
Understanding Android VoIP Security:
A System-Level Vulnerability Assessment

En He1, Daoyuan Wu2(B), and Robert H. Deng3

1 OPPO ZIWU Cyber Security Lab, Shenzhen, China
heeeeen@gmail.com

2 The Chinese University of Hong Kong, Hong Kong, China
dywu@ie.cuhk.edu.hk

3 Singapore Management University, Singapore, Singapore
robertdeng@smu.edu.sg

Abstract. VoIP is a class of new technologies that deliver voice calls
over the packet-switched networks, which surpasses the legacy circuit-
switched telecom telephony. Android provides the native support of VoIP,
including the recent VoLTE and VoWiFi standards. While prior works
have analyzed the weaknesses of VoIP network infrastructure and the
privacy concerns of third-party VoIP apps, no efforts were attempted to
investigate the (in)security of Android’s VoIP integration at the system
level. In this paper, we first demystify Android VoIP’s protocol stack and
all its four attack surfaces. We then propose a novel vulnerability assess-
ment approach that assembles on-device Intent/API fuzzing, network-
side packet fuzzing, and targeted code auditing. By testing Android from
version 7.0 to the recent 9.0, we have discovered 8 zero-day Android VoIP
vulnerabilities, all of which were confirmed by Google with bug bounty
awards. The security consequences are serious, including denying voice
calls, caller ID spoofing, unauthorized call operations, and remote code
execution. To mitigate these vulnerabilities and further improve Android
VoIP security, we uncover a new root cause that requires developers’
attention during their design and implementation.

1 Introduction

VoIP is a class of new technologies that deliver voice calls over the packet-
switched networks, instead of the legacy circuit-switched telecom networks, i.e.,
the so-called Public Switched Telephone Network (PSTN). By transmitting the
voice data over the Internet, VoIP offers clear benefits over the PSTN calling
service, including improved quality of service, high-fidelity codecs, and lower
monetary costs. As a result, network operators are actively promoting VoIP to
modern Android smartphones [1–3], with the latest VoLTE (Voice over LTE)
and VoWiFi (or Wi-Fi Calling) schemes being deployed.

Existing works on Android VoIP security, however, are far from comprehen-
sive. They focused either on the weaknesses of VoIP network infrastructure, e.g.,
the insecure deployment of VoIP protocols at the network service providers’ side,
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or on the privacy concerns of third-party VoIP apps. Notably, Li et al. [4] and
Kim et al. [5] discovered multiple vulnerabilities in VoLTE’s both control- and
data-plane functions, and Xie et al. [6] uncovered four vulnerabilities in oper-
ational Wi-Fi calling services. Regarding Android VoIP’s client-side security,
only the privacy risks of some VoIP apps were tested [7,8], e.g., whether their
traffic are encrypted with SSL/TLS. It is thus unclear whether Android’s VoIP
integration at the operating system level are secure or not.

In this paper, we conduct the first study to systematically analyze Android
VoIP’s (in)security at the system level. Our study begins with a demystification
of Android VoIP’s protocol stack and its attack surfaces. Specifically, we study
VoIP-related Android system code to identify VoIP components and their imple-
mentations, including SIP (Session Initiation Protocol) via the nist-sip library,
SDP (Session Description Protocol) via gov.nist.javax.sdp, RTP (Real-time
Transport Protocol) via librtp-jni.so, codecs via libstagefright, and SIP
user agent via the system phone and dialer apps. Furthermore, we identify all
the four potential attack surfaces that allow physical, local, remote, and nearby
attacks against Android VoIP.

With these components and their attack surfaces in mind, we propose a
novel vulnerability assessment approach that assembles on-device Intent/API
fuzzing, network-side packet fuzzing, and targeted code auditing. First, we per-
form Android Intent and system API fuzzing to comprehensively fuzz the local
surface. Second, we set up a unique VoIP testbed to perform three protocol
fuzzings that mutate different fields in SIP, SDP, and RTP protocols either
directly from a user agent or through a Man-In-The-Middle proxy. Lastly, we
combine automatic fuzzing tests with targeted code auditing, including log-
driven and protocol specification based auditing, to eventually determine vul-
nerabilities.

By periodically fuzzing VoIP components on the recent Android OS from
version 7.0 to 9.0 over two years, we have discovered a total of nine zero-day vul-
nerabilities, eight of which are system vulnerabilities and have been confirmed
by Google with bug bounty awards. Two-thirds of these vulnerabilities can be
exploited by a network-side adversary, which suggests that Android VoIP’s major
risks come from the remote and nearby attack surfaces. Moreover, six of nine vul-
nerabilities’ severity levels were rated by Google Android security team as high
or critical (the most two serious levels), which implies that most of Android VoIP
vulnerabilities are serious. The incurred security consequences include denying
voice calls, caller ID spoofing, unauthorized call operations, and remote code
execution. Furthermore, we uncover a new root cause, incompatible processing
between VoIP and PSTN calls, that leads to six VoIP vulnerabilities and requires
developers’ extra attention in their future design and implementation.

To summarize, we have made the following contributions in this paper:

– The first demystification of Android VoIP’s protocol stack and all its four
attack surfaces (Sect. 3);

– A novel approach that assembles on-device Intent/API fuzzing, network-side
packet fuzzing, and targeted code auditing (Sect. 4);
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– New and comprehensive vulnerability assessment results, with nine zero-day
vulnerabilities analyzed and their root causes uncovered (Sect. 5 and Sect. 6).
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Fig. 1. A typical network infrastructure of SIP.

2 Background

Before presenting our work, we first introduce the necessary background on VoIP
and Android in this section.

2.1 VoIP Background

Android VoIP mainly uses the SIP (Session Initiation Protocol) protocol, which
was drafted by IETF in RFC 3261 [9]. As a VoIP signaling protocol, SIP pro-
vides a mechanism for one or more participants to create, modify, and terminate
sessions. Fig. 1 presents a typical network infrastructure of SIP, which consists
of the following components:

– User Agent (UA): A SIP user agent is a logical network node of SIP, which is
responsible for creating, sending, and receiving SIP messages and maintains
a SIP session.

– Proxy Server: A SIP proxy server helps deliver SIP messages between different
user agents. It can also perform routing control and check the integrity of SIP
messages.

– Registrar Server: A SIP registrar server is used for accepting SIP REGISTER
requests from user agents, and places the location information it receives in
those requests.



Understanding Android VoIP Security 113

Similar to HTTP, SIP is a text-based protocol. It employs SDP (Session
Description Protocol) to describe session contents. A typical SIP message can
be an INVITE, REGISTER, OPTIONS, BYE, or CANCEL request. One impor-
tant field in the SIP header is the SIP URI (Unified Resource Identifier),
which represents the sender or receiver address. A SIP URI is in this format:
sip:user name@server ip address, e.g., sip:anonymous@192.168.8.151.

A SIP call involves three phases: the initial signaling phase, the conversation
phase, and the end signaling phase. The INVITE and BYE requests are used
in the two signaling phases. During the conversation phase, two calling parties
exchange audio/video streams using the codecs that are negotiated via RTP
(Real Transmission Protocol) [10].

2.2 Android Background

On Android, each application, no matter a system or a third-party app, runs in
its own app sandbox [11]. Different apps communicate with each other through
a new IPC (Inter-Process Communication) channel called Binder-based Intent.
Each app has its own private data and requires permissions to access sys-
tem’s resources. For example, systems VoIP apps have the RECORD AUDIO and
CALL PRIVILEGES permissions.

There are four kinds of Android components, including the user interface
based Activity, the long-running Service, the event-triggered Broadcast Rec-
eiver, and the database-like Content Provider. Although the Intent-based
inter-component communication (ICC [12]) enables flexible code and data shar-
ing across different components, it also brings a widely spreading threat called
component hijacking [13,14]. By sending a crafted (malicious) Intent message to
an exported component that reserves dangerous permissions or sensitive data, an
adversary could misuse the permissions [15,16], manipulate private data [13,17].
In this paper, besides system-level vulnerabilities, we also uncover one compo-
nent hijacking vulnerability in a popular VoIP application.

3 Demystifying Android VoIP

In this section, we demystify Android VoIP’s implementation and all its four
attack surfaces. To the best of our knowledge, we are the first to give this demys-
tification.

3.1 Android VoIP’s Protocol Stack

By studying Android’s source code, we are able to depict its implementation of
VoIP protocol at different layers. Figure 2 highlights Android VoIP’s protocol
stack in the gray color. Starting from the bottom layer, the stack consists of the
following components:
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Fig. 2. Android’s integration of VoIP protocol stack.

– SIP (Session Initiation Protocol): Android’s SIP implementation directly
uses the nist-sip library, which was developed by National Institute of
Science of Technology (NIST). It is a purely Java based SIP implementa-
tion, and provides API classes (e.g., SipSession and SipProfile) via the
android.net.sip package.

– SDP (Session Description Protocol): Similar to SIP, Android’s SDP also uses
the NIST implementation (gov.nist.javax.sdp), and provides a hidden API
class called SdpSessionDescription.

– RTP (Real-time Transport Protocol): Android implements RTP in a C/C++
dynamic link library called librtp-jni.so. It also provides a few API classes
via the android.net.rtp package.

– Audio or Video Codec: Android VoIP supports only a handful of codecs,
including PCM (Pulse-Code Modulation) type A and type U codec, AMR
(Adaptive Multi-Rate) codec, and GSM EFR (Enhanced Full Rate) codec.
Supporting these codecs relies on libstagefright.

– SIP UA (User Agent): Android VoIP implements its UA into the system
phone app (com.android.phone). It is a high-privilege app under the Linux
user group of radio. Hence, it can not only access typical phone-related per-
missions (e.g., accessing user contacts and making a phone call) but also low-
level resources in the Telephone Manager and Radio Interface Layer (RIL).
Additionally, displaying VoIP caller numbers is handled by the system dialer
app (com.android.dialer).

It is worth noting that these VoIP components are not isolated in Android.
Indeed, a VoIP session on Android always initiates from the SIP UA and goes
through all those protocol and codec components. As a result, by targeting at
the system phone and dialer apps, we can trigger Android VoIP’s code flows and
test the entire Android VoIP components.
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3.2 Android VoIP’s Attack Surfaces

Figure 3 shows all the potential surfaces that Android VoIP could be attacked:

– Physical Attack Surface: If an adversary could physically access a victim
user’s phone, he is able to set the phone’s VoIP configuration without the
authorization, causing a security breach. Although such attack is rare, it still
needs to be considered, as we will demonstrate in Sect. 5.

– Local Attack Surface: Since the system phone app is a privileged app, it can
access not only permission-protected resources but also system interfaces in
Telephone Manager and Radio Interface Layer (RIL). An on-device malicious
app thus can attack the phone app via the IPC communication to obtain
VoIP-related privileges.

– Remote Attack Surface: Since the phone needs to communicate with outside
via IP and mobile communication, it brings another attack surface. Specifi-
cally, a network-side adversary can send crafted payloads in SIP/SDP/RTP
packets to exploit Android VoIP components remotely, causing remote denial
of service and code execution.

– Nearby Attack Surface: With the popularity of HFP (Hand-Free Profile)
devices, a user may use a Bluetooth earphone or a Bluetooth car kit during
her VoIP call. These nearby Bluetooth devices bring a new attack surface.
On one hand, the malicious payload in VoIP traffic may reach to the sys-
tem Bluetooth components. On the other hand, the malicious traffic from
Bluetooth devices may also attack VoIP components.

Phone App On-device 
Malicious App
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RIL Layer
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permission

Bluetooth 
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Fig. 3. Android VoIP’s four attack surfaces: physical, local, remote, and nearby.
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4 Methodology

After understanding Android’s VoIP integration and its attack surfaces, we pro-
pose a novel approach to systematically assessing Android VoIP’s vulnerabilities.
In this approach, we first automatically test Android VoIP components via on-
device and network-side fuzzing, and further combine them with targeted code
auditing to eventually determine vulnerabilities. In this section, we present these
three modules, among which network-side packet fuzzing is the most special one.

4.1 On-Device Intent/API Fuzzing

To comprehensively fuzz the local surface of Android VoIP components, we per-
form both Android Intent fuzzing and system API fuzzing. Specifically, Intent
fuzzing aims to test exported components in VoIP system apps, while system
API fuzzing tries to discover unprotected VoIP system service interfaces. In
this subsection, we first introduce the fuzzing framework before present its two
detailed fuzzing methods.

Drozer Console

Drozer
Agent

Intent 
Fuzzing

PC

Identify Exposed 
Surfaces

Mutate 
Parameters

Record Logs

Android Phone

System 
VoIP Apps

system_server
adb

logcat

adb
forward

System API 
Fuzzing

Fig. 4. The on-device fuzzing framework, with not only the conventional Intent fuzzing
but also the creative system API fuzzing based on Java reflection.

On-Device Fuzzing Framework. As shown in Fig. 4, we develop an on-device
fuzzing framework based on Drozer [18]. We use a drozer console on PC to control
the fuzzing process on a test phone via its drozer agent. We deliver fuzzing
commands through Android’s adb forward command and receive fuzzing logs
through the adb logcat command. For both Intent and system API fuzzing, we
perform these three steps: identifying exposed surfaces, mutating parameters,
and recording logs.

On-Device Intent Fuzzing. In the Intent fuzzing, exposed surfaces are VoIP
apps’ exported components that can be accessed by any other third-party apps
on the same phone. We identify these exported components by analyzing com-
ponent information in the app’s AndroidManifest.xml file. To mutate Intent
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parameters, we try both empty (i.e., null) parameters and the parameters that
satisfy a component’s data schemes (e.g., content:// and vk.voip).

On-Device System API Fuzzing. In the system API fuzzing, exposed sur-
faces are those unprotected system service interfaces. We identify them by using
Java reflection to invoke Android ServiceManager’s listServices function,
which can list not only all the available system service interfaces but also
their accepted parameter types. We then launch targeted fuzzing against these
exposed service interfaces according to their parameter types.

4.2 Network-Side Packet Fuzzing

To test Android VoIP’s network components, we need to launch network-side
packet fuzzing. In this subsection, we first introduce our testbed for network-
side fuzzing, and then present three protocol fuzzing and two fuzzing modes.

mjUA UAAndroid Phone

OpenSIPS Proxy

Client Fuzz
SIP Fuzz
SDP Fuzz
RTP Fuzz

MITM Fuzz

ARP Spoof

Fig. 5. Our testbed for network-side fuzzing.

Setting up the Testbed. Figure 5 shows the architecture of our testbed for
network-side fuzzing, where an Android phone acts as the victim user and
a mjSIP-based User Agent mimics the adversary. Note that mjSIP [19] is a
command-line based SIP UA implementation with flexible options. Addition-
ally, we use OpenSIPS [20] to establish a SIP proxy server, and connect all these
three parties in the same Wi-Fi network.

Fuzzing Different Protocols. We leverage mjSIP (uac.sh) to fuzz all the
three protocols in the Android VoIP stack (see Sect. 3), namely SIP, SDP, and
RTP fuzzing. Listing 1.1 shows the mjUA commands used in our three fuzzing
methods. Additionally, we install an AutoAnswer app in the Android phone to
automate the entire fuzzing process.

– SIP Fuzzing: In this fuzzing, we mutate the user name and server name
in a SIP URI name. For example, we can use a long SIP name to launch
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Listing 1.1. A list of the mjUA commands used in our fuzzing.

$ ./uac.sh -h
-f <file >: specifies a configuration file (sdp fuzzing)
-c <call_to >: config the victim SIP URI
-y <secs >: could be used as fuzz interval time
--display -name <str >: display name (sip fuzzing)
--user <user > : user name (sip fuzzing)
--send -file <file > the specified audio file (rtp fuzzing)

Listing 1.2. The media description we leverage for SDP fuzzing.

# Media descriptors:
# One or more ’media’ (or ’media_desc ’) parameters specify for each media:

media type , port , and protocol/codec.
# Zero or more ’media_spec ’ params can be used to specify attributes: codec

name , sample rate , and frame size.
# Examples:
# media=audio 4000 rtp/avp
# media_spec=audio 0 PCMU 8000 160
# media_spec=audio 8 PCMA 8000 160
# media_spec=audio 101 G726 -32 8000 80
# media_spec=audio 102 G726 -24 8000 60
# media=video 3002 rtp/avp
# media_spec=video 101

the fuzzing: $./uac.sh --user <long SIP name>. Additionally, we can also
change the display SIP name using the display-name option, as shown in
Listing 1.1.

– SDP Fuzzing: In this fuzzing, we mutate different fields in the SDP’s media
description. We launch the SDP fuzzing by preparing variants of a mjSIP
configuration file: $./uac.sh -f configFile.cfg. The media format of this
configuration file is listed in Listing 1.2. Specifically, we can change the
“media” and “media spec” parameters in multiple ways. For example, we can
use different media type, port, and protocol/codec for the “media” parameter
and specify different media attributes for the “media spec” parameter.

– RTP Fuzzing: To fuzz RTP codecs, we generate PCMU/PCMA/AMR/GSM-EFR
codec corpuses and send them to the Android phone one by one via mjUA’s
send-file option. The detailed fuzzing code is shown in Fig. 6. Specifically,
we first prepare a seed file called sample-gsm-8000.gsm, and use this seed
file to randomly generate different audio files (fuzz $i.tone).

Direct Fuzzing and MITM Fuzzing. As shown in Fig. 5, we pro-
vide two fuzzing modes: direct fuzzing from the UA and MITM
(Man-In-The-Middle) fuzzing. To enable the MITM fuzzing, we leverage
this Ethercap [21] command to perform an ARP spoof for construct-
ing a transparent proxy: sudo ettercap -T -V hex -F rtpfuzz.ef -M arp
/192.168.8.152// /192.168.8.191//. With such a MITM proxy, it is con-
venient for us to leverage existing VoIP traffic for mutation. For example, we
can mutate RTP headers by setting an Ethercap filter, which can specify which
packet to filter and how to manipulate. The mutated new packets will be then
forwarded to the Android phone.
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Fig. 6. A code illustration of our RTP/Codec fuzzing.

4.3 Targeted Code Auditing

To eventually determine vulnerabilities, it is necessary to launch manual code
auditing after the automatic fuzzing. In this subsection, we propose two targeted
code auditing methods that leverage fuzzing logs and protocol specification to
reduce manual efforts.

Table 1. Zero-day Android VoIP vulnerabilities discovered in our work.

Discovery

method

ID CVE/AID Attack

vector

Vulnerable entry

component

Affected

Android

Severity

level

Security

consequence

On-device

Fuzzing

V1 H1-#386144 Local com.vkontakte.android All Low Triggering a

call without

user’s consent

V2 CVE-2017-

11042

Local org.codeaurora.ims ≤ 7.1.2 Moderate Unauthorized

setting of call

transfer

V3 A-

31823540-1

Remote com.android.dialer ≤ 7.1.1 High Undeniable

VoIP call

spam

Network-

side

Fuzzing

V4 CVE-2017-

0394

Remote com.android.phone ≤ 7.1.1 High Remote DoS

once accepting

a call

V5 CVE-2018-

9475

Remotea com.android.bluetooth ≤ 9.0 Critical Remote code

execution due

to overflow

V6 CVE-2019-

9311

Remotea com.android.bluetooth ≤ 9.0 Moderate Remote DoS

once receiving

a call

Code

Auditing

V7 CVE-2016-

6763

Physical com.android.phone ≤ 7.0 High Sensitive data

leak;

Permanent

DoS

V8 A-

31823540-2

Remote com.android.dialer ≤ 7.1.1 High Caller ID

spoofing

V9 A-32623587 Remote com.android.dialer ≤ 7.1.1 High Caller ID

spoofing
a These two remote vulnerabilities could be triggered only when the phone is connected with a nearby

Bluetooth HFP device.
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Log-Driven Auditing. Both on-device and network-side generate a num-
ber of fuzzing logs. We thus leverage them for a log-driven code audit-
ing. Specifically, for a process crash produced by our fuzzing, we can collect
either a Java exception for Java components (e.g., IllegalStateException:
Reject SDP: no suitable codecs) or a fault status for native code
(e.g., pid: 8112, tid: 8161, name, XXX, signal 11 (SIG SEGV), fault
addr: YYY). Moreover, we can obtain the detailed location where the
code encounters an error, e.g., createAnswer(SipAudioCall.java:805) and
libbluetooth jni.so(clccRes- ponseNative+30). We then use these code
locations to driven our auditing.

Protocol Specification Based Auditing. PSTN and VoIP protocols have
some specifications that we can leverage for a targeted auditing. For example,
special attributes, e.g., the call transfer splitting character “&” and the phone
number prefix “phone-context”, in PSTN may have different behaviors in VoIP,
which we will illustrate later. We then leverage this kind of protocol specification
differences for an efficient auditing.

5 Evaluation

In this section, we present our results of fuzzing VoIP components on the recent
Android OS from version 7.0 to 9.0. Since this is a periodic fuzzing effort (i.e.,
not a single experiment) over a period of around two years, we focus on reporting
our findings in this paper. As shown in Table 1, we have discovered a total of nine
zero-day vulnerabilities, eight of which are system vulnerabilities and have been
confirmed by Google with bug bounty awards. Table 1 lists the meta information
of these vulnerabilities, including the entry components where vulnerabilities can
be triggered from, the severity level rated by Google Android Security team, and
the corresponding security consequence.

5.1 Vulnerabilities Discovered via On-Device Fuzzing

By performing on-device fuzzing, we find that Android VoIP generally protects
its local attack surface, with only one vulnerability discovered by the system
API fuzzing and no vulnerable component identified by the Intent fuzzing. To
also demonstrate the effectiveness of our Intent fuzzing, we test and identify a
VoIP vulnerability in a very popular app called VK1, which has cumulatively
over 100 million installs on Google Play.

V1: Maliciously Triggering a VoIP call in the VK App. The VK
app (version 5.13) was identified by us to contain an exported component,
LinkRedirActivity, which accepts an Intent with the content:// scheme and
with the vk.voip data type. Surprisingly, LinkRedirActivity would directly
make a VoIP call to a VK user account specified by the vk.voip data. As a

1 https://play.google.com/store/apps/details?id=com.vkontakte.android.

https://play.google.com/store/apps/details?id=com.vkontakte.android
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result, an on-device malicious app can send a crafted Intent to trigger a VoIP
call without user’s consent and even when the phone screen is turned off. More
seriously, the victim user could be eavesdropped if the callee VK account was set
to an account under the attacker’s control, the idea of which is similar to the login
CSRF (Cross-Site Request Forgery) [22] attack in web security. To patch this
vulnerability, VK added a user confirmation dialog before LinkRedirActivity
can make any VoIP call.

V2: Unauthorized Call Transfer in the IMS Interface. Android has a sys-
tem service called QtilMS, which is for IMS (IP Multimedia Subsystem) related
functionality and implemented by Qualcomm. However, our system API fuzzing
found that QtilMS exposed two VoIP APIs, SendCallTransfer Request and
SendCallForwardUncondTimer, to any third-party app. Normally, these two
system APIs are only accessible to those with the CALL PRIVILEGES permis-
sion. However, our fuzzing shows that any app without the permission can also
invoke the APIs, because no checking is enforced by QtilMS. As a result, an on-
device malicious app can misuse those two privileged APIs to set unauthorized
call transfer. To mitigate this, Qualcomm added the permission check for the
access of those two QtilMS APIs.

5.2 Vulnerabilities Discovered via Network-Side Fuzzing

Compared to the on-device fuzzing, our network-side fuzzing discovered more
VoIP vulnerabilities, as shown in Table 1. This suggests that Android VoIP’s
major risks come from the remote and nearby attack surfaces. In this subsection,
we first introduce two vulnerabilities that can be exploited remotely, and then
present another two vulnerabilities that involve the nearby Bluetooth-based HFP
(Hands-Free Profile) devices.

V3: Undeniable VoIP Call Spam Due to Long SIP Name. We discovered
this vulnerability through a SIP fuzzing test using the long SIP name: $./uac.sh
--user <long SIP name> <victim’s sip account>. As shown in Fig. 7, the
callee user’s VoIP phone interface could be filled up by the very long SIP name,
e.g., 1,043 characters in our test case. In this scenario, the victim user cannot
answer or reject a call, because no button is shown up. If the adversary frequently
launches this undeniable VoIP call spam, the victim has to disable the network
connection or shutdown her phone. We call this kind of denial of service attack
“VoIP call bomb”, as similar to SMS bomb [23]. To defend against this attack,
Google restricts the length of SIP user name.

V4: Remote DoS in Telephony Once Accepting a Call. We discovered
this vulnerability through the SDP fuzzing using a malformed configuration file:
$./uac.sh -f malformed.cfg. As shown in Fig. 8, it can crash the victim’s
phone process once she accepts the call, causing a remote DoS (denial of ser-
vice). Our fuzzing identified two weaknesses in the affected Telephony module,
either of which could be exploited for the attack. One way is to use a codec
that is not in the supported codec list (see Sect. 3.1). For example, if we add
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Fig. 7. A demo of exploiting V3. Fig. 8. A demo of exploiting V4.

“media spec=audio 102 G726-24 8000 60” into the malformed.cfg file, the phone
process crashes with an illegal state exception “Reject SDP: no suitable codecs”.
The other way is to use the invalid SDP description. For example, if we add
“media=AAAA 4000” into the malformed.cfg file, the phone process crashes
with an illegal SDP argument exception. To patch these weaknesses, Google
added exception catch statements for those two unhandled exceptions.

The Model of Bluetooth-Involved VoIP Vulnerabilities. As shown in
Table 1, the V5 and V6 vulnerabilities could be triggered only when the phone is
connected with a nearby Bluetooth device. Hence, we first explain the model
of these Bluetooth-involved VoIP vulnerabilities before presenting their spe-
cific weaknesses. Figure 9 depicts such a vulnerability model. Specifically, mobile
phone acts as an AG (Audio Gateway) in the HFP (Hands-Free Profile) com-
munication, and Bluetooth earphone or Bluetooth car kit is the HF (Hand Free)
device. When a remote attacker makes a VoIP call to a phone connected with
a HF device, the HF device will query all the call information (e.g., caller num-
ber) from the phone via HFP’s AT+CLCC command. As a result, the VoIP
call input will be delivered to libbluetooth-jni for processing. A vulnerability
could happen if it cannot process an unexpected VoIP call input (e.g., a long user
name), because Bluetooth may consider only the traditional, instead of VoIP,
phone call.

V5: Remote Code Execution Due to Stack Buffer Overflow. Both V5
and V6 suffer from the unexpected long user name (or caller number) in a VoIP
call. For V5, the vulnerable code locates in the function of preparing CLCC
response, as shown in Listing 1.3. It tries to return the caller number in the
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Fig. 9. A model of Bluetooth-involved VoIP vulnerabilities.

Listing 1.3. The vulnerable code of stack buffer overflow in V5.

bt_status_t HeadsetInterface :: ClccResponse (...) {
...
if (number) {

size_t rem_bytes = sizeof(ag_res.str) - res_strlen;
char dialnum[sizeof(ag_res.str)]; // length is 513 bytes
size_t newidx = 0;
if (type == ADDRTYPE_INTERNATIONAL && *number != ’+’)

dialnum[newidx++] = ’+’;
}

for (size_t i = 0; number[i] != 0; i++) {
if (utl_isdialchar(number[i]))

dialnum[newidx++] = number[i]; // Overflow when > 513
}
...

}

CLCC response, but uses only a 513-byte array (dialnum) to store it. A stack
buffer overflow thus happens when a caller number with more than 513 bytes is
inputted. This vulnerability allows an adversary to overwrite the return address
of the ClccResponse function, causing remote code execution. For example,
the adversary can launch the exploit using this command: $./uac.sh --user
$(python -c ’print ‘‘8’’*1055’).

V6: Remote DoS in Bluetooth Once Receiving a Call. This vulnera-
bility is similar to V5, but it is triggered when the call state changes, i.e.,
BTHF CALL INCOMING in Listing 1.4. In this example, developers also did not
expect the long caller number in a VoIP call. Specifically, the return value of
the first snprintf statement can be greater than sizeof(ag res.str)’s 513
bytes. Since the sizeof(ag_res.str)-xx variable now is an unsigned negative
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Listing 1.4. The vulnerable code of integer underflow in V6.

case BTHF_CALL_STATE_INCOMING:
if (num_active || num_held)

res = BTA_AG_CALL_WAIT_RES;
else

res = BTA_AG_IN_CALL_RES;

if (number) {
int xx = 0;
// number (xx) might be longer than sizeof(ag_res.str)
xx = snprintf(ag_res.str , sizeof(ag_res.str), "\"+%s\""

,number);
ag_res.num = type;
if (res == BTA_AG_CALL_WAIT_RES)

snprintf (& ag_res.str[xx], sizeof(ag_res.str)-xx,",%d"
,type); //a negative value becomes a large integer

}
break;

number, it becomes a very large positive integer, which eventually triggers the
abort checking statement and causes remote DoS. Compared to the DoS in V4,
triggering DoS in V6 requires a Bluetooth device connected, but just needs to
receive, rather than answer, a call.

To patch V5 and V6, Google restricted the length of caller number inputted
in the Bluetooth module.

5.3 Vulnerabilities Discovered via Code Auditing

In this subsection, we present the vulnerabilities that are dedicatedly discovered
by our targeted code auditing. Specifically, we are able to use protocol specifica-
tion based auditing to discover these vulnerabilities, since their root causes are
the inconsistency between VoIP’s specification and Android’s traditional phone
call processing.

V7: Data Leak and Permanent DoS Due to Path Traversal. In this vul-
nerability, we exploit the inconsistency between SIP URI and Android/Linux
file directory. Specifically, SIP URI treats “..” and “/” as normal characters,
whereas they are special characters in the Android’s file name convention. As a
result, a path traversal vulnerability appears in the code shown in Listing 1.5.
The directory that contains the serialized “.pobj” SIP profile file is named in
this format: “sip user@server ip”, e.g., “alice@171.11.160.202”. An attacker thus
can misuse these two names to manipulate the path of mProfileDirectory.
For example, by physically setting “sip user” and “server ip” in the format
of Fig. 10(a), mProfileDirectory becomes “/data/data/com.android.phone/
files/alice/@SomeSite/../../../../../../sdcard/” and leaks the sensi-
tive SIP profile file to the public SD card. A permanent DoS could also happen

Listing 1.5. Simplified vulnerable code of path traversal in V7.

File f = new File(mProfileDirectory + p.getProfileName ())
File f = new File(new File(root , name), ".pobj")
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if “server ip” is set to overwrite another system app’s file, e.g., mmssms.db shown
in Fig. 10(b). Due to this fake mmssms.db file, the real one cannot be created
and thus deny any SMS functionality. Only a factory reset can recover the phone.

(a) Leaking data to SD card. (b) Causing permanent DoS.

Fig. 10. Demo screenshots of exploiting the vulnerability V7.

V8: Caller ID Spoofing Due to Mis-parsing “&”. The last two vulnera-
bilities, V8 and V9, are due to the inconsistency between SIP URI and PSTN
(Public Switched Telephone Network) number format. In vulnerability V8, it
is related to a special character “&” in the caller number. For a caller number
with “&”, the system dialer app treats the number before “&” as the actual
calling number and the number after “&” as the call transfer number, according
to PSTN’s convention. However, the dialer does not consider an incoming VoIP
call and performs the same for a VoIP call number. As a result, an adversary can
mimic any phone number by simply adding a “&” character in the end, causing
a caller ID spoofing attack. For example, the attacker can mimic the emergency
number by setting the SIP name as “911&”, as shown in Fig. 11(a). He can also
spoof as a contact number of the victim if the attacker knows the number, and
the dialer will display the name and profile photo of the spoofed contact, as
shown in Fig. 11(b).

V9: Caller ID Spoofing Due to “phone-context”. Another inconsistency
between SIP URI and PSTN number format is the “phone-context” parame-
ter [24], which can be used to specify the prefix of a phone number. For example,
in PSTN’s convention, the number “650253000;phone-context=+1” is equivalent
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(a) Spoofing as an emergency. (b) Spoofing as a contact. (c) Spoofing as Google in V9.

Fig. 11. Demo screenshots of exploiting the vulnerability V8 and V9.

Table 2. Incompatible behaviors between VoIP and PSTN calls.

ID Attribute Incompatible behaviors

V3 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V5 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V6 Number length 513+ bytes in SIP URI ≤ 513 in PSTN no

V7 “../” character Part of SIP URI Parent dir in Linux

V8 “& ” character Part of SIP URI Call transfer in PSTN

V9 “phone-context” Part of SIP URI Prefix for PSTN no

to “+1650253000”, where the value of “phone-context” becomes the prefix of the
number. However, such convention should not apply to VoIP calls, which is unfor-
tunately ignored by the dialer app. As a result, an adversary can intentionally
set the caller number as “650253000;phone-context=+1”, and the dialer app will
interpret it as “+1650253000” and display it as Google’s call, which is clearly
presented in Fig. 11(c). Note that such mapping from “+1650253000” to Google
is automatically performed by Android’s CallerID mechanism [25], which tries
to correlate well-known phone numbers or mark spam numbers in the normal
scenario. But here it worsens the severity instead.

6 A New Root Cause

Besides the vulnerability-level cause analysis in Sect. 5, we try to uncover the
root causes underneath those vulnerabilities. Among the nine vulnerabilities we
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discovered, three of them have previously known root causes, i.e., no protection of
exported components in V1 [13,15], no checking of system APIs in V2 [26,27],
and missed error handling in V4 [28]. For the rest of six vulnerabilities, we
identify a new root cause that is dedicated to Android VoIP and not known
before.

We call this root cause “incompatible processing between VoIP and PSTN
calls”. Specifically, since both VoIP calls and traditional PSTN calls are han-
dled by the Android telephony system, there exist some incompatible processing
behaviors between VoIP and PSTN calls. Such incompatibility is the root cause
of six VoIP vulnerabilities we identified, as summarized in Table 2. For example,
for the attribute of phone number length, VoIP SIP can use more than 513 bytes,
whereas only less than 513 bytes is used in the traditional PSTN phone number.
Other examples are the special characters of “../”, “&”, and “phone-context”,
which could be treated as a part of the URI in VoIP SIP. But they originally
have special meanings in the Linux and PSTN specification, causing incorrect
processing in the Android VoIP code. Understanding these incompatible behav-
iors and other potential incompatibility between VoIP and PSTN calls can help
us further improve Android VoIP security. We thus call for VoIP developers’
extra attention in their future design and implementation.

7 Related Work

In this section, we present the closely related research on VoIP security, protocol
fuzzing, and Android dynamic testing.

VoIP Security. There were some research [29–33] to explore the general secu-
rity issues of VoIP, e.g., denial of service, eavesdropping, and call hijacking,
since over ten years ago. In particular, the VOIPSA organization gave a clear
taxonomy [34] of VoIP’s threats. Recently, with the high popularity of Android
phones and mobile networks, researchers started to investigate the security of
VoIP apps and network infrastructure in the real world. They have identified the
privacy risks in some VoIP apps [7,8] and infrastructure vulnerabilities in several
mobile carriers [4–6]. In particular, both Li et al. [4] and Kim et al. [5] identify a
number of serious vulnerabilities in mobile carriers’ VoLTE networks, including
free data, caller spoofing, over-billing, and denial-of-service. Compared with all
these works, we are the first to systematically study the security of system-level
VoIP implementation on Android, with 8 zero-day vulnerabilities identified and
confirmed by Google.

Protocol Fuzzing. Our network-side fuzzing in Sect. 4.2 belongs to the gen-
eral category of network protocol fuzzing. In the classical book of Fuzzing:
Brute Force Vulnerability Discovery [35], the authors explained network pro-
tocol fuzzing on both Windows and Unix. Regarding the stateful network pro-
tocol fuzzing, SNOOZE [36] and Prospex [37] are two pioneer systems. Auto-
Fuzz [38] is an open-source network protocol fuzzing framework. There are also
some fuzzers specific to certain protocols, such as for OPC protocol [39] and TLS
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libraries [40,41]. Moreover, KiF [42] is a dedicated SIP fuzzer that was released
in 2007, but unfortunately, it does not apply to Android phones. Very recently,
Pham et al. proposed AFLNet [43], a greybox fuzzer based on the popular AFL
(American Fuzzy Lop) to specifically fuzz network protocol implementations. In
this paper, our network-side fuzzing tool is the first Android VoIP fuzzer for SIP,
SDP, and RTP fuzzing.

Android Dynamic Testing. Our on-device fuzzing in Sect. 4.1 is related to
the general Android dynamic testing [44–48]. For example, SMV-Hunter [44] and
FileCross [45] leveraged Android adb commands to dynamically test Android
apps’ security vulnerabilities. AppIntent [46], further instrumented Android
operating system for the effective dynamic testing of Android apps. Two crowd-
sourcing apps, UpDroid [47] and NetMon [48], were recently proposed to lever-
age crowds’ user interaction for dynamic app tests in the wild. Besides gen-
eral Android dynamic testing, the closest work to our Intent fuzzing is Intent-
Fuzzer [49], which also leveraged Drozer for Intent fuzzing. The difference is that
our fuzzing targets at VoIP components, instead of the permission-protected
components in IntentFuzzer [49]. Additionally, buzzer (Binder Fuzzer) [50] ana-
lyzed input validation vulnerabilities associated with Android system services,
which is similar to our System API fuzzing except that we use Java reflection
to effectively identify service interfaces and their parameters. Furthermore, our
on-device fuzzing is an unified framework that performs both Intent and System
API fuzzing.

8 Conclusion

In this paper, we conducted the first study to systematically investigate the
(in)security of Android’s VoIP integration at the system level. We began with a
demystification of Android VoIP’s protocol stack and all its four attack surfaces.
We then proposed a novel vulnerability assessment approach that first employs
on-device Intent/API fuzzing and network-side packet fuzzing to automatically
test Android VoIP components, and further combines them with targeted code
auditing to eventually determine vulnerabilities. By periodically fuzzing VoIP
components on the recent Android OS from version 7.0 to 9.0 over two years,
we discovered a total of nine zero-day vulnerabilities, two-thirds of which can
be exploited by a network-side adversary. These vulnerabilities caused serious
security consequences, including denying voice calls, caller ID spoofing, unautho-
rized call operations, and remote code execution. Finally, we uncovered a new
root cause, incompatible processing between VoIP and PSTN calls, that leads to
six VoIP vulnerabilities and requires developers’ extra attention in their future
design and implementation.
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