malformation of the ureter, ureteropelvic junction, ureterovesical junction, and urethra. A clinical classification of antenatal urinary tract dilatation is presented; for each specific disorder, genetic etiologies, diagnosis, use of static and dynamic imaging modalities, natural history, and treatment approaches are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rodriguez MM. Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol. 2014;33(5-6):293–320. https://doi.org/10.3109/15513815.2014.959678.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee RS, Cendron M, Kinnamon DD, Nguyen HT. Antenatal hydronephrosis as a predictor of postnatal outcome: a meta-analysis. Pediatrics. 2006;118(2):586–93. https://doi.org/10.1542/peds.2006-0120.

    Article  PubMed  Google Scholar 

  3. Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C, Group ES. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48(2):131–44. https://doi.org/10.1016/j.ejmg.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  4. Anumba DO, Scott JE, Plant ND, Robson SC. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat Diagn. 2005;25(1):7–13. https://doi.org/10.1002/pd.1074.

    Article  PubMed  Google Scholar 

  5. Bullock KN, Whitaker RH. Does good upper tract compliance preserve renal function. J Urol. 1984;131(5):914–6. https://doi.org/10.1016/s0022-5347(17)50708-9.

    Article  CAS  PubMed  Google Scholar 

  6. Koff SA, Peller PA. Diagnostic criteria for assessing obstruction in the newborn with unilateral hydronephrosis using the renal growth-renal function chart. J Urol. 1995;154(2 Pt 2):662–6. https://doi.org/10.1097/00005392-199508000-00087.

    Article  CAS  PubMed  Google Scholar 

  7. Peters CA. Urinary tract obstruction in children. J Urol. 1995;154(5):1874–83.; discussion 1883–1874. https://doi.org/10.1016/s0022-5347(01)66815-0.

    Article  CAS  PubMed  Google Scholar 

  8. Klein J, Gonzalez J, Miravete M, Caubet C, Chaaya R, Decramer S, Bandin F, Bascands JL, Buffin-Meyer B, Schanstra JP. Congenital ureteropelvic junction obstruction: human disease and animal models. Int J Exp Pathol. 2011;92(3):168–92. https://doi.org/10.1111/j.1365-2613.2010.00727.x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chevalier RL, Thornhill BA, Forbes MS, Kiley SC. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr Nephrol. 2010;25(4):687–97. https://doi.org/10.1007/s00467-009-1316-5.

    Article  PubMed  Google Scholar 

  10. Jain S, Chen F. Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J. 2019;12(3):382–99. https://doi.org/10.1093/ckj/sfy112.

    Article  CAS  PubMed  Google Scholar 

  11. Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11(12):720–31. https://doi.org/10.1038/nrneph.2015.140.

    Article  CAS  PubMed  Google Scholar 

  12. Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital disorders of the human urinary tract: recent insights from genetic and molecular studies. Front Pediatr. 2019;7:136. https://doi.org/10.3389/fped.2019.00136.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Popper B, Rammer MT, Gasparitsch M, Singer T, Keller U, Doring Y, Lange-Sperandio B. Neonatal obstructive nephropathy induces necroptosis and necroinflammation. Sci Rep. 2019;9(1):18600. https://doi.org/10.1038/s41598-019-55079-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 2002;110(3):341–50. https://doi.org/10.1172/JCI15518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lange-Sperandio B, Trautmann A, Eickelberg O, Jayachandran A, Oberle S, Schmidutz F, Rodenbeck B, Homme M, Horuk R, Schaefer F. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice. Am J Pathol. 2007;171(3):861–71. https://doi.org/10.2353/ajpath.2007.061199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thornhill BA, Forbes MS, Marcinko ES, Chevalier RL. Glomerulotubular disconnection in neonatal mice after relief of partial ureteral obstruction. Kidney Int. 2007;72(9):1103–12. https://doi.org/10.1038/sj.ki.5002512.

    Article  CAS  PubMed  Google Scholar 

  17. Wang G, Ring T, Li C, Kim SW, Wen J, Djurhuus JC, Nielsen S, Frokiaer J. Unilateral ureteral obstruction alters expression of acid-base transporters in rat kidney. J Urol. 2009;182(6):2964–73. https://doi.org/10.1016/j.juro.2009.08.013.

    Article  CAS  PubMed  Google Scholar 

  18. Gasparitsch M, Arndt AK, Pawlitschek F, Oberle S, Keller U, Kasper M, Bierhaus A, Schaefer F, Weber LT, Lange-Sperandio B. RAGE-mediated interstitial fibrosis in neonatal obstructive nephropathy is independent of NF-kappaB activation. Kidney Int. 2013;84(5):911–9. https://doi.org/10.1038/ki.2013.171.

    Article  CAS  PubMed  Google Scholar 

  19. Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 2011;80(9):915–25. https://doi.org/10.1038/ki.2011.217.

    Article  CAS  PubMed  Google Scholar 

  20. Grande MT, Lopez-Novoa JM. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol. 2009;5(6):319–28. https://doi.org/10.1038/nrneph.2009.74.

    Article  CAS  PubMed  Google Scholar 

  21. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282–7. https://doi.org/10.1681/ASN.2008050513.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sakairi T, Hiromura K, Yamashita S, Takeuchi S, Tomioka M, Ideura H, Maeshima A, Kaneko Y, Kuroiwa T, Nangaku M, Takeuchi T, Nojima Y. Nestin expression in the kidney with an obstructed ureter. Kidney Int. 2007;72(3):307–18. https://doi.org/10.1038/sj.ki.5002277.

    Article  CAS  PubMed  Google Scholar 

  23. Kubik MJ, Wyczanska M, Gasparitsch M, Keller U, Weber S, Schaefer F, Lange-Sperandio B. Renal developmental genes are differentially regulated after unilateral ureteral obstruction in neonatal and adult mice. Sci Rep. 2020;10(1):19302. https://doi.org/10.1038/s41598-020-76328-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song R, Yosypiv IV. Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2011;26(3):353–64. https://doi.org/10.1007/s00467-010-1629-4.

    Article  PubMed  Google Scholar 

  25. Forbes MS, Thornhill BA, Galarreta CI, Minor JJ, Gordon KA, Chevalier RL. Chronic unilateral ureteral obstruction in the neonatal mouse delays maturation of both kidneys and leads to late formation of atubular glomeruli. Am J Physiol Ren Physiol. 2013;305(12):F1736–46. https://doi.org/10.1152/ajprenal.00152.2013.

    Article  CAS  Google Scholar 

  26. Chevalier RL, Thornhill BA, Chang AY, Cachat F, Lackey A. Recovery from release of ureteral obstruction in the rat: relationship to nephrogenesis. Kidney Int. 2002;61(6):2033–43. https://doi.org/10.1046/j.1523-1755.2002.00359.x.

    Article  PubMed  Google Scholar 

  27. Huang WY, Peters CA, Zurakowski D, Borer JG, Diamond DA, Bauer SB, McLellan DL, Rosen S. Renal biopsy in congenital ureteropelvic junction obstruction: evidence for parenchymal maldevelopment. Kidney Int. 2006;69(1):137–43. https://doi.org/10.1038/sj.ki.5000004.

    Article  PubMed  Google Scholar 

  28. Chevalier RL. Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr. 2006;18(2):153–60. https://doi.org/10.1097/01.mop.0000193287.56528.a4.

    Article  PubMed  Google Scholar 

  29. Harrison MR, Ross N, Noall R, de Lorimier AA. Correction of congenital hydronephrosis in utero. I. The model: fetal urethral obstruction produces hydronephrosis and pulmonary hypoplasia in fetal lambs. J Pediatr Surg. 1983;18(3):247–56. https://doi.org/10.1016/s0022-3468(83)80094-3.

    Article  CAS  PubMed  Google Scholar 

  30. Glick PL, Harrison MR, Halks-Miller M, Adzick NS, Nakayama DK, Anderson JH, Nyland TG, Villa R, Edwards MS. Correction of congenital hydrocephalus in utero II: efficacy of in utero shunting. J Pediatr Surg. 1984;19(6):870–81. https://doi.org/10.1016/s0022-3468(84)80387-5.

    Article  CAS  PubMed  Google Scholar 

  31. Glick PL, Harrison MR, Adzick NS, Noall RA, Villa RL. Correction of congenital hydronephrosis in utero IV: in utero decompression prevents renal dysplasia. J Pediatr Surg. 1984;19(6):649–57. https://doi.org/10.1016/s0022-3468(84)80348-6.

    Article  CAS  PubMed  Google Scholar 

  32. Bascands JL, Schanstra JP. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int. 2005;68(3):925–37. https://doi.org/10.1111/j.1523-1755.2005.00486.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–42. https://doi.org/10.1038/nature10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van der Ven AT, Connaughton DM, Ityel H, Mann N, Nakayama M, Chen J, Vivante A, Hwang DY, Schulz J, Braun DA, Schmidt JM, Schapiro D, Schneider R, Warejko JK, Daga A, Majmundar AJ, Tan W, Jobst-Schwan T, Hermle T, Widmeier E, Ashraf S, Amar A, Hoogstraaten CA, Hugo H, Kitzler TM, Kause F, Kolvenbach CM, Dai R, Spaneas L, Amann K, Stein DR, Baum MA, Somers MJG, Rodig NM, Ferguson MA, Traum AZ, Daouk GH, Bogdanovic R, Stajic N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Al-Saffar M, Awad HS, Eid LA, Selvin A, Senguttuvan P, Sanna-Cherchi S, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Wilson MW, Mane SM, Lifton RP, Lee RS, Bauer SB, Lu W, Reutter HM, Tasic V, Shril S, Hildebrandt F. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018;29(9):2348–61. https://doi.org/10.1681/ASN.2017121265.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sanna-Cherchi S, Westland R, Ghiggeri GM, Gharavi AG. Genetic basis of human congenital anomalies of the kidney and urinary tract. J Clin Invest. 2018;128(1):4–15. https://doi.org/10.1172/JCI95300.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu CW, Mann N, Nakayama M, Connaughton DM, Dai R, Kolvenbach CM, Kause F, Ottlewski I, Wang C, Klambt V, Seltzsam S, Lai EW, Selvin A, Senguttuva P, Bodamer O, Stein DR, El Desoky S, Kari JA, Tasic V, Bauer SB, Shril S, Hildebrandt F. Phenotype expansion of heterozygous FOXC1 pathogenic variants toward involvement of congenital anomalies of the kidneys and urinary tract (CAKUT). Genet Med. 2020;22(10):1673–81. https://doi.org/10.1038/s41436-020-0844-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rumballe B, Georgas K, Wilkinson L, Little M. Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics? Pediatr Nephrol. 2010;25(6):1005–16. https://doi.org/10.1007/s00467-009-1392-6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tan CK, Carey AJ, Cui X, Webb RI, Ipe D, Crowley M, Cripps AW, Benjamin WH Jr, Ulett KB, Schembri MA, Ulett GC. Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection. Infect Immun. 2012;80(9):3145–60. https://doi.org/10.1128/IAI.00023-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5(3):307–42. https://doi.org/10.1002/wsbm.1212.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA. 2006;103(18):6952–7. https://doi.org/10.1073/pnas.0602087103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen HT, Herndon CD, Cooper C, Gatti J, Kirsch A, Kokorowski P, Lee R, Perez-Brayfield M, Metcalfe P, Yerkes E, Cendron M, Campbell JB. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J Pediatr Urol. 2010;6(3):212–31. https://doi.org/10.1016/j.jpurol.2010.02.205.

    Article  PubMed  Google Scholar 

  42. Mendelsohn C. Functional obstruction: the renal pelvis rules. J Clin Invest. 2004;113(7):957–9. https://doi.org/10.1172/JCI21402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet. 2005;37(10):1082–9. https://doi.org/10.1038/ng1645.

    Article  CAS  PubMed  Google Scholar 

  44. Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development. 2011;138(10):2089–97. https://doi.org/10.1242/dev.056838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Uetani N, Bertozzi K, Chagnon MJ, Hendriks W, Tremblay ML, Bouchard M. Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J Clin Invest. 2009;119(4):924–35. https://doi.org/10.1172/JCI37196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol. 2004;167(6):1195–204. https://doi.org/10.1083/jcb.200406025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahoney ZX, Sammut B, Xavier RJ, Cunningham J, Go G, Brim KL, Stappenbeck TS, Miner JH, Swat W. Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci USA. 2006;103(52):19872–7. https://doi.org/10.1073/pnas.0609326103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin E, Caubit X, Airik R, Vola C, Fatmi A, Kispert A, Fasano L. TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity. PLoS One. 2013;8(5):e63721. https://doi.org/10.1371/journal.pone.0063721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development. 2008;135(19):3301–10. https://doi.org/10.1242/dev.022442.

    Article  CAS  PubMed  Google Scholar 

  50. Cain JE, Islam E, Haxho F, Blake J, Rosenblum ND. GLI3 repressor controls functional development of the mouse ureter. J Clin Invest. 2011;121(3):1199–206. https://doi.org/10.1172/JCI45523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sun TT, Herzlinger D. Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development. 2007;134(10):1967–75. https://doi.org/10.1242/dev.004234.

    Article  CAS  PubMed  Google Scholar 

  52. Tripathi P, Wang Y, Casey AM, Chen F. Absence of canonical Smad signaling in ureteral and bladder mesenchyme causes ureteropelvic junction obstruction. J Am Soc Nephrol. 2012;23(4):618–28. https://doi.org/10.1681/ASN.2011060566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trowe MO, Airik R, Weiss AC, Farin HF, Foik AB, Bettenhausen E, Schuster-Gossler K, Taketo MM, Kispert A. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development. 2012;139(17):3099–108. https://doi.org/10.1242/dev.077388.

    Article  CAS  PubMed  Google Scholar 

  54. Airik R, Bussen M, Singh MK, Petry M, Kispert A. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116(3):663–74. https://doi.org/10.1172/JCI26027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lye CM, Fasano L, Woolf AS. Ureter myogenesis: putting Teashirt into context. J Am Soc Nephrol. 2010;21(1):24–30. https://doi.org/10.1681/ASN.2008111206.

    Article  CAS  PubMed  Google Scholar 

  56. Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F. Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest. 2004;113(7):1051–8. https://doi.org/10.1172/JCI20049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hurtado R, Bub G, Herzlinger D. The pelvis-kidney junction contains HCN3, a hyperpolarization-activated cation channel that triggers ureter peristalsis. Kidney Int. 2010;77(6):500–8. https://doi.org/10.1038/ki.2009.483.

    Article  CAS  PubMed  Google Scholar 

  58. Herzlinger D. Upper urinary tract pacemaker cells join the GLI club. J Clin Invest. 2011;121(3):836–8. https://doi.org/10.1172/JCI46400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GC, Biesecker LG. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet. 2005;76(4):609–22. https://doi.org/10.1086/429346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miyazaki Y, Tsuchida S, Nishimura H, JCt P, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102(8):1489–97. https://doi.org/10.1172/JCI4401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gubler MC, Antignac C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 2010;77(5):400–6. https://doi.org/10.1038/ki.2009.423.

    Article  CAS  PubMed  Google Scholar 

  62. Nie X, Sun J, Gordon RE, Cai CL, Xu PX. SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development. 2010;137(5):755–65. https://doi.org/10.1242/dev.045757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131(11):1725–38. https://doi.org/10.1007/s00439-012-1181-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol. 2014;29(4):597–608. https://doi.org/10.1007/s00467-013-2606-5.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hoshi M, Batourina E, Mendelsohn C, Jain S. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development. 2012;139(13):2405–15. https://doi.org/10.1242/dev.078667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M. Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol. 2009;20(2):255–9. https://doi.org/10.1681/ASN.2008030267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 2010;6(1):e1000809. https://doi.org/10.1371/journal.pgen.1000809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, McManus MT, Smith L, Woolf AS, Cheeseman M, Greenfield A. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome. 2009;20(3):140–51. https://doi.org/10.1007/s00335-008-9169-y.

    Article  PubMed  Google Scholar 

  69. Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol. 2014;29(4):609–20. https://doi.org/10.1007/s00467-013-2616-3.

    Article  PubMed  Google Scholar 

  70. Yosypiv IV. Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol. 2009;24(6):1113–20. https://doi.org/10.1007/s00467-008-1021-9.

    Article  PubMed  Google Scholar 

  71. Hohenfellner K, Hunley TE, Brezinska R, Brodhag P, Shyr Y, Brenner W, Habermehl P, Kon V. ACE I/D gene polymorphism predicts renal damage in congenital uropathies. Pediatr Nephrol. 1999;13(6):514–8. https://doi.org/10.1007/s004670050649.

    Article  CAS  PubMed  Google Scholar 

  72. Hahn H, Ku SE, Kim KS, Park YS, Yoon CH, Cheong HI. Implication of genetic variations in congenital obstructive nephropathy. Pediatr Nephrol. 2005;20(11):1541–4. https://doi.org/10.1007/s00467-005-1999-1.

    Article  PubMed  Google Scholar 

  73. Rigoli L, Chimenz R, di Bella C, Cavallaro E, Caruso R, Briuglia S, Fede C, Salpietro CD. Angiotensin-converting enzyme and angiotensin type 2 receptor gene genotype distributions in Italian children with congenital uropathies. Pediatr Res. 2004;56(6):988–93. https://doi.org/10.1203/01.PDR.0000145252.89427.9E.

    Article  CAS  PubMed  Google Scholar 

  74. Stankovic A, Zivkovic M, Kostic M, Atanackovic J, Krstic Z, Alavantic D. Expression profiling of the AT2R mRNA in affected tissue from children with CAKUT. Clin Biochem. 2010;43(1-2):71–5. https://doi.org/10.1016/j.clinbiochem.2009.09.009.

    Article  CAS  PubMed  Google Scholar 

  75. Cordell HJ, Darlay R, Charoen P, Stewart A, Gullett AM, Lambert HJ, Malcolm S, Feather SA, Goodship TH, Woolf AS, Kenda RB, Goodship JA, Group UVS. Whole-genome linkage and association scan in primary nonsyndromic vesicoureteric reflux. J Am Soc Nephrol. 2010;21(1):113–23. https://doi.org/10.1681/ASN.2009060624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peruzzi L, Lombardo F, Amore A, Merlini E, Restagno G, Silvestro L, Papalia T, Coppo R. Low renin-angiotensin system activity gene polymorphism and dysplasia associated with posterior urethral valves. J Urol. 2005;174(2):713–7. https://doi.org/10.1097/01.ju.0000164739.13408.e2.

    Article  CAS  PubMed  Google Scholar 

  77. Sidhu G, Beyene J, Rosenblum ND. Outcome of isolated antenatal hydronephrosis: a systematic review and meta-analysis. Pediatr Nephrol. 2006;21(2):218–24. https://doi.org/10.1007/s00467-005-2100-9.

    Article  PubMed  Google Scholar 

  78. Thom RP, Rosenblum ND. A translational approach to congenital non-obstructive hydronephrosis. Pediatr Nephrol. 2013;28(9):1757–61. https://doi.org/10.1007/s00467-012-2321-7.

    Article  PubMed  Google Scholar 

  79. Rodriguez MM. Developmental renal pathology: its past, present, and future. Fetal Pediatr Pathol. 2004;23(4):211–29. https://doi.org/10.1080/15227950490923453.

    Article  PubMed  Google Scholar 

  80. Morris RK, Malin GL, Quinlan-Jones E, Middleton LJ, Hemming K, Burke D, Daniels JP, Khan KS, Deeks J, Kilby MD, Percutaneous vesicoamniotic shunting in Lower Urinary Tract Obstruction Collaborative G. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382(9903):1496–506. https://doi.org/10.1016/S0140-6736(13)60992-7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klein J, Lacroix C, Caubet C, Siwy J, Zurbig P, Dakna M, Muller F, Breuil B, Stalmach A, Mullen W, Mischak H, Bandin F, Monsarrat B, Bascands JL, Decramer S, Schanstra JP. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5(198):198ra106. https://doi.org/10.1126/scitranslmed.3005807.

    Article  CAS  PubMed  Google Scholar 

  82. Crombleholme TM, Harrison MR, Golbus MS, Longaker MT, Langer JC, Callen PW, Anderson RL, Goldstein RB, Filly RA. Fetal intervention in obstructive uropathy: prognostic indicators and efficacy of intervention. Am J Obstet Gynecol. 1990;162(5):1239–44. https://doi.org/10.1016/0002-9378(90)90026-4.

    Article  CAS  PubMed  Google Scholar 

  83. Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27(10):900–11. https://doi.org/10.1002/pd.1810.

    Article  CAS  PubMed  Google Scholar 

  84. Dos Santos J, Parekh RS, Piscione TD, Hassouna T, Figueroa V, Gonima P, Vargas I, Farhat W, Rosenblum ND. A new grading system for the management of antenatal hydronephrosis. Clin J Am Soc Nephrol. 2015;10(10):1783–90. https://doi.org/10.2215/CJN.12861214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li B, McGrath M, Farrokhyar F, Braga LH. Ultrasound-based scoring system for indication of pyeloplasty in patients with UPJO-Like hydronephrosis. Front Pediatr. 2020;8:353. https://doi.org/10.3389/fped.2020.00353.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ismaili K, Avni FE, Wissing KM, Hall M, Brussels Free University Perinatal Nephrology Study G. Long-term clinical outcome of infants with mild and moderate fetal pyelectasis: validation of neonatal ultrasound as a screening tool to detect significant nephrouropathies. J Pediatr. 2004;144(6):759–65. https://doi.org/10.1016/j.jpeds.2004.02.035.

    Article  PubMed  Google Scholar 

  87. Herthelius M, Axelsson R, Lidefelt KJ. Antenatally detected urinary tract dilatation: a 12-15-year follow-up. Pediatr Nephrol. 2020;35(11):2129–35. https://doi.org/10.1007/s00467-020-04659-4.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arlen AM, Merriman LS, Kirsch JM, Leong T, Scherz HC, Smith EA, Broecker BH, Kirsch AJ. Early effect of American academy of pediatrics urinary tract infection guidelines on radiographic imaging and diagnosis of vesicoureteral reflux in the emergency room setting. J Urol. 2015;193(5 Suppl):1760–5. https://doi.org/10.1016/j.juro.2014.06.100.

    Article  PubMed  Google Scholar 

  89. Taylor AT. Radionuclides in nephrourology, Part 2: pitfalls and diagnostic applications. J Nucl Med. 2014;55(5):786–98. https://doi.org/10.2967/jnumed.113.133454.

    Article  CAS  PubMed  Google Scholar 

  90. Taylor AT. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med. 2014;55(4):608–15. https://doi.org/10.2967/jnumed.113.133447.

    Article  CAS  PubMed  Google Scholar 

  91. Kuyvenhoven J, Piepsz A, Ham H. When could the administration of furosemide be avoided? Clin Nucl Med. 2003;28(9):732–7. https://doi.org/10.1097/01.rlu.0000082659.54696.f8.

    Article  PubMed  Google Scholar 

  92. Passoni NM, Peters CA. Managing ureteropelvic junction obstruction in the young infant. Front Pediatr. 2020;8:242. https://doi.org/10.3389/fped.2020.00242.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Roca I, Sixt R, van Velzen J, Paediatric Committee of the European Association of Nuclear M. Guidelines for 99mTc-DMSA scintigraphy in children. Eur J Nucl Med. 2001;28(3):BP37–41.

    CAS  PubMed  Google Scholar 

  94. Weyer K, Nielsen R, Petersen SV, Christensen EI, Rehling M, Birn H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med. 2013;54(1):159–65. https://doi.org/10.2967/jnumed.112.110528.

    Article  CAS  PubMed  Google Scholar 

  95. Avanoglu A, Tiryaki S. Embryology and morphological (Mal)development of UPJ. Front Pediatr. 2020;8:137. https://doi.org/10.3389/fped.2020.00137.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hurtado R, Bub G, Herzlinger D. A molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J. 2014;28(2):730–9. https://doi.org/10.1096/fj.13-237289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Benedetto A, Arena S, Nicotina PA, Mucciardi G, Gali A, Magno C. Pacemakers in the upper urinary tract. Neurourol Urodyn. 2013;32(4):349–53. https://doi.org/10.1002/nau.22310.

    Article  PubMed  Google Scholar 

  98. Iskander SM, Feeney MM, Yee K, Rosenblum ND. Protein kinase 2beta is expressed in neural crest-derived urinary pacemaker cells and required for pyeloureteric contraction. J Am Soc Nephrol. 2018;29(4):1198–209. https://doi.org/10.1681/ASN.2017090951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weisschuh N, Wolf C, Wissinger B, Gramer E. A novel mutation in the FOXC1 gene in a family with Axenfeld-Rieger syndrome and Peters’ anomaly. Clin Genet. 2008;74(5):476–80. https://doi.org/10.1111/j.1399-0004.2008.01025.x.

    Article  CAS  PubMed  Google Scholar 

  100. Yu S, Shao L, Kilbride H, Zwick DL. Haploinsufficiencies of FOXF1 and FOXC2 genes associated with lethal alveolar capillary dysplasia and congenital heart disease. Am J Med Genet A. 2010;152A(5):1257–62. https://doi.org/10.1002/ajmg.a.33378.

    Article  CAS  PubMed  Google Scholar 

  101. Astorga J, Carlsson P. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4. Development. 2007;134(20):3753–61. https://doi.org/10.1242/dev.004432.

    Article  CAS  PubMed  Google Scholar 

  102. Sheybani-Deloui S, Chi L, Staite MV, Cain JE, Nieman BJ, Henkelman RM, Wainwright BJ, Potter SS, Bagli DJ, Lorenzo AJ, Rosenblum ND. Activated Hedgehog-GLI signaling causes congenital ureteropelvic junction obstruction. J Am Soc Nephrol. 2018;29(2):532–44. https://doi.org/10.1681/ASN.2017050482.

    Article  PubMed  Google Scholar 

  103. Bayne CE, Majd M, Rushton HG. Diuresis renography in the evaluation and management of pediatric hydronephrosis: what have we learned? J Pediatr Urol. 2019;15(2):128–37. https://doi.org/10.1016/j.jpurol.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  104. Carlstrom M. Hydronephrosis and risk of later development of hypertension. Acta Paediatr. 2019;108(1):50–7. https://doi.org/10.1111/apa.14482.

    Article  PubMed  Google Scholar 

  105. Weitz M, Schmidt M, Laube G. Primary non-surgical management of unilateral ureteropelvic junction obstruction in children: a systematic review. Pediatr Nephrol. 2017;32(12):2203–13. https://doi.org/10.1007/s00467-016-3566-3.

    Article  PubMed  Google Scholar 

  106. Cheng AM, Phan V, Geary DF, Rosenblum ND. Outcome of isolated antenatal hydronephrosis. Arch Pediatr Adolesc Med. 2004;158(1):38–40. https://doi.org/10.1001/archpedi.158.1.38.

    Article  PubMed  Google Scholar 

  107. Chertin B, Pollack A, Koulikov D, Rabinowitz R, Hain D, Hadas-Halpren I, Farkas A. Conservative treatment of ureteropelvic junction obstruction in children with antenatal diagnosis of hydronephrosis: lessons learned after 16 years of follow-up. Eur Urol. 2006;49(4):734–8. https://doi.org/10.1016/j.eururo.2006.01.046.

    Article  PubMed  Google Scholar 

  108. Moralioglu S, Celayir AC, Bosnali O, Pektas OZ. Safety and efficiency of pyeloplasty in the first six weeks of infants' life. Urol J. 2020; https://doi.org/10.22037/uj.v0i0.5531.

  109. Arena S, Chimenz R, Antonelli E, Peri FM, Romeo P, Impellizzeri P, Romeo C. A long-term follow-up in conservative management of unilateral ureteropelvic junction obstruction with poor drainage and good renal function. Eur J Pediatr. 2018;177(12):1761–5. https://doi.org/10.1007/s00431-018-3239-2.

    Article  CAS  PubMed  Google Scholar 

  110. Avery DI, Herbst KW, Lendvay TS, Noh PH, Dangle P, Gundeti MS, Steele MC, Corbett ST, Peters CA, Kim C. Robot-assisted laparoscopic pyeloplasty: multi-institutional experience in infants. J Pediatr Urol. 2015;11(3):139 e131–5. https://doi.org/10.1016/j.jpurol.2014.11.025.

    Article  Google Scholar 

  111. Chevalier RL. Biomarkers of congenital obstructive nephropathy: past, present and future. J Urol. 2004;172(3):852–7. https://doi.org/10.1097/01.ju.0000129542.22043.ef.

    Article  PubMed  Google Scholar 

  112. Carr MC, Peters CA, Retik AB, Mandell J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J Urol. 1994;151(2):442–5. https://doi.org/10.1016/s0022-5347(17)34983-2.

    Article  CAS  PubMed  Google Scholar 

  113. El-Sherbiny MT, Mousa OM, Shokeir AA, Ghoneim MA. Role of urinary transforming growth factor-beta1 concentration in the diagnosis of upper urinary tract obstruction in children. J Urol. 2002;168(4 Pt 2):1798–800. https://doi.org/10.1097/01.ju.0000027231.84450.8f.

    Article  CAS  PubMed  Google Scholar 

  114. Valles PG, Pascual L, Manucha W, Carrizo L, Ruttler M. Role of endogenous nitric oxide in unilateral ureteropelvic junction obstruction in children. Kidney Int. 2003;63(3):1104–15. https://doi.org/10.1046/j.1523-1755.2003.00833.x.

    Article  CAS  PubMed  Google Scholar 

  115. Bartoli F, Penza R, Aceto G, Niglio F, D'Addato O, Pastore V, Campanella V, Magaldi S, Lasalandra C, Di Bitonto G, Gesualdo L. Urinary epidermal growth factor, monocyte chemotactic protein-1, and beta2-microglobulin in children with ureteropelvic junction obstruction. J Pediatr Surg. 2011;46(3):530–6. https://doi.org/10.1016/j.jpedsurg.2010.07.057.

    Article  PubMed  Google Scholar 

  116. Taranta-Janusz K, Wasilewska A, Debek W, Filonowicz R, Michaluk-Skutnik J. Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr. 2013;102(9):e429–33. https://doi.org/10.1111/apa.12324.

    Article  CAS  PubMed  Google Scholar 

  117. Gupta S, Nicassio L, Junquera GY, Jackson AR, Fuchs M, McLeod D, Alpert S, Jayanthi VR, DaJusta D, McHugh KM, Becknell B, Ching CB. Impact of successful pediatric ureteropelvic junction obstruction surgery on urinary HIP/PAP and BD-1 levels. J Pediatr Urol. 2020; https://doi.org/10.1016/j.jpurol.2020.03.006.

  118. Bienias B, Sikora P. Selected metal matrix metalloproteinases and tissue inhibitors of metalloproteinases as potential biomarkers for tubulointerstitial fibrosis in children with unilateral hydronephrosis. Dis Markers. 2020;2020:9520309. https://doi.org/10.1155/2020/9520309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Assadi F, Mazaheri M. Urinary polyomavirus: novel biomarker of congenital ureteropelvic junction obstruction. J Pediatr Urol. 2020;16(1):107 e101–5. https://doi.org/10.1016/j.jpurol.2019.10.019.

    Article  Google Scholar 

  120. Pavlaki A, Printza N, Farmaki E, Stabouli S, Taparkou A, Sterpi M, Dotis J, Papachristou F. The role of urinary NGAL and serum cystatin C in assessing the severity of ureteropelvic junction obstruction in infants. Pediatr Nephrol. 2020;35(1):163–70. https://doi.org/10.1007/s00467-019-04349-w.

    Article  PubMed  Google Scholar 

  121. Pavlaki A, Begou O, Deda O, Farmaki E, Dotis J, Gika H, Taparkou A, Raikos N, Papachristou F, Theodoridis G, Printza N. Serum-targeted HILIC-MS metabolomics-based analysis in infants with ureteropelvic junction obstruction. J Proteome Res. 2020;19(6):2294–303. https://doi.org/10.1021/acs.jproteome.9b00855.

    Article  CAS  PubMed  Google Scholar 

  122. Devarakonda CKV, Shearier ER, Hu C, Grady J, Balsbaugh JL, Makari JH, Ferrer FA, Shapiro LH. A novel urinary biomarker protein panel to identify children with ureteropelvic junction obstruction – A pilot study. J Pediatr Urol. 2020;16(4):466 e461–9. https://doi.org/10.1016/j.jpurol.2020.05.163.

    Article  Google Scholar 

  123. Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, Bouissou F, Bascands JL, Schanstra JP. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12(4):398–400. https://doi.org/10.1038/nm1384.

    Article  CAS  PubMed  Google Scholar 

  124. Drube J, Zurbig P, Schiffer E, Lau E, Ure B, Gluer S, Kirschstein M, Pape L, Decramer S, Bascands JL, Schanstra JP, Mischak H, Ehrich JH. Urinary proteome analysis identifies infants but not older children requiring pyeloplasty. Pediatr Nephrol. 2010;25(9):1673–8. https://doi.org/10.1007/s00467-010-1455-8.

    Article  PubMed  Google Scholar 

  125. Papachristou F, Pavlaki A, Printza N. Urinary and serum biomarkers in ureteropelvic junction obstruction: a systematic review. Biomarkers. 2014;19(7):531–40. https://doi.org/10.3109/1354750X.2014.943292.

    Article  CAS  PubMed  Google Scholar 

  126. Boubaker A, Prior JO, Meyrat B, Bischof Delaloye A, McAleer IM, Frey P. Unilateral ureteropelvic junction obstruction in children: long-term followup after unilateral pyeloplasty. J Urol. 2003;170(2 Pt 1):575–9.; discussion 579. https://doi.org/10.1097/01.ju.0000071480.83890.36.

    Article  PubMed  Google Scholar 

  127. Bandin F, Siwy J, Breuil B, Mischak H, Bascands JL, Decramer S, Schanstra JP. Urinary proteome analysis at 5-year followup of patients with nonoperated ureteropelvic junction obstruction suggests ongoing kidney remodeling. J Urol. 2012;187(3):1006–11. https://doi.org/10.1016/j.juro.2011.10.169.

    Article  CAS  PubMed  Google Scholar 

  128. Mackie GG, Awang H, Stephens FD. The ureteric orifice: the embryologic key to radiologic status of duplex kidneys. J Pediatr Surg. 1975;10(4):473–81. https://doi.org/10.1016/0022-3468(75)90187-6.

    Article  CAS  PubMed  Google Scholar 

  129. Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol. 2010;183(5):2077–84. https://doi.org/10.1016/j.juro.2009.12.095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Uetani N, Bouchard M. Plumbing in the embryo: developmental defects of the urinary tracts. Clin Genet. 2009;75(4):307–17. https://doi.org/10.1111/j.1399-0004.2009.01175.x.

    Article  CAS  PubMed  Google Scholar 

  131. Routh JC, Huang L, Retik AB, Nelson CP. Contemporary epidemiology and characterization of newborn males with prune belly syndrome. Urology. 2010;76(1):44–8. https://doi.org/10.1016/j.urology.2009.12.072.

    Article  PubMed  Google Scholar 

  132. Hassett S, Smith GH, Holland AJ. Prune belly syndrome. Pediatr Surg Int. 2012;28(3):219–28. https://doi.org/10.1007/s00383-011-3046-6.

    Article  CAS  PubMed  Google Scholar 

  133. Haeri S, Devers PL, Kaiser-Rogers KA, Moylan VJ Jr, Torchia BS, Horton AL, Wolfe HM, Aylsworth AS. Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome. Am J Perinatol. 2010;27(7):559–63. https://doi.org/10.1055/s-0030-1248943.

    Article  PubMed  Google Scholar 

  134. Weber S, Thiele H, Mir S, Toliat MR, Sozeri B, Reutter H, Draaken M, Ludwig M, Altmuller J, Frommolt P, Stuart HM, Ranjzad P, Hanley NA, Jennings R, Newman WG, Wilcox DT, Thiel U, Schlingmann KP, Beetz R, Hoyer PF, Konrad M, Schaefer F, Nurnberg P, Woolf AS. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am J Hum Genet. 2011;89(5):668–74. https://doi.org/10.1016/j.ajhg.2011.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Farrugia M-K, Woolf AS. Congenital urinary bladder outlet obstruction. Fetal and Maternal Medicine Review. 2010;21(1):55–73. https://doi.org/10.1017/s0965539509990192.

    Article  Google Scholar 

  136. Woolf AS, Winyard PJ, Hermanns MM, Welham SJ. Maldevelopment of the human kidney and lower urinary tract: an overview. In: Vize PD, Woolf AS, Bard JBL, editors. The kidney: from normal development to cogenital disease. London: Academic Press; 2003. p. 377–93.

    Chapter  Google Scholar 

  137. Nasir AA, Ameh EA, Abdur-Rahman LO, Adeniran JO, Abraham MK. Posterior urethral valve. World J Pediatr. 2011;7(3):205–16. https://doi.org/10.1007/s12519-011-0289-1.

    Article  PubMed  Google Scholar 

  138. Krishnan A, de Souza A, Konijeti R, Baskin LS. The anatomy and embryology of posterior urethral valves. J Urol. 2006;175(4):1214–20. https://doi.org/10.1016/S0022-5347(05)00642-7.

    Article  PubMed  Google Scholar 

  139. Kolvenbach CM, Dworschak GC, Frese S, Japp AS, Schuster P, Wenzlitschke N, Yilmaz O, Lopes FM, Pryalukhin A, Schierbaum L, van der Zanden LFM, Kause F, Schneider R, Taranta-Janusz K, Szczepanska M, Pawlaczyk K, Newman WG, Beaman GM, Stuart HM, Cervellione RM, Feitz WFJ, van Rooij I, Schreuder MF, Steffens M, Weber S, Merz WM, Feldkotter M, Hoppe B, Thiele H, Altmuller J, Berg C, Kristiansen G, Ludwig M, Reutter H, Woolf AS, Hildebrandt F, Grote P, Zaniew M, Odermatt B, Hilger AC. Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction. Am J Hum Genet. 2019;104(5):994–1006. https://doi.org/10.1016/j.ajhg.2019.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morris RK, Kilby MD. Long-term renal and neurodevelopmental outcome in infants with LUTO, with and without fetal intervention. Early Hum Dev. 2011;87(9):607–10. https://doi.org/10.1016/j.earlhumdev.2011.07.004.

    Article  PubMed  Google Scholar 

  141. Herbst KW, Tomlinson P, Lockwood G, Mosha MH, Wang Z, D'Alessandri-Silva C. Survival and kidney outcomes of children with an early diagnosis of posterior urethral valves. Clin J Am Soc Nephrol. 2019;14(11):1572–80. https://doi.org/10.2215/CJN.04350419.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hennus PM, van der Heijden GJ, Bosch JL, de Jong TP, de Kort LM. A systematic review on renal and bladder dysfunction after endoscopic treatment of infravesical obstruction in boys. PLoS One. 2012;7(9):e44663. https://doi.org/10.1371/journal.pone.0044663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bärbel Lange-Sperandio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lange-Sperandio, B., Rosenblum, N.D. (2022). Pediatric Obstructive Uropathy. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics