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Abstract. We investigate collections of reversible gates closed under
parallel and serial composition. In order to better understand the struc-
ture of these collections of reversible gates, we investigate the lattice of
closed sets and the maximal members of this lattice, that is, collections
that are not all gates, but the addition of a single new gate will allow
us to construct all gates. We find the maximal closed sets over a finite
alphabet.

We then extend to ancilla and borrow closure for reversible gates.
Here we find some structural results, including some examples.
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1 Introduction

For a given finite set A, we investigate the collections of reversible gates, or
bijections of Ak for all k. The work derived from Tomasso Toffoli’s work [14] and
as such we call closed systems of bijections reversible Toffoli Algebras (RTAs).
We also consider ancilla and borrow closure, where an extra input and output
is allowed; an ancilla is provided and returned in a particular state, whereas a
borrowed bit is provided and returned in an arbitrary state.

The work also relates to permutation group theory, as an RTA C is a N-
indexed collection of permutations groups, C [i] ≤ Sym(Ai).

In previous papers, Aaronson, Grier and Schaeffer have determined all ancilla
closed gates on a set of order 2 [1], and the author, together with Jarkko Kari
and Ville Salo, has investigated generating sets [2,3] and other themes.

In this paper, we determine the possible maximal closed systems, relying
strongly on Liebeck, Praeger and Saxl’s work [11], and determine some properties
of maximal borrow and ancilla closed RTAs.

We show that the maximal RTAs are defined by an index that defines the
single arity at which the RTA is not the full set of bijections. We then show
that for different indices and orders of A, only certain possibilities can arise. For
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ancilla and borrow closed RTAs we find that there is similarly an index below
which the maximal RTAs are full symmetry groups and above which they are
never full.

We start by introducing the background properties of RTAs and some per-
mutation group theory. The next section is an investigation of maximality, with
the main result, Theorem 4, taking up the main body of this section. We then
investigate properties of borrow and ancilla closed RTAs.

2 Background

In this section we will introduce the necessary terminology.
Let A be a finite set. Sym(A) = SA is the set of permutations or bijections

of A, Alt(A) the set of permutations of even parity. If A = {1, . . . , n} we will
write Sn and An. We write permutations in cycle notation and act from the
right. We write the action of a permutation g ∈ G ≤ Sym(A) on an element
a ∈ A as ag. A subgroup G ≤ SA is transitive if for all a, b ∈ A there is a g ∈ G
such that ag = b. We also say that G acts transitively on A. If for all distinct
a1, . . . , an ∈ A and b1, . . . , bn ∈ A there is a g ∈ G such that ag

i = bi for all i,
then we say G is n-transitive on A. A subgroup G of SA acts imprimitively if
there is a nontrivial equivalence relation ρ on A such that for all a, b ∈ A, for
all g ∈ G, aρb ⇒ agρbg. If there is no such equivalence relation, then G acts
primitively on A.

Let G be a group of permutations of a set A. Let n ∈ N. Then the wreath
product GwrSn is a group of permutations acting on An. The elements of
GwrSn are {(g1, . . . , gn, α) | gi ∈ G, α ∈ Sn} with action defined as follows:
for (a1, . . . , an) ∈ An, (a1, . . . , an)(g1,...,gn,α) = (ag1

α−11, . . . , a
gn

α−1n).
Let Bn(A) = Sym(An) and B(A) =

⋃
n∈N

Bn(A). We call Bn(A) the set of
n-ary reversible gates on A, B(A) the set of reversible gates. For α ∈ Sn, let
πα ∈ Bn(A) be defined by πα(x1, . . . , xn) = (xα−1(1), . . . , xα−1(n)). We call this
a wire permutation. Let Π = {πα|α ∈ Sn, n ∈ N}. In the case that α is the iden-
tity, we write in = πα, the n-ary identity. Let f ∈ Bn(A), g ∈ Bm(A). Define
the parallel composition as f ⊕ g ∈ Bn+m(A) with (f ⊕ g)(x1, . . . , xn+m) =
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), g1(xn+1, . . . , xn+m), . . . , gm(xn+1, . . . ,
xn+m)). For f, g ∈ Bn(A) we can compose f •g in Sym(An). If they have distinct
arities we “pad” them with identity, for instance f ∈ Bn(A) and g ∈ Bm(A),
n < m, then define f • g = (f ⊕ im−n) • g and we can thus serially compose all
elements of B(A).

We call a subset C ⊆ B(A) that includes Π and is closed under ⊕ and • a
reversible Toffoli algebra (RTA) based upon Toffoli’s original work [14]. These
have also been investigated as permutation clones [8], with ideas from category
theory [9] and as memoryless computation [6]. If we do not insist upon the inclu-
sion of Π, then we have reversible iterative algebras [3] in reference to Malcev
and Post’s iterative algebras. For a set F ⊆ B(A) we write 〈F 〉 as the smallest
RTA that includes F , the RTA generated by F .

Let C be an RTA. We write C [n] = C ∩ Bn(A) for the elements of C of arity
n. We will occasionally write (a1, . . . , an) ∈ An as a1a2 . . . an for clarity.
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In any RTA C, the unary part C [1] is found as a wreath product in all other
parts, C [1]wrSn ≤ C [n] because the wire permutations give us the right hand
factor while f1 ⊕ · · · ⊕ fn for fi ∈ C [1] gives us the left hand side.

Let q be a prime power, GF (q) the field of order q, AGLn(q) the collec-
tion of affine invertible maps of GF (q)n to itself. We note that for all m ∈ N,
AGLn(qm) ≤ AGLnm(q). For a prime p, let Aff(pm) =

⋃
n∈N

AGLnm(p) be the
RTA of affine maps over A = GF (p)m.

We say that an RTA C ≤ B(A) is borrow closed if for all f ∈ B(A), f⊕i1 ∈ C
implies that f ∈ C. We say that an RTA C ≤ B(A) is ancilla closed if for all
f ∈ Bn(A), g ∈ C [n+1] with some a ∈ A such that for all x1, . . . , xn ∈ A, for
all i ∈ {1, . . . , n}, fi(x1, . . . , xn) = gi(x1, . . . , xn, a) and gn+1(x1, . . . , xn, a) = a
implies that f ∈ C. If an RTA is ancilla closed then it is borrow closed. For any
prime power q, Aff(q) is borrow and ancilla closed.

3 Maximality in Permutation Groups

In this section we introduce some results from permutation group theory that will
be of use. The maximal subgroups of permutation groups have been determined.

Theorem 1 ([11]). Let n ∈ N. Then the maximal subgroups of Sn are conjugate
to one of the following G.

1. (alternating) G = An

2. (intransitive) G = Sk × Sm where k + m = n and k 
= m
3. (imprimitive) G = SmwrSk where n = mk, m, k > 1
4. (affine) G = AGLk(p) where n = pk, p a prime
5. (diagonal) G = T k.(Out(T )×Sk) where T is a nonabelian simple group, k > 1

and n = |T |(k−1)

6. (wreath) G = SmwrSk with n = mk, m ≥ 5, k > 1
7. (almost simple) T �G ≤ Aut(T ), T 
= An a nonabelian simple group, G acting

primitively on A

Moreover, all subgroups of these types are maximal when they do not lie in An,
except for a list of known exceptions.

It is worth noting that in the imprimitive case, A is a disjoint sum of k sets
of order m, giving an equivalence relation with k equivalence classes of order m,
the wreath product acts by reordering the equivalence classes as Sk, then acting
as Sm on each equivalence class. In the wreath case, the set A is a direct product
of k copies of a set of order m, the wreath product acts by permuting indices by
Sk then acting as Sm on each index.

Lemma 1. Let A be a set of even order and n ≥ 3. Then SAwrSn ≤ Alt(An).

Proof. SAwrSn is generated by SA acting on the first coordinate of An and Sn

acting on coordinates.
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The action of SA on An is even because for each cycle in the first coordinate,
the remaining n−1 coordinates are untouched. Every cycle occurs |A|n−1 times,
which is even, so the action of SA lies in Alt(An).

Sn is generated by Sn−1 and the involution (n−1n). By the same argument,
each cycle of the action occurs an even number of times, so the action of Sn−1

and the involution ((n − 1)n) on An lies in Alt(An) so we are done. �

We have a similar inclusion for affineness.

Lemma 2. For n ≥ 3, AGLn(2) ≤ Alt(2n).

Proof. AGLn(2) is generated by the permutation matrices {π(1,i) | i = 2, . . . , n}
and the matrix

[
1 1
0 1

]

⊕ in−2. These bijections are even parity because they only

act on two entries, thus have parity divisible by 2n−2 modulo 2 which is 0. �

Lemma 3. Let A be even order. Then SAwrS2 ≤ Alt(A2) iff 4 divides |A|.
Proof. The same argument as above applies for SA. The action of S2 swaps
|A|(|A|−1)

2 pairs. This is even iff 4 divides |A|. �


4 Maximality in RTAs

In this section, we will determine the maximal RTAs on a finite set A.
We have some generation results from other papers that will be useful.

Theorem 2 ([2] Theorem 5.9]). Let A be odd. If B1(A), B2(A) ⊆ C ⊆ B(A),
then C = B(A).

Theorem 3 ([3] Theorem 20]). If Alt(A4) ⊆ C ⊆ B(A) then Alt(Ak) ⊆ C for
all k ≥ 5.

Lemma 4. Let |A| ≥ 3, then 〈B1(A), B2(A)〉 is 3-transitive on A3.

Proof. Let A = {1, 2, 3, . . . }. Let a, b, c ∈ A3 be distinct. We show that we can
map these to 111, 112, 113 ∈ A3. There are three cases. See Fig. 1.

Case 1: Suppose a3, b3, c3 all distinct. Let α = (a1a3 1a3)(b1b3 1b3)
(c1c3 1c3) ∈ B2(A). Let β = (a2a3 11)(b2b3 12)(c2c3 13) ∈ B2(A). Then
γ = (π(23) • (α ⊕ i1) • π(23)) • (i1 ⊕ β) satisfies the requirements.

Case 2: Suppose a3, b3, c3 contains two values, wlog suppose a3 = b3. Let
d ∈ A − {a3, c3}. Let δ = (a1a3 a1d) ∈ B2(A). Let λ = π(23) • (δ ⊕ i1) • π(23).
Then λ will map a, b, c to the situation in the first case.

Case 3: Suppose a3 = b3 = c3. Then one of a1, b1, c1 or a2, b2, c2 must contain
at least two values, wlog let a1, b1, c1 be so. Then π(13) will give us the Case 1 if
a1, b1, c1 contains three values, Case 2 if a1, b1, c1 contains two values. �


The two following results are only relevant for even A.
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Fig. 1. Cases 1 and 2 in Lemma 4

Lemma 5. Let |A| ≥ 4, B1(A), B2(A) ⊂ C ≤ B(A). Then Alt(A3) ⊆ C [3].

Proof. For |A| = 4, the result is shown by calculation in GAP [7] that 〈B1(A) ⊕
i2 ∪ B2(A) ⊕ i1 ∪ Π [3]〉 as a subgroup of B3(A) is Alt(A3).

For |A| = 5 the result follows from Theorem 2.
Suppose |A| ≥ 6 Since B2(A) ⊆ C, we have all 1-controlled permutations of

A in C. By [3] Lemma 18, with P ⊂ Alt(A) the set of all 3-cycles, we have all
2-controlled 3-cycles in C. Thus (111 112 113) ∈ C. B1(A)∪B2(A) is 3-transitive
on A3 by Lemma 4, so we have all 3-cycles in C, so Alt(A3) ⊆ C. �


We know that this is not true for A of order 2, where B2(A) generates a
group of order 1344 in B3(A), which is of index 15 in Alt(A3) and is included in
no other subgroup of B3(A). However we find the following.

Lemma 6. Let |A| be even, B1(A), B2(A), B3(A) ⊂ C ≤ B(A). Then Alt(A4) ⊆
C [4].

Proof. For A of order 4 or more, we use the same techniques as in Lemma 5.
For A of order 2, we calculate. We look at C [4] as a subgroup of S16. The wire

permutations Π [4] are generated by (2, 9, 5, 3)(4, 10, 13, 7)(6, 11)(8, 12, 14, 15)
and (5, 9)(6, 10)(7, 11)(8, 12). Then i1 ⊕ B3(A) is a subgroup of B4(A) acting on
the indices {2, 3, 4}, generated by (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)
and (1, 2)(9, 10). It is a simple calculation to determine that this group is the
entire alternating group A16, so Alt(A4) ⊆ C [4]. �


We can now state our main theorem.

Theorem 4. Let A be a finite set. Let M be a maximal sub RTA of B(A). Then
M [i] 
= Bi(A) for exactly one i and M belongs to the following classes:

1. i = 1 and M [1] is one of the classes in Theorem 1.
2. i = 2, |A| = 3, and M [2] = AGL2(3) (up to conjugacy)
3. i = 2, |A| ≥ 5 is odd and M [2] = SAwrS2

4. i = 2, |A| ≡ 2 mod 4 and M [2] = SAwrS2

5. i = 2, |A| ≡ 0 mod 4 and M [2] = Alt(A2)
6. i = 2, |A| ≡ 0 mod 4 and M [2] = T (3).(Out(T ) × S3) where T is a finite

nonabelian simple group, with |A| = |T | (up to conjugacy)
7. i = 2, |A| ≡ 0 mod 4 and M [2] is an almost simple group (up to conjugacy)
8. i ≥ 3, |A| is even and M [i] = Alt(Ai)
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Proof. Suppose M < B(A) with i 
= j natural numbers such that M [i] 
= Bi(A)
and M [j] 
= Bj(A). Wlog, i < j, let N = 〈M ∪Bj(A)〉. Remember that composi-
tions of mappings of arity at least j will also be of arity at least j, so N [k] = M [k]

for all k < j. Then M < N because N contains all of Bj(A) and N < B(A)
because N [i] = M [i] 
= Bi(A). Thus M was not maximal, proving our first claim.

For the rest of the proof, take M maximal with M [i] 
= Bi(A). Then M [i] is
a maximal subgroup of Bi(A).

Suppose i = 1. Then B1(A) = SA and we are interested in the maximal
subgroups of SA. From Theorem 1 we know that these are in one of the 7
classes.

Suppose i ≥ 2. Then Si
A ≤ M [i] so M [i] is transitive on Ai. As Π [i] ≤ M [i]

we also know that SAwrSi ≤ M [i]. Assume M [i] acts imprimitively on Ai with
equivalence relation ρ. Let a, b ∈ Ai, aρb with ai 
= bi. By the action of SA acting
on the ith coordinate we obtain a′ρb′ with aj = a′

j and bj = b′
j for all j 
= i. By

the action of Si on coordinates we can move this inequality to any index. Thus
by transitivity we can show that ρ = (An)2 and is thus trivial, so our action
cannot be imprimitive.

We now consider the cases of A odd and even separately.
Suppose i ≥ 2 and |A| is odd. If i ≥ 3 then M [1] = B1(A) and M [2] = B2(A),

so by Theorem 2 we have all of B(A) and thus M is not maximal, a contradiction.
Thus we have i = 2. M [1] = B1(A) = SA and π(1 2) ∈ M so M contains
SAwrS2. If |A| ≥ 5 then by Theorem 1 this is maximal in Sym(A2) so M [2]

must be precisely this. So the case of A order 3 is left. We want to know which
maximal subgroups of Sym(A2) contain SAwrS2. There are 7 classes of maximal
subgroups, we deal with them in turn.

– Since π(1 2) ∈ M is odd on A2, M [2] 
⊆ Alt(A2).
– From the discussion above we know that M [2] is transitive and primitive on

A2, so the second and third cases do not apply.
– The permutations in S3 can be written as affine maps in Z3 and π(1 2) can be

written as
[
0 1
1 0

]

, the off diagonal 2 × 2 matrix over Z3, so S3wrS2 embeds in

the affine general linear group. Thus M [2] = AGL2(3) is one possibility.
– The diagonal case requires |T |k−1 = 9 for some nonabelian finite simple group

T , a contradiction.
– The wreath case requires 9 ≥ 52, a contradiction.
– By [4] all G acting primitively on A2 with subgroups that are nonabelian

finite simple groups are subgroups of Alt(A2), and we have odd elements in
M , so this is a contradiction.

Thus the only maximal subgroup is M [2] = AGL2(3).
Suppose i ≥ 2 and |A| is even. We know from Theorem 3 that for i > 4 we

can get all of Alt(Ai) from ∪1≤j<iBj(A). Alt(Ai) is maximal in Sym(Ai) so we
are done.

Thus we are left with 3 cases, i = 2, 3, 4.
From Lemma 6 we know that for i = 4 , M [4] = Alt(A4) is the only possibility.
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From Lemma 5 we know that for i = 3 and |A| 
= 2, M [3] = Alt(A3) is the
only possibility. For |A| = 2 we find that B2(A) generates a subgroup of B3(A)
that is only included in Alt(A3), so again M [3] = Alt(A3) is the only possibility.

Thus we are left with the case i = 2. From the above we know that the
intransitive and imperfect cases cannot arise. Thus we need to consider the
wreath, affine, diagonal and almost simple cases.

– |A| = 2: SAwrS2 has order 8, B2(2) has order 24, so M [2] = SAwrS2 is
maximal and we are done.

– Case 6 ≤ |A| ≡ 2 mod 4: Lemma 3 above says that SAwrS2 
≤ Alt(A2) so it
is maximal by Theorem 1.

– Case |A| = 4: Alternating is possible by inclusion. The affine case AGL4(2)
lies in A16 by Lemma 2. Diagonal not possible by order. Almost simple not
possible because all primitive groups of degree 16 lie in the alternating group
A16 [4] .

– Case 8 ≤ |A| ≡ 0 mod 4: Alternating is always possible. If A = 2m for
some m, then AGLm(2) might be possible, but lies in Alt(A2) by Lemma 2.
Diagonal, almost simple might be possible, if SAwrS2 ≤ M [2].

�


4.1 The Existence of Maximal RTAs

It is not immediately clear that all the classes of maximal RTAs can actually
exist. So let us investigate a few small examples.

Let us take A of order 2. For i = 1 we find no nontrivial subgroups, so the
maximal is M [1] of order 1. For i = 2 case 4 gives us S2wrS2 of order 8 as a
maximal subgroup. We note that B2(A) = AGL2(2), i.e. all binary bijections
are affine maps. For i ≥ 3 we have M [i] alternating as the only example, as we
know from Toffoli [14] and others that the alternating bijections of arity i are
generated by the collection of all permutations of arity less than i.

Taking A of order 3, we obtain a few more examples. For i = 1 we write A =
{1, 2, 3} and we know that S3 has maximal subgroups A3 as well as 〈(1 2)〉, 〈(1 3)〉,
〈(2 3)〉. These correspond in Theorem 1 to the alternating case and intransitive
cases. For i = 2 we write A = Z3 and note that the unary maps are all affine,
that is, the set of affine maps {x �→ ax + b|a, b ∈ Z3, a 
= 0} is identical to the
permutations S3 = B1(A). The binary affine maps AGL2(3) include all sums

of unary affine maps and the wire permutation
[
0 1
1 0

]

. With the inclusion of the

linear map (x, y) �→ (x + y, y) =
[
1 1
0 1

]

we obtain all affine maps. From Theorem

1 above we know this is maximal as a subgroup of B2(A). For i ≥ 3 we know
that B1(A), B2(A) generate all of B(A) so we are done.

For A of order 4 things get a touch more complex. For i = 1 we get a
number of maximal subgroups. A4 is maximal. By fixing one element we obtain
4 maximal subgroups isomorphic to S3 as intransitive subgroups. By imposing an
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equivalance relation with two classes of two elements each ( 1, 2 | 3, 4 or 1, 3 | 2, 4
or 1, 3 | 2, 3) we obtain subgroups isomorphic to S2wrS2 that act imprimitively
on A. AGL2(2) is of order 24, same as S4, we see that the affine maps are
precisely the permutations, not maximal. There is no nonabelian simple group
to allow a diagonal maximal subgroup. The wreath product also fails by order,
and no nonabelian simple group of order less than 24 exists, so the almost simple
case cannot arise. For i ≥ 2 we find M [2] = Alt(A2) a maximal subgroup. For
i = 2 we see that there are no nonabelian finite simple groups of order 16, so
case 6 cannot arise. It can be shown by investigation of [4] that M [2] cannot be
an almost simple group.

For orders 5 and above, we know that the maximal RTAs for i = 1 can be
obtained by permutation group analysis directly. For A of odd order we have the
wreath case SAwrS2 maximal in B2(A) and none others. For A even we have the
alternating and wreath cases easily constructible. We are left with the question
whether, for A of order a multiple of 4, the diagonal or almost simple cases can
actually arise.

The possibilities for the diagonal case with A of order equal to the order of
a finite simple nonabelian group start with A of order 60. The other possibility
is that |A|2 = |T | for some finite simple nonabelian group T . The only known
result in this direction is in [13] where they show that symplectic groups Sp(4, p)
where p is a certain type of prime, now known as NSW primes, have square order.
The first of these groups is of order (24 · 3 · 5 · 72)2 corresponding to A of order
(24 · 3 · 5 · 72) = 11760. We note that the sporadic simple groups have order that
always contains a prime to the power one, so they are not of square order. We
know that the Alternating group can never have order that is a square, as the
highest prime less than n will occur exactly once in the order of the group. It
might be possible that there are other finite simple groups of square order. As
far as we are aware, there have been no further results in this direction.

Each of these possibilities is far beyond the expected useful arities for com-
putational processes.

The other case is to look at almost simple groups. Let A be of order 4k, then
we are looking for an almost simple action of degree 16k2. In [4] we saw that
all primitive actions of degree 16 are alternating, that is, they are subgroups of
A16. In order to find an example, we can hope to use results about primitive
permutation groups of prime power [5] and product of two prime power [10]
degrees, so we would be able to investigate A of order 4k for k ≤ 14. Once again
this would include all examples of arities expected to be useful for computational
processes.

5 Maximality with Borrow and Ancilla Closure

The strength of Theorem 4 is partially due to the fact that there is no effect of
the existence of mappings of a certain arity in a given RTA on the size of the
lower arity part, as there are no operators to lower the arity of a mapping. This
does not apply with ancilla and borrow closure. In this section we collect some
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results about maximal ancilla and borrow closed RTAs. The following result
reflects the first part of Theorem 4.

Lemma 7. Let M ≤ B(A) be a maximal borrow or ancilla closed RTA. Then
there exists some k ∈ N such that for all i < k, M [i] = Bi(A) and for all i ≥ k,
M [i] 
= Bi(A).

Proof. Suppose M [k] = Bk(A). Then for all f ∈ Bm(A), m < k, f ⊕ ik−m ∈ M
so by borrow closure f ∈ M , so M [m] = Bm(A) for all m ≤ k. As M is maximal,
there must be a largest k for which M [k] = Bk(A), since otherwise M = B(A).

�

We will call k the index of the maximal ancilla closed or borrow closed RTA.
From Theorem 2 we then note the following.

Lemma 8. Let |A| be odd. Then M maximal with index k = 1, 2 are the only
options.

In this case, we can say a bit more for index 2. If A is of order 3, then by the
argument in Theorem 4 above, we find that M = Aff(A), the affine maps over
a field of order 3. Otherwise A is at least 5 and B1(A) is no longer affine. See
Lemma 11 below.

Similarly, we obtain the following, but see Corollary 1 below for a stronger
result.

Lemma 9. Let |A| ≥ 4 be even. Then M maximal with index k = 1, 2, 3 are the
only options and for i > k, M [i] 
= Alt(Ai).

Proof. We start by noting that for even |A|, for all f ∈ Bi(A), f⊕i1 ∈ Alt(Ai+1).
Thus if M [i] = Alt(Ai) for some i > k, then M [i−1] = Bi−1(A) which is a
contradiction, which shows the second part of the result.

Suppose k ≥ 4, so B1(A), B2(A), B3(A) ⊆ M . Then by Lemma 6 Alt(A4) ⊆
M , so by Theorem 3 Alt(Aj) ⊆ M for all j ≥ 5. But we know that by bor-
row closure, this implies that Bj−1(A) ⊆ M so M is in fact B(A). This is a
contradiction, so k < 4. �


Using similar arguments, we obtain the following.

Lemma 10. Let |A| = 2. Then M maximal with index k = 1, 2, 3 are the only
options and for i > k, M [i] 
= Alt(Ai).

Proof. Suppose M is maximal with k ≥ 5. Then by Theorem 3 we obtain M [i] =
Alt(Ai) for all i ≥ 5, which by the first argument in the previous Lemma, implies
that M is not maximal.

Suppose M is maximal with k = 4. We know that M [3] = B3(A). Then by
Lemma 6 we find that M [4] = Alt(A4), by Theorem 3 we obtain all of Alt(A5)
so by borrow closure all of B4(A) and thus M is not maximal. �


We obtain some examples of maximal borrow and ancilla closed RTA. The
expression degenerate to describe maps where each output index depends only
upon one input comes from [1].
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Lemma 11. For |A| ≥ 5, the degenerate RTA Deg(A) generated by B1(A) is a
maximal borrow closed RTA and maximal ancilla closed RTA.

Proof. Let Deg(A) be generated by B1(A) = SA. Then Deg(A)[i] = SAwrSi for
all i ≥ 2 which is maximal in Bi(A) by Theorem 1. Thus any RTA N properly
containing Deg(A) will have N [i] = Bi(A) for some i ≥ 2 and thus N [2] = B2(A)
by Lemma 7. Let f ∈ N [2] − Deg(A)[2], then f ⊕ f ∈ N [4] − Deg(A)[4] so
N [4] = B4(A) and by Lemmas 8 and 9, N = B(A), so Deg(A) is maximal. �


For |A| < 5, B1(A) consists of affine maps, so Deg(A) < Aff(A) and thus
cannot be maximal.

Corollary 1. Let |A| ≥ 4 be even. Then M maximal with index k = 1, 2 are the
only options.

Proof. From Lemma 9 we know k = 1, 2, 3 are possible. Suppose M is maximal
in B(A) with k = 3.

Suppose |A| = 4. B2(A) can be embedded in B4(A) represented on S256

with the tuples in A4 represented by the integers 1, . . . , 256, generated by the
permutations

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
(17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32) . . .

. . . (241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256)

and (1, 2)(17, 18) . . . (241, 242). With the wire permutations we obtain a sub-
group of S256 that is the alternating group, so M [4] = Alt(A4) and by Theorem
3 we then get M [5] = Alt(A5) and thus M is not maximal.

Suppose A is even with more than 6 elements. The degenerate RTA Deg(A) ≤
M because M [1] = B1(A), but because Deg(A) is maximal and M [2] is a super-
group of Deg(A)[2], M is all of B(A) and is not maximal. �

Lemma 12. Let A be of prime power order. Then Aff(A) is a maximal borrow
closed RTA and a maximal ancilla closed RTA.

Proof. Let M = Aff(A). Suppose M is not maximal, so M < N < B(A).
Let A be of odd order. For every i, except i = 1 with A of order 3, M [i] is

maximal in Bi(A) by Theorem 1. Let f ∈ Bn(A), f ∈ N − M . Then N [n] =
Bn(A) by subgroup maximality, so for all i < n, N [i] = Bi(A). For all j ∈ N,
f ⊕ ij ∈ (N − M)[n+j] so similarly N [n+j] = Bn+j(A) so N = B(A) and M is
maximal.

Let A be of even order, so a power of 2. Let f ∈ Bn(A), f ∈ N − M . We
know from Lemma 2 above that M [n] ≤ Alt(An) is not maximal, so the odd
order argument above does not hold. By [12] we know that N [n] = Bn(A) or
N [n] = Alt(An). For all j ∈ N, f ⊕ ij ∈ (N − M)[n+j] so N [n+j] = Bn+j(A) or
N [n+j] = Alt(An+j). In both cases this means that N [n+j−1] = Bn+j−1(A), as
for all g ∈ Bn+j−1(A) g ⊕ i1 ∈ Alt(An+j)f , so N = B(A) and M was maximal.
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Because Aff(A) is ancilla closed and maximal as borrow closed, there can be
no ancilla closed RTA between Aff(A) and B(A) so Aff(A) is a maximal ancilla
closed RTA. �


We look at a few concrete examples.
By [1] we know that for A of order 2, we have the following maximal ancilla

closed RTAs.

– The affine mappings,
– The parity respecting mappings, which either preserve the number of 1s mod

2, or invert it,
– The odd prime-conservative mappings, that preserve the number of 1s mod

p, an odd prime.

The affine mappings have index 3, the parity respecting index 2 and the odd
prime-conservative mappings have index 1.

It remains an open problem whether these are the borrow closed maximal
RTAs over A of order 2.

For A of order 3, we know that the affine maps Aff(3) is an index 2 maximal
borrow closed RTA and a maximal ancilla closed RTA.

For A of order 4, we can say the following about index 2 maximals. There
are the following inclusions, S4wrS2 < ASp < AGL4(2) < Alt(42) where ASp is
a group of order 11520 that consists of the affine maps where the linear part is a
symplectic linear map in Sp(4, 2). If M [2] = Alt(42) then M includes the affine
maps properly. We know that the affine maps are maximal, a contradiction.
M [2] = AGL4(2) for the affine maps that we know form a maximal borrow and
ancilla closed RTA. It is possible that M [2] = S4wrS2 or M [2] = ASp for some
maximal M .

For A of order 5 or more, we know that index 2 arises only for the degenerate
RTA Deg(A).

6 Conclusion and Further Work

We have determined the maximal RTAs, using results from permutation group
theory and some generation results.

As we have not been able to construct explicitly an example of a maximal
RTA with i = 2 and M [i] of diagonal or almost simple type, the conjecture
remains that these are not, in fact, possible. We note however that if such exam-
ples exist, they will arise for A of order 8 or more, so will probably not be relevant
for any practical reversible computation implementation.

In future work we aim to determine the weight functions as described by [8]
for maximal RTAs, in order to determine whether they hold some interesting
insights.

The results for borrow and ancilla closed RTAs are not as comprehensive.
We hope to determine these in the foreseeable future. We note interestingly that
for a state set of order 5 or more, Lemma 11 indicates that if we can implement



Maximality of Reversible Gate Sets 217

all permutations of the state set, we need only have one non-degenerate gate in
order to implement all gates under borrow or ancilla closure. Similarly we see
that once we can implement all affine maps on a state set of prime power order,
then only one nonaffine gate is needed to implement all gates. For the ancilla
case, many of the techniques of [1] will prove useful. In the ancilla case, we know
all maximal RTA with index 2 except for A of order 4.
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primitive permutations groups, for which I thank him greatly.
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