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Abstract. This project applies a variety of machine learning algorithms
to the interactions of first year college students using the GroupMe mes-
saging platform to collaborate online on a team project. The project
assesses the efficacy of these techniques in predicting existing measures
of team member performance, generated by self- and peer assessment
through the Comprehensive Assessment of Team Member Effectiveness
(CATME) tool. We employed a wide range of machine learning classi-
fiers (SVM, KNN, Random Forests, Logistic Regression, Bernoulli Naive
Bayes) and a range of features (generated by a socio-linguistic text anal-
ysis program, Doc2Vec, and TF-IDF) to predict individual team member
performance. Our results suggest machine learning models hold out the
possibility of providing accurate, real-time information about team and
team member behaviors that instructors can use to support students
engaged in team-based work, though challenges remain.
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1 Introduction

Teamwork skills are vital for college students, both while they are at university
[7] and for their employability and success after graduation [4]. This is true
across the board, for students in a wide variety of disciplines [3,5,6,13]. Despite
great interest in supporting and developing student teamwork skills, there are
relatively few tools available to help instructors do so [2] and the few tools that
do exist are often focused on fairly artificial and controlled experimental settings
rather than robust teaching environments [10] or suffer from other shortcomings
[2,12]. This paper reports on the collection of teamwork data “from the wild” in
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a deliberately non-intrusive manner, and the subsequent machine learning driven
analysis of these data to identify high performing and non-high performing team
members. Although just making this discrimination is not on its own enough to
support team members and their teams, this is an important initial step towards
developing a more broad-ranging program that can do so. We hope with this
effort to begin to remedy the dispiriting conclusion of a recent article that “no
study has shown that technological support for group regulation can help teams
to improve their course-based, collaborative discourse over time [1].”

2 Data Collection

The data for this project come from two semesters of a mandatory, two credit,
Pass or Fail class for freshman students in the Honors College at a midsize
American university, enrolling about 100 students each year, divided into 12
teams of 8–9 students, each with a non-freshman team leader. The students
in the classes came from a very wide variety of majors, and one of the primary
requirements of the class was that each team identify a social issue or problem in
the city near the campus, research it, and propose a multidisciplinary approach
to addressing it. Teams had the entire fifteen-week semester to work on the
project. Team member performance was assessed through the Comprehensive
Assessment of Team Member Effectiveness (CATME) tool [9]. Twice during the
semester, students completed CATME self and peer-assessments, in which they
completed a report on their own and their team-members’ contributions to the
work of their team. CATME calculates a total for each team member for each
dimension on the basis of all the assessments a team member receives (including
his or her own), averages those scores and then uses an “adjustment factor” to
accommodate the fact that some teams may assess more generously than others.
CATME scores form a continuum, so to dichotomously categorize team members
for analysis we used CATME’s “high performer” definition- team members with
an average rating of 3.5 out of the available 5 points, and with an overall rating
at least half a point above their teammates’ average rating. The Fall 2018 class
had 36 high performers, and the Fall 2019 class had 22 high performers. (We
used the end rather than middle of semester CATME assessments, when team
members had the most information on which to base their evaluations.) The
class met for two hours every week, but because little of that class time was
available for project work, much of the work on team projects took place online,
using the GroupMe messaging platform. Data for the project were collected by
adding a dummy member to each team’s GroupMe group, after obtaining written
informed consent from each student. The 94 students who participated in the
Fall 2018 GroupMe chats yielded an approximately 5000 message transcript, and
the 100 students who participated in the Fall 2019 GroupMe chats generated an
approximately 6000 message transcript.
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Table 1. 10-fold cross-validation accuracy and macro-f1 scores for machine learning
models that were trained to predict high performing team members. The first column
shows the features or combination of features that were used as input for machine
learning, and the best models were first found individually for several algorithms such
as Logistic Regression, K-Nearest Neighbors, SVM, Naive Bayes and Random Forests,
using grid searches for hyper-parameter tuning, followed by selection of the best per-
forming model among these different models.

Method Accuracy Macro-F1 score

Dummy classifier with “most frequent” strategy 0.698 0.411

Doc2Vec embedding only 0.762 0.699

LIWC only 0.766 0.714

TF-IDF + Doc2Vec embedding 0.928 0.906

TF-IDF only 0.959 0.947

3 Methods, Analysis and Results

We explored a range of machine learning models to predict high performing stu-
dents, including Logistic Regression, K-Nearest Neighbors, SVM, Naive Bayes and
Random Forests. Based on ten-fold cross-validated Macro-average F1 scores, SVM
with Recursive Feature Elimination proved to be the best-performing model over-
all, with its tendency to reduce overfitting as an added benefit. With the model
selected, we trained it to predict high performers using several features, some
in combination with others, with the results reflected in Table 1. Among them,
TF-IDF scores are frequently used to represent text in text mining and infor-
mation retrieval. Linguistic Inquiry and Word Count (LIWC) [11] is an off-the-
shelf linguistic analysis tool, which categorizes words into roughly eighty differ-
ent psychologically meaningful categories, signaling attentional focus, attitudes,
perceptions, emotionality, social relationships, thinking styles, and authenticity,
etc. Doc2vec is a neural network-based text embedding method that automati-
cally learns a dense vector representation of each document/message [8]. Among
all the features, TF-IDF scores proved to be the most effective in predicting high
performers (0.959 prediction accuracy and 0.947 F1), followed by LIWC features.
Although Doc2vec embedding and LIWC both out-perform the Dummy Classi-
fier with “most frequent” strategy baseline significantly, adding them to TF-IDF
does not improve performance (see Table 1).

4 Conclusion and Discussion

This project investigates whether machine learning analysis of the text messages
of online team member exchanges can discriminate high performing from non-
high performing team members. The work demonstrates the potential of such
automatic assessments of online student teamwork, and provides some initial
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pointers about which machine learning approaches are most effective. Near term
future work will involve refining these most promising approaches.

One major potential benefit of automatically assessing online teamwork is
that it can provide instructors with this information on a real-time or near
real-time basis (e.g., in a team performance dashboard), which is important to
their making timely decisions about what corrective or supportive actions to
take. Furthermore, this benefit is available without the significant outlay of time
or energy by instructors it would take for instructors to attempt to assess the
quality and trajectory of a team’s work themselves. That time and energy can
then be devoted to instruction and to the more challenging tasks of determining
whether, when and how to intervene.

But several challenges remain. First, we have so far explored only data gen-
erated by team members using text-based platforms. This simplified the data
collection process, but limited the range of data we had to analyze. In par-
ticular, we have so far collected team member interactions neither from online
verbal conversations between team members (on Zoom, WebEx, Blackboard Col-
laborate, etc), nor from in-person conversations between team members. Such
conversations are likely to be richer in data, but are technically more challeng-
ing to capture and process. In addition, the capture of conversations of this type
also raises more serious questions about student expectations of and rights to
privacy. Still, as the COVID-19 crisis forces universities to move classes online
in the Northern hemisphere’s 2020 summer (and perhaps fall), an important if
regrettable opportunity to collect data from classes with a teamwork component
is presenting itself.

The second challenge is of a different sort- how to represent the findings of
these models to instructors in ways which are intelligible and actionable. Using
SVM with recursive feature elimination and focusing on TF-IDF features pro-
duced the best predictions of high performing team members, but it would be
difficult for an instructor to know what to do to support student team members
identified as non-high performing, because the features used to make the predic-
tions are so low-level. No matter how predictively potent it is, it is likely that
instructors, especially in non-STEM fields, will resist adopting a pedagogical tool
if its workings are opaque to them. The challenge, then, is to retain the accuracy
of a model like the one that performed best, while making its findings intelligible
and usable. For example, somehow grouping the features the model relies on in
understandable categories (perhaps, even, categories of the kind employed by
LIWC) would allow instructors to identify the kinds of missteps in communica-
tive behavior occurring in student teams. An important focus of future work,
then, will be to try to retain the predictive power of low level feature-based mod-
els but to add to those models a measure of interpretability and intelligibility
that makes them useful instructional tools.



Machine Learning and Student Performance in Teams 305

References
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