Skip to main content

Renal Transplantation: Non-infectious Complications and Long-Term Outcome

  • Reference work entry
  • First Online:
Pediatric Nephrology
  • 3077 Accesses

Abstract

Kidney transplantation is the best option for renal replacement therapy in nearly all children, but it comes with short- and long-term complications. Noninfectious transplant-related comorbidities largely originate from the specific side effects of immunosuppressive therapy and chronic kidney disease (CKD)-related problems caused by impaired graft function. Recurrent cramps from hypomagnesemia, hypertension, anemia, persistent growth retardation, tremors, cosmetic changes, and gastrointestinal problems are among the most common short-term side effects. Urological problems often occur and may severely impact graft survival. Calcineurin inhibitors-induced posterior reversible encephalopathy syndrome and post-transplant lymphoproliferative disease (PTLD) are rare, but may cause severe short-term complications. Post-transplant lymphoproliferative disorder (PTLD) is more prevalent in pediatric than in adult graft recipients. Post-transplant diabetes and dyslipidemia are less prevalent than in adults. Quality of life improves after transplantation coming from chronic dialysis treatment, according to most, but not all reports. Cognitive dysfunction is a common feature and may have an important impact on the quality of life.

Late complications into adulthood include a high risk for malignancies, especially for severe forms of squamous cell skin carcinoma. Additionally, cardiovascular disease, chronic joint pain and motor disabilities, and chronic fatigue. Cognitive impairment and delayed autonomy are associated social problems concerning sexual relationships, obtaining a paid profession, and starting a family. Despite these problems, long-term survivors of kidney transplantation consider their quality of life on average as good, especially with respect to mental domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant. 2011;11(11):2432–42. https://doi.org/10.1111/j.1600-6143.2011.03691.x.

    Article  CAS  PubMed  Google Scholar 

  2. Sorof JM, Sullivan EK, Tejani A, Portman RJ. Antihypertensive medication and renal allograft failure: a North American Pediatric Renal Transplant Cooperative Study report. J Am Soc Nephrol. 1999;10(6):1324–30.

    Article  CAS  Google Scholar 

  3. Mitsnefes MM, Omoloja A, McEnery PT. Short-term pediatric renal transplant survival: blood pressure and allograft function. Pediatr Transplant. 2001;5(3):160–5. https://doi.org/10.1034/j.1399-3046.2001.t01-1-00051.x.

    Article  CAS  PubMed  Google Scholar 

  4. Mitsnefes MM, Khoury PR, McEnery PT. Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr. 2003;143(1):98–103. https://doi.org/10.1016/S0022-3476(03)00209-9.

    Article  PubMed  Google Scholar 

  5. Kramer AM, van Stralen KJ, Jager KJ, et al. Demographics of blood pressure and hypertension in children on renal replacement therapy in Europe. Kidney Int. 2011;80(10):1092–8. https://doi.org/10.1038/ki.2011.232.

    Article  PubMed  Google Scholar 

  6. Mitsnefes M, Stablein D. Hypertension in pediatric patients on long-term dialysis: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Am J Kidney Dis. 2005;45(2):309–15. https://doi.org/10.1053/j.ajkd.2004.11.006.

    Article  PubMed  Google Scholar 

  7. Sinha MD, Castledine C, van Schalkwyk D, Hussain F, Lewis M, Inward C. UK Renal Registry 13th Annual Report (December 2010): chapter 5: demography of the UK paediatric renal replacement therapy population in 2009. Nephron Clin Pract. 2011;119(Suppl 2):c97–106. https://doi.org/10.1159/000331755.

    Article  PubMed  Google Scholar 

  8. Dobrowolski LC, van Huis M, van der Lee JH, et al. Epidemiology and management of hypertension in paediatric and young adult kidney transplant recipients in The Netherlands. Nephrol Dial Transplant. 2017;32(2):402. https://doi.org/10.1093/ndt/gfw449.

    Article  PubMed  Google Scholar 

  9. Seeman T. Ambulatory blood pressure monitoring in pediatric renal transplantation. Curr Hypertens Rep. 2012;14(6):608–18. https://doi.org/10.1007/s11906-012-0301-8.

    Article  PubMed  Google Scholar 

  10. Duzova A, Karabay Bayazit A, Canpolat N, et al. Isolated nocturnal and isolated daytime hypertension associate with altered cardiovascular morphology and function in children with chronic kidney disease: findings from the Cardiovascular Comorbidity in Children with Chronic Kidney Disease study. J Hypertens. 2019;37(11):2247–55. https://doi.org/10.1097/HJH.0000000000002160.

    Article  PubMed  Google Scholar 

  11. Stabouli S, Printza N, Dotis J, et al. Long-term changes in blood pressure after pediatric kidney transplantation. Am J Hypertens. 2016;29(7):860–5. https://doi.org/10.1093/ajh/hpv192.

    Article  PubMed  Google Scholar 

  12. Blanca L, Jimenez T, Cabello M, et al. Cardiovascular risk in recipients with kidney transplants from expanded criteria donors. Transplant Proc. 2012;44(9):2579–81. https://doi.org/10.1016/j.transproceed.2012.09.086.

    Article  CAS  PubMed  Google Scholar 

  13. Audard V, Matignon M, Hemery F, et al. Risk factors and long-term outcome of transplant renal artery stenosis in adult recipients after treatment by percutaneous transluminal angioplasty. Am J Transplant. 2006;6(1):95–9. https://doi.org/10.1111/j.1600-6143.2005.01136.x.

    Article  CAS  PubMed  Google Scholar 

  14. Patel NH, Jindal RM, Wilkin T, et al. Renal arterial stenosis in renal allografts: retrospective study of predisposing factors and outcome after percutaneous transluminal angioplasty. Radiology. 2001;219(3):663–7. https://doi.org/10.1148/radiology.219.3.r01jn30663.

    Article  CAS  PubMed  Google Scholar 

  15. Rengel M, Gomes-Da-Silva G, Inchaustegui L, et al. Renal artery stenosis after kidney transplantation: diagnostic and therapeutic approach. Kidney Int Suppl. 1998;68:S99–106. https://doi.org/10.1038/sj.ki.4490573.

    Article  CAS  PubMed  Google Scholar 

  16. Ghirardo G, De Franceschi M, Vidal E, et al. Transplant renal artery stenosis in children: risk factors and outcome after endovascular treatment. Pediatr Nephrol. 2014;29(3):461–7. https://doi.org/10.1007/s00467-013-2681-7.

    Article  PubMed  Google Scholar 

  17. Fontaine E, Beurton D, Barthelemy Y, Quentel P, Cukier J, Broyer M. Renal artery stenosis following pediatric renal transplantation. Transplant Proc. 1994;26(1):293–4.

    CAS  PubMed  Google Scholar 

  18. Freedman BI, Murea M. Target organ damage in African American hypertension: role of APOL1. Curr Hypertens Rep. 2012;14(1):21–8. https://doi.org/10.1007/s11906-011-0237-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reeves-Daniel AM, DePalma JA, Bleyer AJ, et al. The APOL1 gene and allograft survival after kidney transplantation. Am J Transplant. 2011;11(5):1025–30. https://doi.org/10.1111/j.1600-6143.2011.03513.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sugianto RI, Schmidt BMW, Memaran N, et al. Sex and age as determinants for high blood pressure in pediatric renal transplant recipients: a longitudinal analysis of the CERTAIN Registry. Pediatr Nephrol. 2020;35(3):415–26. https://doi.org/10.1007/s00467-019-04395-4.

    Article  PubMed  Google Scholar 

  21. Seeman T, Simkova E, Kreisinger J, et al. Improved control of hypertension in children after renal transplantation: results of a two-yr interventional trial. Pediatr Transplant. 2007;11(5):491–7. https://doi.org/10.1111/j.1399-3046.2006.00661.x.

    Article  CAS  PubMed  Google Scholar 

  22. Seeman T, Vondrak K, Dusek J. Effects of the strict control of blood pressure in pediatric renal transplant recipients-ESCORT trial. Pediatr Transplant. 2019;23(1):e13329. https://doi.org/10.1111/petr.13329.

    Article  PubMed  Google Scholar 

  23. Matteucci MC, Chinali M, Rinelli G, et al. Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol. 2013;8(2):203–10. https://doi.org/10.2215/CJN.08420811.

    Article  CAS  PubMed  Google Scholar 

  24. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155. https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2009-Transplant-Recipient-Guideline-English.pdf

  25. Bonthuis M, van Stralen KJ, Jager KJ, et al. Dyslipidaemia in children on renal replacement therapy. Nephrol Dial Transplant. 2014;29(3):594–603. https://doi.org/10.1093/ndt/gft429.

    Article  CAS  PubMed  Google Scholar 

  26. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56. https://doi.org/10.1542/peds.2009-2107C.

    Article  PubMed Central  Google Scholar 

  27. Bamgbola O. Metabolic consequences of modern immunosuppressive agents in solid organ transplantation. Ther Adv Endocrinol Metab. 2016;7(3):110–27. https://doi.org/10.1177/2042018816641580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Habbig S, Volland R, Krupka K, et al. Dyslipidemia after pediatric renal transplantation – the impact of immunosuppressive regimens. Pediatr Transplant. 2017;21(3). https://doi.org/10.1111/petr.12914.

  29. Almeida M, Martins LS, Dias L, et al. Conversion to sirolimus in a population of kidney and kidney-pancreas transplant recipients. Transplant Proc. 2005;37(6):2777–80. https://doi.org/10.1016/j.transproceed.2005.06.088.

    Article  CAS  PubMed  Google Scholar 

  30. Spinelli GA, Felipe CR, Park SI, Mandia-Sampaio EL, Tedesco-Silva H Jr, Medina-Pestana JO. Lipid profile changes during the first year after kidney transplantation: risk factors and influence of the immunosuppressive drug regimen. Transplant Proc. 2011;43(10):3730–7. https://doi.org/10.1016/j.transproceed.2011.08.074.

    Article  CAS  PubMed  Google Scholar 

  31. Heemann U, Abramowicz D, Spasovski G, Vanholder R, European Renal Best Practice Work Group on Kidney Transplantation. Endorsement of the Kidney Disease Improving Global Outcomes (KDIGO) guidelines on kidney transplantation: a European Renal Best Practice (ERBP) position statement. Nephrol Dial Transplant. 2011;26(7):2099–106. https://doi.org/10.1093/ndt/gfr169.

    Article  PubMed  Google Scholar 

  32. Robinson CH, Coughlin CC, Chanchlani R, Dharnidharka VR. Post-transplant malignancies in pediatric organ transplant recipients. Pediatr Transplant. 2020;25:e13884. https://doi.org/10.1111/petr.13884.

    Article  PubMed  Google Scholar 

  33. Dharnidharka VR, Webster AC, Martinez OM, Preiksaitis JK, Leblond V, Choquet S. Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers. 2016;2:15088. https://doi.org/10.1038/nrdp.2015.88.

    Article  PubMed  Google Scholar 

  34. Faull RJ, Hollett P, McDonald SP. Lymphoproliferative disease after renal transplantation in Australia and New Zealand. Transplantation. 2005;80(2):193–7. https://doi.org/10.1097/01.tp.0000165098.49658.f3.

    Article  PubMed  Google Scholar 

  35. Samant H, Vaitla P, Kothadia JP. Post transplant lymphoproliferative disorders. Treasure Island: StatPearls; 2020.

    Google Scholar 

  36. Shapiro R, Nalesnik M, McCauley J, et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. Transplantation. 1999;68(12):1851–4. https://doi.org/10.1097/00007890-199912270-00006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Engels EA, Jennings LW, Everly MJ, et al. Donor-specific antibodies, immunoglobulin-free light chains, and BAFF levels in relation to risk of late-onset PTLD in liver recipients. Transplant Direct. 2018;4(6):e353. https://doi.org/10.1097/TXD.0000000000000792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanner JE, Alfieri C. The Epstein-Barr virus and post-transplant lymphoproliferative disease: interplay of immunosuppression, EBV, and the immune system in disease pathogenesis. Transpl Infect Dis. 2001;3(2):60–9. https://doi.org/10.1034/j.1399-3062.2001.003002060.x.

    Article  CAS  PubMed  Google Scholar 

  39. Martinez OM, Krams SM. The immune response to Epstein Barr virus and implications for posttransplant lymphoproliferative disorder. Transplantation. 2017;101(9):2009–16. https://doi.org/10.1097/TP.0000000000001767.

    Article  PubMed  PubMed Central  Google Scholar 

  40. De Vlaminck I, Khush KK, Strehl C, et al. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell. 2013;155(5):1178–87. https://doi.org/10.1016/j.cell.2013.10.034.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dharnidharka VR, Ruzinova MB, Chen CC, et al. Metagenomic analysis of DNA viruses from posttransplant lymphoproliferative disorders. Cancer Med. 2019;8(3):1013–23. https://doi.org/10.1002/cam4.1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trappe RU, Dierickx D, Zimmermann H, et al. Response to rituximab induction is a predictive marker in B-cell post-transplant lymphoproliferative disorder and allows successful stratification into rituximab or R-CHOP consolidation in an international, prospective, multicenter phase II trial. J Clin Oncol. 2017;35(5):536–43. https://doi.org/10.1200/JCO.2016.69.3564.

    Article  CAS  PubMed  Google Scholar 

  43. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2020;43(Suppl 1):S14–31. https://doi.org/10.2337/dc20-S002.

    Article  Google Scholar 

  44. Garro R, Warshaw B, Felner E. New-onset diabetes after kidney transplant in children. Pediatr Nephrol. 2015;30(3):405–16. https://doi.org/10.1007/s00467-014-2830-7.

    Article  PubMed  Google Scholar 

  45. Thomas MC, Moran J, Mathew TH, Russ GR, Rao MM. Early peri-operative hyperglycaemia and renal allograft rejection in patients without diabetes. BMC Nephrol. 2000;1:1. https://doi.org/10.1186/1471-2369-1-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003;3(2):178–85. https://doi.org/10.1034/j.1600-6143.2003.00010.x.

    Article  PubMed  Google Scholar 

  47. Prokai A, Fekete A, Kis E, et al. Post-transplant diabetes mellitus in children following renal transplantation. Pediatr Transplant. 2008;12(6):643–9. https://doi.org/10.1111/j.1399-3046.2007.00862.x.

    Article  CAS  PubMed  Google Scholar 

  48. Koshy SM, Guttmann A, Hebert D, Parkes RK, Logan AG. Incidence and risk factors for cardiovascular events and death in pediatric renal transplant patients: a single center long-term outcome study. Pediatr Transplant. 2009;13(8):1027–33. https://doi.org/10.1111/j.1399-3046.2008.01111.x.

    Article  PubMed  Google Scholar 

  49. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017;2017(288):1–8.

    Google Scholar 

  50. Bondi BC, Banh TM, Vasilevska-Ristovska J, et al. Incidence and risk factors of obesity in childhood solid-organ transplant recipients. Transplantation. 2020;104(8):1644–53. https://doi.org/10.1097/TP.0000000000003025.

    Article  CAS  PubMed  Google Scholar 

  51. Cohen E, Korah M, Callender G, Belfort de Aguiar R, Haakinson D. Metabolic disorders with kidney transplant. Clin J Am Soc Nephrol. 2020;15(5):732–42. https://doi.org/10.2215/CJN.09310819.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Al-Uzri A, Stablein DM, Cohn RA. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Transplantation. 2001;72(6):1020–4. https://doi.org/10.1097/00007890-200109270-00007.

    Article  CAS  PubMed  Google Scholar 

  53. Flechner SM, Glyda M, Cockfield S, et al. The ORION study: comparison of two sirolimus-based regimens versus tacrolimus and mycophenolate mofetil in renal allograft recipients. Am J Transplant. 2011;11(8):1633–44. https://doi.org/10.1111/j.1600-6143.2011.03573.x.

    Article  CAS  PubMed  Google Scholar 

  54. Boots JM, van Duijnhoven EM, Christiaans MH, Wolffenbuttel BH, van Hooff JP. Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus trough level reduction. J Am Soc Nephrol. 2002;13(1):221–7.

    Article  CAS  Google Scholar 

  55. Filler G, Neuschulz I, Vollmer I, Amendt P, Hocher B. Tacrolimus reversibly reduces insulin secretion in paediatric renal transplant recipients. Nephrol Dial Transplant. 2000;15(6):867–71. https://doi.org/10.1093/ndt/15.6.867.

    Article  CAS  PubMed  Google Scholar 

  56. George MM, Copeland KC. Current treatment options for type 2 diabetes mellitus in youth: today’s realities and lessons from the TODAY study. Curr Diab Rep. 2013;13(1):72–80. https://doi.org/10.1007/s11892-012-0334-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haffner D, Leifheit-Nestler M. CKD-MBD post kidney transplantation. Pediatr Nephrol. 2019; https://doi.org/10.1007/s00467-019-04421-5.

  58. Ketteler M, Block GA, Evenepoel P, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann Intern Med. 2018;168(6):422–30. https://doi.org/10.7326/M17-2640.

    Article  PubMed  Google Scholar 

  59. Bonthuis M, Busutti M, van Stralen KJ, et al. Mineral metabolism in European children living with a renal transplant: a European Society for Paediatric Nephrology/European Renal Association–European Dialysis and Transplant Association Registry study. Clin J Am Soc Nephrol. 2015;10(5):767–75. https://doi.org/10.2215/CJN.06200614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wesseling-Perry K, Bacchetta J. CKD-MBD after kidney transplantation. Pediatr Nephrol. 2011;26(12):2143–51. https://doi.org/10.1007/s00467-011-1829-6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ellis EN, Floyd-Gimon DM, Berry PL, Wells TG, Seibert J, Belsha C. Risk factors for bone mineral density loss in pediatric renal transplant patients. Pediatr Transplant. 2000;4(2):146–50. https://doi.org/10.1034/j.1399-3046.2000.00106.x.

    Article  CAS  PubMed  Google Scholar 

  62. Laster M, Denburg M, Okuda Y, et al. Race and ethnicity predict bone markers and fracture in pediatric patients with chronic kidney disease. J Bone Miner Res. 2020; https://doi.org/10.1002/jbmr.4182.

  63. Laster M, Soohoo M, Streja E, et al. Racial-ethnic differences in chronic kidney disease-mineral bone disorder in youth on dialysis. Pediatr Nephrol. 2019;34(1):107–15. https://doi.org/10.1007/s00467-018-4048-6.

    Article  PubMed  Google Scholar 

  64. Seikaly M, Ho PL, Emmett L, Tejani A. The 12th Annual Report of the North American Pediatric Renal Transplant Cooperative Study: renal transplantation from 1987 through 1998. Pediatr Transplant. 2001;5(3):215–31.

    Article  CAS  Google Scholar 

  65. Fine RN, Martz K, Stablein D. What have 20 years of data from the North American Pediatric Renal Transplant Cooperative Study taught us about growth following renal transplantation in infants, children, and adolescents with end-stage renal disease? Pediatr Nephrol. 2010;25(4):739–46. https://doi.org/10.1007/s00467-009-1387-3.

    Article  PubMed  Google Scholar 

  66. Fine RN, Ho M, Tejani A. The contribution of renal transplantation to final adult height: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Nephrol. 2001;16(12):951–6. https://doi.org/10.1007/s004670100002.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Zheng Y, Liu L, et al. Steroid avoidance or withdrawal regimens in paediatric kidney transplantation: a meta-analysis of randomised controlled trials. PLoS One. 2016;11(3):e0146523. https://doi.org/10.1371/journal.pone.0146523.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O. Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation. 2003;76(9):1331–9. https://doi.org/10.1097/01.TP.0000092950.54184.67.

    Article  CAS  PubMed  Google Scholar 

  69. Wu Y, Cheng W, Yang XD, Xiang B. Growth hormone improves growth in pediatric renal transplant recipients – a systemic review and meta-analysis of randomized controlled trials. Pediatr Nephrol. 2013;28(1):129–33. https://doi.org/10.1007/s00467-012-2208-7.

    Article  CAS  PubMed  Google Scholar 

  70. Fine RN, Stablein D, Cohen AH, Tejani A, Kohaut E. Recombinant human growth hormone post-renal transplantation in children: a randomized controlled study of the NAPRTCS. Kidney Int. 2002;62(2):688–96. https://doi.org/10.1046/j.1523-1755.2002.00489.x.

    Article  CAS  PubMed  Google Scholar 

  71. ElSheemy MS, Ghoneima W, Aboulela W, et al. Risk factors for urological complications following living donor renal transplantation in children. Pediatr Transplant. 2018;22(1). https://doi.org/10.1111/petr.13083.

  72. Englesbe MJ, Lynch RJ, Heidt DG, et al. Early urologic complications after pediatric renal transplant: a single-center experience. Transplantation. 2008;86(11):1560–4. https://doi.org/10.1097/TP.0b013e31818b63da.

    Article  PubMed  Google Scholar 

  73. Crowe A, Cairns HS, Wood S, Rudge CJ, Woodhouse CR, Neild GH. Renal transplantation following renal failure due to urological disorders. Nephrol Dial Transplant. 1998;13(8):2065–9. https://doi.org/10.1093/ndt/13.8.2065.

    Article  CAS  PubMed  Google Scholar 

  74. Smith KM, Windsperger A, Alanee S, Humar A, Kashtan C, Shukla AR. Risk factors and treatment success for ureteral obstruction after pediatric renal transplantation. J Urol. 2010;183(1):317–22. https://doi.org/10.1016/j.juro.2009.09.003.

    Article  PubMed  Google Scholar 

  75. Hernández Garcia E, Ruiz Fuentes MC, Gracia Guindo MC, Lopez Gonzalez Gila JD, Ruiz Fuentes N, Osuna Ortega A. Development of ureteral stenosis/obstruction in kidney transplant. Transplant Proc. 2020;52(2):527–9. https://doi.org/10.1016/j.transproceed.2019.11.047.

    Article  PubMed  Google Scholar 

  76. Göğüs C, Yaman O, Soygür T, Bedük Y, Göğüs O. Urological complications in renal transplantation: long-term follow-up of the Woodruff ureteroneocystostomy procedure in 433 patients. Urol Int. 2002;69(2):99–101. https://doi.org/10.1159/000065555.

    Article  PubMed  Google Scholar 

  77. Egli A, Infanti L, Dumoulin A, et al. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect Dis. 2009;199(6):837–46. https://doi.org/10.1086/597126.

    Article  CAS  PubMed  Google Scholar 

  78. Rajpoot DK, Gomez A, Tsang W, Shanberg A. Ureteric and urethral stenosis: a complication of BK virus infection in a pediatric renal transplant patient. Pediatr Transplant. 2007;11(4):433–5. https://doi.org/10.1111/j.1399-3046.2006.00673.x.

    Article  PubMed  Google Scholar 

  79. Matossian D, Langman CB, Cohn RA, Ali FN. Obstructive uropathy is associated with polyomavirus viremia in pediatric kidney transplantation. Pediatr Transplant. 2012;16(7):729–34. https://doi.org/10.1111/j.1399-3046.2012.01732.x.

    Article  PubMed  Google Scholar 

  80. Hariharan S. BK virus nephritis after renal transplantation. Kidney Int. 2006;69(4):655–62. https://doi.org/10.1038/sj.ki.5000040.

    Article  CAS  PubMed  Google Scholar 

  81. Adams J, Mehls O, Wiesel M. Pediatric renal transplantation and the dysfunctional bladder. Transpl Int. 2004;17(10):596–602. https://doi.org/10.1007/s00147-004-0784-6.

    Article  CAS  PubMed  Google Scholar 

  82. Luke PP, Herz DB, Bellinger MF, et al. Long-term results of pediatric renal transplantation into a dysfunctional lower urinary tract. Transplantation. 2003;76(11):1578–82. https://doi.org/10.1097/01.TP.0000090866.00241.0C.

    Article  PubMed  Google Scholar 

  83. Ali-El-Dein B, Abol-Enein H, El-Husseini A, Osman Y, Shehab El-Din AB, Ghoneim MA. Renal transplantation in children with abnormal lower urinary tract. Transplant Proc. 2004;36(10):2968–73. https://doi.org/10.1016/j.transproceed.2004.11.095.

    Article  CAS  PubMed  Google Scholar 

  84. Aki FT, Aydin AM, Dogan HS, et al. Does lower urinary tract status affect renal transplantation outcomes in children? Transplant Proc. 2015;47(4):1114–6. https://doi.org/10.1016/j.transproceed.2014.10.069.

    Article  CAS  PubMed  Google Scholar 

  85. McKay AM, Kim S, Kennedy SE. Long-term outcome of kidney transplantation in patients with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol. 2019;34(11):2409–15. https://doi.org/10.1007/s00467-019-04300-z.

    Article  PubMed  Google Scholar 

  86. Marchal S, Kalfa N, Iborra F, et al. Long-term outcome of renal transplantation in patients with congenital lower urinary tract malformations: a multicenter study. Transplantation. 2020;104(1):165–71. https://doi.org/10.1097/TP.0000000000002746.

    Article  PubMed  Google Scholar 

  87. Broniszczak D, Ismail H, Nachulewicz P, et al. Kidney transplantation in children with bladder augmentation or ileal conduit diversion. Eur J Pediatr Surg. 2010;20(1):5–10. https://doi.org/10.1055/s-0029-1234114.

    Article  CAS  PubMed  Google Scholar 

  88. Koo HP, Bunchman TE, Flynn JT, Punch JD, Schwartz AC, Bloom DA. Renal transplantation in children with severe lower urinary tract dysfunction. J Urol. 1999;161(1):240–5.

    Article  CAS  Google Scholar 

  89. Rigamonti W, Capizzi A, Zacchello G, et al. Kidney transplantation into bladder augmentation or urinary diversion: long-term results. Transplantation. 2005;80(10):1435–40. https://doi.org/10.1097/01.tp.0000174342.19265.f4.

    Article  PubMed  Google Scholar 

  90. Bilginer Y, Aki FT, Topaloglu R, et al. Renal transplantation in children with lower urinary tract dysfunction of different origin: a single-center experience. Transplant Proc. 2008;40(1):85–6. https://doi.org/10.1016/j.transproceed.2007.11.014.

    Article  CAS  PubMed  Google Scholar 

  91. Morrison CD, Shannon R, Rosoklija I, et al. Ureteral complications of pediatric renal transplantation. J Urol. 2019;201(4):810–4. https://doi.org/10.1016/j.juro.2018.08.082.

    Article  PubMed  Google Scholar 

  92. Chavers BM, Gillingham KJ, Matas AJ. Complications by age in primary pediatric renal transplant recipients. Pediatr Nephrol. 1997;11(4):399–403. https://doi.org/10.1007/s004670050304.

    Article  CAS  PubMed  Google Scholar 

  93. Maraha B, Bonten H, van Hooff H, Fiolet H, Buiting AG, Stobberingh EE. Infectious complications and antibiotic use in renal transplant recipients during a 1-year follow-up. Clin Microbiol Infect. 2001;7(11):619–25. https://doi.org/10.1046/j.1198-743x.2001.00329.x.

    Article  CAS  PubMed  Google Scholar 

  94. Hogan J, Pietrement C, Sellier-Leclerc AL, et al. Infection-related hospitalizations after kidney transplantation in children: incidence, risk factors, and cost. Pediatr Nephrol. 2017;32(12):2331–41. https://doi.org/10.1007/s00467-017-3737-x.

    Article  PubMed  Google Scholar 

  95. Goldman JD, Julian K. Urinary tract infections in solid organ transplant recipients: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33(9):e13507. https://doi.org/10.1111/ctr.13507.

    Article  Google Scholar 

  96. Dharnidharka VR, Agodoa LY, Abbott KC. Effects of urinary tract infection on outcomes after renal transplantation in children. Clin J Am Soc Nephrol. 2007;2(1):100–6. https://doi.org/10.2215/CJN.01820506.

    Article  PubMed  Google Scholar 

  97. Hebenstreit D, Csaicsich D, Hebenstreit K, Müller-Sacherer T, Berlakovich G, Springer A. Long-term outcome of pediatric renal transplantation in boys with posterior urethral valves. J Pediatr Surg. 2018;53(11):2256–60. https://doi.org/10.1016/j.jpedsurg.2018.07.003.

    Article  PubMed  Google Scholar 

  98. Margreiter M, Györi GP, Böhmig GA, Trubel S, Mühlbacher F, Steininger R. Value of routine voiding cystourethrography after renal transplantation. Am J Transplant. 2013;13(1):130–5. https://doi.org/10.1111/j.1600-6143.2012.04284.x.

    Article  CAS  PubMed  Google Scholar 

  99. Barrero R, Fijo J, Fernandez-Hurtado M, García-Merino F, León E, Torrubia F. Vesicoureteral reflux after kidney transplantation in children. Pediatr Transplant. 2007;11(5):498–503. https://doi.org/10.1111/j.1399-3046.2006.00668.x.

    Article  PubMed  Google Scholar 

  100. Wu HY, Concepcion W, Grimm PC. When does vesicoureteral reflux in pediatric kidney transplant patients need treatment? Pediatr Transplant. 2018;22(8):e13299. https://doi.org/10.1111/petr.13299.

    Article  PubMed  Google Scholar 

  101. Wang MK, Chuang KW, Li Y, et al. Renal function outcomes in pediatric patients with symptomatic reflux into the transplanted kidney treated with redo ureteroneocystostomy. J Pediatr Urol. 2018;14(3):275.e1–5. https://doi.org/10.1016/j.jpurol.2018.01.024.

    Article  Google Scholar 

  102. Salvadori M, Holzer H, de Mattos A, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2004;4(2):231–6. https://doi.org/10.1046/j.1600-6143.2003.00337.x.

    Article  CAS  PubMed  Google Scholar 

  103. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev. 2005;4:CD003961. https://doi.org/10.1002/14651858.CD003961.pub2.

    Article  Google Scholar 

  104. Griffin KJ, Elkin TD. Non-adherence in pediatric transplantation: a review of the existing literature. Pediatr Transplant. 2001;5(4):246–9. https://doi.org/10.1034/j.1399-3046.2001.005004246.x.

    Article  CAS  PubMed  Google Scholar 

  105. Ponticelli C, Banfi G. Thrombotic microangiopathy after kidney transplantation. Transpl Int. 2006;19(10):789–94. https://doi.org/10.1111/j.1432-2277.2006.00354.x.

    Article  PubMed  Google Scholar 

  106. Tasaki M, Saito K, Nakagawa Y, et al. Analysis of the prevalence of systemic de novo thrombotic microangiopathy after ABO-incompatible kidney transplantation and the associated risk factors. Int J Urol. 2019;26(12):1128–37. https://doi.org/10.1111/iju.14118.

    Article  CAS  PubMed  Google Scholar 

  107. Teixeira CM, Tedesco Silva Junior H, Moura LAR, et al. Clinical and pathological features of thrombotic microangiopathy influencing long-term kidney transplant outcomes. PLoS One. 2020;15(1):e0227445. https://doi.org/10.1371/journal.pone.0227445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Özdemir BH, Ok Atılgan A, Yılmaz Akçay E, et al. De novo thrombotic microangiopathy in renal transplant patients. Exp Clin Transplant. 2018;16(Suppl 1):131–5. https://doi.org/10.6002/ect.TOND-TDTD2017.P27.

    Article  PubMed  Google Scholar 

  109. Nadasdy T. Thrombotic microangiopathy in renal allografts: the diagnostic challenge. Curr Opin Organ Transplant. 2014;19(3):283–92. https://doi.org/10.1097/MOT.0000000000000074.

    Article  PubMed  Google Scholar 

  110. Ikeda T, Okumi M, Unagami K, et al. Two cases of kidney transplantation-associated thrombotic microangiopathy successfully treated with eculizumab. Nephrology. 2016;21(Suppl 1):35–40. https://doi.org/10.1111/nep.12768.

    Article  CAS  PubMed  Google Scholar 

  111. Cortina G, Trojer R, Waldegger S, Schneeberger S, Gut N, Hofer J. De novo tacrolimus-induced thrombotic microangiopathy in the early stage after renal transplantation successfully treated with conversion to everolimus. Pediatr Nephrol. 2015;30(4):693–7. https://doi.org/10.1007/s00467-014-3036-8.

    Article  PubMed  Google Scholar 

  112. Merola J, Yoo PS, Schaub J, et al. Belatacept and eculizumab for treatment of calcineurin inhibitor-induced thrombotic microangiopathy after kidney transplantation: case report. Transplant Proc. 2016;48(9):3106–8. https://doi.org/10.1016/j.transproceed.2016.04.005.

    Article  CAS  PubMed  Google Scholar 

  113. Senzolo M, Ferronato C, Burra P. Neurologic complications after solid organ transplantation. Transpl Int. 2009;22(3):269–78. https://doi.org/10.1111/j.1432-2277.2008.00780.x.

    Article  PubMed  Google Scholar 

  114. Hodzic E, Brcic M, Atic M, et al. Posterior Reversible Encephalopathy Syndrome (PRES) as a complication of immunosuppressive therapy in renal transplantation in children. Med Arch. 2014;68(3):218–20. https://doi.org/10.5455/medarh.2014.68.218-220.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Santos MM, Tannuri AC, Gibelli NE, et al. Posterior reversible encephalopathy syndrome after liver transplantation in children: a rare complication related to calcineurin inhibitor effects. Pediatr Transplant. 2011;15(2):157–60. https://doi.org/10.1111/j.1399-3046.2010.01430.x.

    Article  PubMed  Google Scholar 

  116. Chen LW, Chen JS, Tu YF, et al. Age-dependent vulnerability of cyclosporine-associated encephalopathy in children. Eur J Paediatr Neurol. 2015;19(4):464–71. https://doi.org/10.1016/j.ejpn.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  117. Tory K, Sallay P, Toth-Heyn P, et al. Signs of autonomic neuropathy in childhood uremia. Pediatr Nephrol. 2001;16(1):25–8. https://doi.org/10.1007/s004670000484.

    Article  CAS  PubMed  Google Scholar 

  118. El-Husseini AA, Abu-Hegazy M, El-Tantawi Ael H, Sobh MA, Ghoneim MA. Neurophysiologic changes in live related kidney transplant children and adolescents. Pediatr Transplant. 2005;9(5):579–83. https://doi.org/10.1111/j.1399-3046.2005.00343.x.

    Article  PubMed  Google Scholar 

  119. Splinter A, Tjaden LA, Haverman L, et al. Children on dialysis as well as renal transplanted children report severely impaired health-related quality of life. Qual Life Res. 2018;27(6):1445–54. https://doi.org/10.1007/s11136-018-1789-4.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tong A, Tjaden L, Howard K, Wong G, Morton R, Craig JC. Quality of life of adolescent kidney transplant recipients. J Pediatr. 2011;159(4):670–5.e2. https://doi.org/10.1016/j.jpeds.2011.04.007.

    Article  PubMed  Google Scholar 

  121. Haavisto A, Korkman M, Sintonen H, et al. Risk factors for impaired quality of life and psychosocial adjustment after pediatric heart, kidney, and liver transplantation. Pediatr Transplant. 2013;17(3):256–65. https://doi.org/10.1111/petr.12054.

    Article  PubMed  Google Scholar 

  122. Hamilton AJ, Caskey FJ, Casula A, Ben-Shlomo Y, Inward CD. Psychosocial health and lifestyle behaviors in young adults receiving renal replacement therapy compared to the general population: findings from the SPEAK study. Am J Kidney Dis. 2019;73(2):194–205. https://doi.org/10.1053/j.ajkd.2018.08.006.

    Article  PubMed  Google Scholar 

  123. Bailey PK, Hamilton AJ, Clissold RL, et al. Young adults’ perspectives on living with kidney failure: a systematic review and thematic synthesis of qualitative studies. BMJ Open. 2018;8(1):e019926. https://doi.org/10.1136/bmjopen-2017-019926.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lewis H, Arber S. The role of the body in end-stage kidney disease in young adults: gender, peer and intimate relationships. Chronic Illn. 2015;11(3):184–97. https://doi.org/10.1177/1742395314566823.

    Article  PubMed  Google Scholar 

  125. Groothoff JW, Grootenhuis M, Dommerholt A, Gruppen MP, Offringa M, Heymans HS. Impaired cognition and schooling in adults with end stage renal disease since childhood. Arch Dis Child. 2002;87(5):380–5. https://doi.org/10.1136/adc.87.5.380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tjaden LA, Grootenhuis MA, Noordzij M, Groothoff JW. Health-related quality of life in patients with pediatric onset of end-stage renal disease: state of the art and recommendations for clinical practice. Pediatr Nephrol. 2016;31(10):1579–91. https://doi.org/10.1007/s00467-015-3186-3.

    Article  PubMed  Google Scholar 

  127. Grootenhuis MA, Stam H, Last BF, Groothoff JW. The impact of delayed development on the quality of life of adults with end-stage renal disease since childhood. Pediatr Nephrol. 2006;21(4):538–44. https://doi.org/10.1007/s00467-006-0030-9.

    Article  PubMed  Google Scholar 

  128. Murray PD, Dobbels F, Lonsdale DC, Harden PN. Impact of end-stage kidney disease on academic achievement and employment in young adults: a mixed methods study. J Adolesc Health. 2014;55(4):505–12. https://doi.org/10.1016/j.jadohealth.2014.03.017.

    Article  PubMed  Google Scholar 

  129. Schoenmaker NJ, Haverman L, Tromp WF, et al. Children of non-Western origin with end-stage renal disease in the Netherlands, Belgium and a part of Germany have impaired health-related quality of life compared with Western children. Nephrol Dial Transplant. 2014;29(2):448–57. https://doi.org/10.1093/ndt/gft436.

    Article  PubMed  Google Scholar 

  130. Ruebner RL, Laney N, Kim JY, et al. Neurocognitive dysfunction in children, adolescents, and young adults with CKD. Am J Kidney Dis. 2016;67(4):567–75. https://doi.org/10.1053/j.ajkd.2015.08.025.

    Article  PubMed  Google Scholar 

  131. Hartung EA, Erus G, Jawad AF, et al. Brain magnetic resonance imaging findings in children and young adults with CKD. Am J Kidney Dis. 2018;72(3):349–59. https://doi.org/10.1053/j.ajkd.2017.11.024.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Matsuda-Abedini M, Fitzpatrick K, Harrell WR, et al. Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr Res. 2018;84(3):387–92. https://doi.org/10.1038/s41390-018-0037-5.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lijdsman S, Königs M, van Sandwijk MS, et al. Structural brain abnormalities in childhood and young adulthood with severe chronic kidney disease. Submitted for publication.

    Google Scholar 

  134. Parvex P, Pinsk M, Bell LE, O’Gorman AM, Patenaude YG, Gupta IR. Reversible encephalopathy associated with tacrolimus in pediatric renal transplants. Pediatr Nephrol. 2001;16(7):537–42. https://doi.org/10.1007/s004670100602.

    Article  CAS  PubMed  Google Scholar 

  135. Harshman LA, Hooper SR. The brain in pediatric chronic kidney disease – the intersection of cognition, neuroimaging, and clinical biomarkers. Pediatr Nephrol. 2020; https://doi.org/10.1007/s00467-019-04417-1.

  136. Wolfgram DF. Intradialytic cerebral hypoperfusion as mechanism for cognitive impairment in patients on hemodialysis. J Am Soc Nephrol. 2019;30(11):2052–8. https://doi.org/10.1681/asn.2019050461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Haight T, Nick Bryan R, Erus G, et al. White matter microstructure, white matter lesions, and hypertension: an examination of early surrogate markers of vascular-related brain change in midlife. Neuroimage Clin. 2018;18:753–61. https://doi.org/10.1016/j.nicl.2018.02.032.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vogelzang JL, van Stralen KJ, Jager KJ, Groothoff JW. Trend from cardiovascular to non-cardiovascular late mortality in patients with renal replacement therapy since childhood. Nephrol Dial Transplant. 2013;28(8):2082–9. https://doi.org/10.1093/ndt/gft048.

    Article  PubMed  Google Scholar 

  139. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5. https://doi.org/10.1161/01.cir.0000020222.63035.c0.

    Article  PubMed  Google Scholar 

  140. Rees L, Shroff R, Hutchinson C, Fernando ON, Trompeter RS. Long-term outcome of paediatric renal transplantation: follow-up of 300 children from 1973 to 2000. Nephron Clin Pract. 2007;105(2):c68–76. https://doi.org/10.1159/000097601.

    Article  PubMed  Google Scholar 

  141. Groothoff JW, Gruppen MP, Offringa M, et al. Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int. 2002;61(2):621–9. https://doi.org/10.1046/j.1523-1755.2002.00156.x.

    Article  PubMed  Google Scholar 

  142. McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62. https://doi.org/10.1056/NEJMoa031643.

    Article  CAS  PubMed  Google Scholar 

  143. Samuel SM, Tonelli MA, Foster BJ, et al. Survival in pediatric dialysis and transplant patients. Clin J Am Soc Nephrol. 2011;6(5):1094–9. https://doi.org/10.2215/CJN.04920610.

    Article  PubMed  PubMed Central  Google Scholar 

  144. van der Heijden BJ, van Dijk PC, Verrier-Jones K, Jager KJ, Briggs JD. Renal replacement therapy in children: data from 12 registries in Europe. Pediatr Nephrol. 2004;19(2):213–21. https://doi.org/10.1007/s00467-003-1376-x.

    Article  PubMed  Google Scholar 

  145. USRDS.

    Google Scholar 

  146. Offner G, Latta K, Hoyer PF, et al. Kidney transplanted children come of age. Kidney Int. 1999;55(4):1509–17. https://doi.org/10.1046/j.1523-1755.1999.00356.x.

    Article  CAS  PubMed  Google Scholar 

  147. Groothoff JW, Offringa M, Van Eck-Smit BL, et al. Severe bone disease and low bone mineral density after juvenile renal failure. Kidney Int. 2003;63(1):266–75. https://doi.org/10.1046/j.1523-1755.2003.00727.x.

    Article  PubMed  Google Scholar 

  148. Gruppen MP, Groothoff JW, Prins M, et al. Cardiac disease in young adult patients with end-stage renal disease since childhood: a Dutch cohort study. Kidney Int. 2003;63(3):1058–65. https://doi.org/10.1046/j.1523-1755.2003.00814.x.

    Article  PubMed  Google Scholar 

  149. Groothoff JW, Gruppen MP, Offringa M, et al. Increased arterial stiffness in young adults with end-stage renal disease since childhood. J Am Soc Nephrol. 2002;13(12):2953–61. https://doi.org/10.1097/01.asn.0000037677.16961.df.

    Article  PubMed  Google Scholar 

  150. Groothoff JW. Late somatic and psycho-social consequences of renal insufficiency in children. EDTNA ERCA J. 2004;30(4):222–5. https://doi.org/10.1111/j.1755-6686.2004.tb00372.x.

    Article  CAS  PubMed  Google Scholar 

  151. Tjaden LA, Maurice-Stam H, Grootenhuis MA, Jager KJ, Groothoff JW. Impact of renal replacement therapy in childhood on long-term socioprofessional outcomes: a 30-year follow-up study. J Pediatr. 2016;171:189–95.e1–2. https://doi.org/10.1016/j.jpeds.2015.12.017.

    Article  PubMed  Google Scholar 

  152. Vogelzang JL, Heestermans LW, van Stralen KJ, Jager KJ, Groothoff JW. Simultaneous reversal of risk factors for cardiac death and intensified therapy in long-term survivors of paediatric end-stage renal disease over the last 10 years. Nephrol Dial Transplant. 2013;28(10):2545–52. https://doi.org/10.1093/ndt/gft257.

    Article  CAS  PubMed  Google Scholar 

  153. Mitsnefes MM, Schwartz SM, Daniels SR, Kimball TR, Khoury P, Strife CF. Changes in left ventricular mass index in children and adolescents after renal transplantation. Pediatr Transplant. 2001;5(4):279–84. https://doi.org/10.1034/j.1399-3046.2001.005004279.x.

    Article  CAS  PubMed  Google Scholar 

  154. Riar SK, Mitsnefes MM, Nehus EJ, et al. Kidney transplantation in children with decreased left ventricular systolic function: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2015;30(8):1343–8. https://doi.org/10.1007/s00467-015-3066-x.

    Article  PubMed  Google Scholar 

  155. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–89. https://doi.org/10.1681/ASN.2011121191.

    Article  CAS  PubMed  Google Scholar 

  156. Lofaro D, Vogelzang JL, van Stralen KJ, Jager KJ, Groothoff JW. Infection-related hospitalizations over 30 years of follow-up in patients starting renal replacement therapy at pediatric age. Pediatr Nephrol. 2016;31(2):315–23. https://doi.org/10.1007/s00467-015-3209-0.

    Article  PubMed  Google Scholar 

  157. Galindo Sacristan P, Perez Marfil A, Osorio Moratalla JM, et al. Predictive factors of infection in the first year after kidney transplantation. Transplant Proc. 2013;45(10):3620–3. https://doi.org/10.1016/j.transproceed.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  158. Abbott KC, Swanson SJ, Richter ER, et al. Late urinary tract infection after renal transplantation in the United States. Am J Kidney Dis. 2004;44(2):353–62. https://doi.org/10.1053/j.ajkd.2004.04.040.

    Article  PubMed  Google Scholar 

  159. Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–75. https://doi.org/10.1056/NEJMoa067411.

    Article  CAS  PubMed  Google Scholar 

  160. Vitko S, Wlodarczyk Z, Kyllonen L, et al. Tacrolimus combined with two different dosages of sirolimus in kidney transplantation: results of a multicenter study. Am J Transplant. 2006;6(3):531–8. https://doi.org/10.1111/j.1600-6143.2005.01193.x.

    Article  CAS  PubMed  Google Scholar 

  161. Coutinho HM, Groothoff JW, Offringa M, Gruppen MP, Heymans HS. De novo malignancy after paediatric renal replacement therapy. Arch Dis Child. 2001;85(6):478–83. https://doi.org/10.1136/adc.85.6.478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ploos van Amstel S, Vogelzang JL, Starink MV, Jager KJ, Groothoff JW. Long-term risk of cancer in survivors of pediatric ESRD. Clin J Am Soc Nephrol. 2015;10(12):2198–204. https://doi.org/10.2215/CJN.03630415.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Penn I. De novo malignances in pediatric organ transplant recipients. Pediatr Transplant. 1998;2(1):56–63.

    CAS  PubMed  Google Scholar 

  164. Jensen AO, Svaerke C, Farkas D, Pedersen L, Kragballe K, Sorensen HT. Skin cancer risk among solid organ recipients: a nationwide cohort study in Denmark. Acta Derm Venereol. 2010;90(5):474–9. https://doi.org/10.2340/00015555-0919.

    Article  PubMed  Google Scholar 

  165. Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80(9):1233–43. https://doi.org/10.1097/01.tp.0000179639.98338.39.

    Article  CAS  PubMed  Google Scholar 

  166. Koukourgianni F, Harambat J, Ranchin B, et al. Malignancy incidence after renal transplantation in children: a 20-year single-centre experience. Nephrol Dial Transplant. 2010;25(2):611–6. https://doi.org/10.1093/ndt/gfp497.

    Article  PubMed  Google Scholar 

  167. Bartosh SM, Leverson G, Robillard D, Sollinger HW. Long-term outcomes in pediatric renal transplant recipients who survive into adulthood. Transplantation. 2003;76(8):1195–200. https://doi.org/10.1097/01.TP.0000092524.75807.84.

    Article  PubMed  Google Scholar 

  168. Dreno B. Skin cancers after transplantation. Nephrol Dial Transplant. 2003;18(6):1052–8. https://doi.org/10.1093/ndt/gfg023.

    Article  PubMed  Google Scholar 

  169. Bouwes Bavinck JN. Epidemiological aspects of immunosuppression: role of exposure to sunlight and human papillomavirus on the development of skin cancer. Hum Exp Toxicol. 1995;14(1):98. https://doi.org/10.1177/096032719501400121.

    Article  CAS  PubMed  Google Scholar 

  170. Bandolin L, Borsetto D, Fussey J, et al. Beta human papillomaviruses infection and skin carcinogenesis. Rev Med Virol. 2020;30(4):e2104. https://doi.org/10.1002/rmv.2104.

    Article  PubMed  Google Scholar 

  171. Euvrard S, Morelon E, Rostaing L, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367(4):329–39. https://doi.org/10.1056/NEJMoa1204166.

    Article  CAS  PubMed  Google Scholar 

  172. Dorfer S, Strasser K, Schrockenfuchs G, et al. Mus musculus papillomavirus 1 is a key driver of skin cancer development upon immunosuppression. Am J Transplant. 2020; https://doi.org/10.1111/ajt.16358.

  173. Strickley JD, Messerschmidt JL, Awad ME, et al. Immunity to commensal papillomaviruses protects against skin cancer. Nature. 2019;575(7783):519–22. https://doi.org/10.1038/s41586-019-1719-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Stapleton CP, Birdwell KA, McKnight AJ, et al. Polygenic risk score as a determinant of risk of non-melanoma skin cancer in a European-descent renal transplant cohort. Am J Transplant. 2019;19(3):801–10. https://doi.org/10.1111/ajt.15057.

    Article  PubMed  Google Scholar 

  175. Collins L, Asfour L, Stephany M, Lear JT, Stasko T. Management of non-melanoma skin cancer in transplant recipients. Clin Oncol. 2019;31(11):779–88. https://doi.org/10.1016/j.clon.2019.08.005.

    Article  CAS  Google Scholar 

  176. Sampaio MS, Cho YW, Shah T, Bunnapradist S, Hutchinson IV. Impact of Epstein-Barr virus donor and recipient serostatus on the incidence of post-transplant lymphoproliferative disorder in kidney transplant recipients. Nephrol Dial Transplant. 2012;27(7):2971–9. https://doi.org/10.1093/ndt/gfr769.

    Article  PubMed  Google Scholar 

  177. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67. https://doi.org/10.1016/S0140-6736(07)61050-2.

    Article  PubMed  Google Scholar 

  178. Yang Y, Qiu S, Deng L, et al. Outcomes of bisphosphonate and its supplements for bone loss in kidney transplant recipients: a systematic review and network meta-analysis. BMC Nephrol. 2018;19(1):269. https://doi.org/10.1186/s12882-018-1076-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bawden HN, Acott P, Carter J, et al. Neuropsychological functioning in end-stage renal disease. Arch Dis Child. 2004;89(7):644–7. https://doi.org/10.1136/adc.2003.037093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Broyer M, Le Bihan C, Charbit M, et al. Long-term social outcome of children after kidney transplantation. Transplantation. 2004;77(7):1033–7. https://doi.org/10.1097/01.tp.0000120947.75697.8b.

    Article  PubMed  Google Scholar 

  181. Chen HJ, Wen J, Qi R, et al. Re-establishing brain networks in patients with ESRD after successful kidney transplantation. Clin J Am Soc Nephrol. 2018;13(1):109–17. https://doi.org/10.2215/CJN.00420117.

    Article  PubMed  Google Scholar 

  182. Karrfelt HM, Berg UB. Long-term psychosocial outcome after renal transplantation during childhood. Pediatr Transplant. 2008;12(5):557–62. https://doi.org/10.1111/j.1399-3046.2007.00859.x.

    Article  PubMed  Google Scholar 

  183. Brouhard BH, Donaldson LA, Lawry KW, et al. Cognitive functioning in children on dialysis and post-transplantation. Pediatr Transplant. 2000;4(4):261–7. https://doi.org/10.1034/j.1399-3046.2000.00121.x.

    Article  CAS  PubMed  Google Scholar 

  184. Groothoff JW, Grootenhuis MA, Offringa M, Gruppen MP, Korevaar JC, Heymans HS. Quality of life in adults with end-stage renal disease since childhood is only partially impaired. Nephrol Dial Transplant. 2003;18(2):310–7. https://doi.org/10.1093/ndt/18.2.310.

    Article  PubMed  Google Scholar 

  185. Tjaden LA, Vogelzang J, Jager KJ, et al. Long-term quality of life and social outcome of childhood end-stage renal disease. J Pediatr. 2014;165(2):336–42.e1. https://doi.org/10.1016/j.jpeds.2014.04.013.

    Article  PubMed  Google Scholar 

  186. Jofre R, Lopez-Gomez JM, Moreno F, Sanz-Guajardo D, Valderrabano F. Changes in quality of life after renal transplantation. Am J Kidney Dis. 1998;32(1):93–100. https://doi.org/10.1053/ajkd.1998.v32.pm9669429.

    Article  CAS  PubMed  Google Scholar 

  187. Fujisawa M, Ichikawa Y, Yoshiya K, et al. Assessment of health-related quality of life in renal transplant and hemodialysis patients using the SF-36 health survey. Urology. 2000;56(2):201–6. https://doi.org/10.1016/s0090-4295(00)00623-3.

    Article  CAS  PubMed  Google Scholar 

  188. Tozzi AE, Mazzotti E, Di Ciommo VM, Dello Strologo L, Cuttini M. Quality of life in a cohort of patients diagnosed with renal failure in childhood and who received renal transplant. Pediatr Transplant. 2012;16(8):840–5. https://doi.org/10.1111/j.1399-3046.2012.01774.x.

    Article  PubMed  Google Scholar 

  189. Merkus MP, Jager KJ, Dekker FW, De Haan RJ, Boeschoten EW, Krediet RT. Quality of life over time in dialysis: the Netherlands Cooperative Study on the Adequacy of Dialysis. NECOSAD Study Group. Kidney Int. 1999;56(2):720–8. https://doi.org/10.1046/j.1523-1755.1999.00563.x.

    Article  CAS  PubMed  Google Scholar 

  190. Gee L, Abbott J, Conway SP, Etherington C, Webb AK. Validation of the SF-36 for the assessment of quality of life in adolescents and adults with cystic fibrosis. J Cyst Fibros. 2002;1(3):137–45. https://doi.org/10.1016/s1569-1993(02)00079-6.

    Article  CAS  PubMed  Google Scholar 

  191. Groothoff JW, Grootenhuis MA, Offringa M, Stronks K, Hutten GJ, Heymans HS. Social consequences in adult life of end-stage renal disease in childhood. J Pediatr. 2005;146(4):512–7. https://doi.org/10.1016/j.jpeds.2004.10.060.

    Article  PubMed  Google Scholar 

  192. Mellerio H, Alberti C, Labeguerie M, et al. Adult social and professional outcomes of pediatric renal transplant recipients. Transplantation. 2014;97(2):196–205. https://doi.org/10.1097/TP.0b013e3182a74de2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap Groothoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nguyen, C., Groothoff, J. (2022). Renal Transplantation: Non-infectious Complications and Long-Term Outcome. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_138

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_138

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics