
An Evaluation of Data-Driven
Programming Hints in a Classroom

Setting

Thomas W. Price1(B) , Samiha Marwan1, Michael Winters1,
and Joseph Jay Williams2

1 North Carolina State University, Raleigh, USA
{twprice,samarwan,mawinter}@ncsu.edu
2 University of Toronto, Toronto, Canada

williams@cs.toronto.edu

Abstract. Data-driven programming hints are a scalable way to sup-
port students when they are stuck by automatically offering suggestions
and identifying errors. However, few classroom studies have investigated
data-driven hints’ impact on students’ performance and learning. In this
work, we ran a controlled experiment with 241 students in an authen-
tic classroom setting, comparing students who learned with and without
hints. We found no evidence that hints improved student performance
or learning overall, and we discuss possible reasons why.

Keywords: Data-driven hints · Computing education

1 Introduction and Background

A fundamental challenge in computer science (CS) education is supporting
novice students’ learning as they work on independent programming practice.
This practice is a common feature of CS courses, but it is challenging for novices
working without instructor assistance [3,6,8]. To address this, researchers have
designed adaptive, data-driven hints that help students right at the moment they
are stuck by offering a personalized suggestion for how to progress or fix an error
[14,19]. These are called data-driven hints because they are generated from prior
students’ data [5,11,12,19], allowing them to support diverse solutions [13,19]
and scale to support any number of students with little additional instructor
effort.

However, because they are generated from data, these hints only suggest how
to progress, without the expert-authored explanations and domain principles
found in many tutoring systems [22]. This suggests a need for careful evaluation
of data-driven hints’ impact on student performance and learning, especially in
authentic classroom settings. However, most prior evaluations have used experts
to evaluate the quality of these hints [7,11,12,15,17,23], rather than measuring
their effect on learners. Studies that do so provide interesting yet inconclusive
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12164, pp. 246–251, 2020.
https://doi.org/10.1007/978-3-030-52240-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52240-7_45&domain=pdf
http://orcid.org/0000-0001-9375-2292
https://doi.org/10.1007/978-3-030-52240-7_45


An Evaluation of Data-Driven Programming Hints in a Classroom Setting 247

results. One evaluation by Rivers suggests that data-driven programming hints
in the ITAP tutoring system had little impact on student learning [18]. However,
other work by Marwan et al. suggests that hints can promote learning, but only
when carefully designed to scaffold self-explanation [10]. These mixed results not
only suggest the need for further evaluation, but also that the effectiveness of
hints may depend on their design and the learning context.

In this work, we investigated the efficacy of data-driven programming hints
through a controlled study in an introductory CS course. We found that hints
had no impact on overall learning or performance, which may have been due to
specific choices in the design of hints and low hint quality for students with more
complex mistakes.

2 Data-Driven Python Hints

In this study, we used the SourceCheck data-driven hint generation algorithm
[12]. SourceCheck takes as input a database of correct student (or expert) solu-
tions to a given problem. When a student asks for a hint, the algorithm identifies
a solution that closely matches the structure of the student’s current code and
suggests small edits to the student’s code to bring it closer to that solution.
SourceCheck was originally developed for the block-based iSnap tutoring system
[14], but in this work we have adapted it to generate hints for the Python pro-
gramming language and integrated it into a new learning environment. We used
students’ solutions from a prior semester to generate hints for this study. In a
prior technical evaluation, SourceCheck hints were found to be of high-quality
compared to other data-driven hint generation approaches, on both iSnap and
Python datasets [15], but they have not been evaluated in a large-scale classroom
setting.

Fig. 1. An example of data-driven Python hints, annotating a student’s code. (Color
figure online)

In this study, hints were displayed by showing a copy of the student’s code,
annotated with three types of feedback, as shown in Fig. 1. The hints highlight
code that should potentially be: 1) deleted (red strikethrough), 2) replaced (pur-
ple strikethrough), or 3) inserted (gray plus). Students can hover over these
annotations for further explanation. Students are also shown a list of miss-
ing code elements. These suggestions do not directly give away solution code



248 T. W. Price et al.

(e.g. add “a boolean value” rather than “False”), reducing the possibility for
bottom-out help-abuse [1,4,20]. We chose to provide multiple hints simultane-
ously, as prior work suggests that students often search through many hints to
find one that addresses their current goals [16]. We also chose to show hints
each time a student submitted their code to run and test it, given prior work
suggesting that many students avoid asking for hints even when they need them
[2,9,20].

3 Method

We investigated the following research question: What is the impact of data-
driven programming hints on students’ overall performance and learning?

Population: Our study took place in an in-person introductory Computer Sci-
ence course at a large public university in North America, consisting of CS-
majors and non-majors with little to no prior programming experience. Our
study focused on an optional, online review assignment, which students were
given in preparation for their final exam. The class included 1055 students, of
whom 401 consented to their data being collected for research and 241 (60.1% of
these) participated in the review assignment. Students were randomly assigned
to either the Hint condition (n = 119), which received hints on some problems,
or the Control condition (n = 122), which did not.

Procedure: During the review assignment, students completed 4 code writing
tasks in an online practice environment. In each problem, students completed a
function stub based on a brief description and examples of correct input/output.
Each time students submitted their code, it was checked with 4–7 test cases,
and the results were reported to the student. Students could submit as many
attempts to a given problem as they wanted, revising their solution until it passed
all test cases. The review assignment included 2 pairs of related problems (4–5
lines of code), respectively covering: 1) parallel list operations and 2) searching
parallel lists. Each pair consisted of an “A” problem, where students could receive
hints (depending on their condition), and a subsequent “B” problem, which was
used for assessment and provided no hints for either condition. The B problem
was a slightly more challenging version of the A problem and therefore allowed
us to measure what students learned during the A problem. Students completed
two A problems (1A, 2A), with hints in the Hint condition, and then the two
corresponding B problems without hints (1B, 2B). The problems were of typical
difficulty for the course, and they ranged from 32–46% of students getting them
correct on the first attempt (compared to 35% for the average problem in the
course).

Measures: We measured students’ performance (1A, 2A) and learning (1B, 2B)
on a given problem as the number of attempts that they made on that problem
until they got it correct (i.e. passed all test cases). Since students almost always
got the problem correct eventually (98.5% of the time), the number of attempts
captures how much the student struggled in that process. It also captures how



An Evaluation of Data-Driven Programming Hints in a Classroom Setting 249

much feedback they needed, since each attempt received feedback from the data-
driven hints (when provided) and test cases (both conditions).

3.1 Results and Discussion

To address our RQ, we compared students’ performance on practice problems
(1A and 2A), where the Hint condition had hints, and on assessment problems
(1B and 2B), which measured hints’ impact on learning. As shown in Table 1,
the averages are very similar for both conditions, and a Mann-Whitney U -tests
show that the difference is not significant on any of the problems, with a small
effect size. We also looked at the rate at which students correctly completed
problems in each group, since prior work suggests data-driven hints can increase
homework completion rates [21]. However, we found little difference between the
overall completion rate of the Hint (90.8%) and Control (87.7%) conditions. This
suggests that our data-driven hints did not have an overall effect on students’
performance or learning.

Table 1. For each problem, and each condition, the mean number of attempts per
student (lower is better), p-value from Mann-Whitney U test, effect size, and the
number of students who completed the problem correctly.

Mean attempts (SD) Completed correctly

Problem Hint Control p Cohen’s d Hint (n=119) Control (n=122)

1A 2.26 (1.83) 2.35 (2.72) 0.51 −0.04 117 (98.32%) 122 (100%)

2A 2.79 (2.65) 2.70 (3.79) 0.25 0.03 117 (98.32%) 117 (95.90%)

1B 2.32 (1.95) 2.25 (1.72) 0.77 0.04 109 (91.60%) 111 (90.98%)

2B 3.00 (3.78) 2.64 (2.14) 0.39 0.12 108 (90.8%) 107 (87.70%)

This result contrasts somewhat with prior work, as Marwan et al. found
that hints improved students’ immediate performance (on problems with hints)
[10], and Rivers also found suggestive evidence hints increased students’ speed
on practice problems [18]. We note that the way we designed our data-driven
hints may have been responsible for some of these differences. For example,
our implementation of data-driven hints did not include hand-authored textual
explanations (as in [10]). Our results that data-driven programming hints alone
did not improve students’ learning agree with those of both Rivers and Marwan
et al. [10,18]. These results may stem from limitations in data-driven program-
ming hints in particular, which can be inaccurate or difficult to interpret [16,17].
A manual investigation of the hints offered during our study suggests that the
adaptive hints varied across students and were not of equal quality. As in prior
work [15], they appeared most useful for students with small mistakes, and may
have been confusing for students far from a correct solution.



250 T. W. Price et al.

4 Conclusion and Future Work

This work provides insight into the effectiveness of data-driven programming
hints, with additional evidence that these hints alone may not always promote
learning, or even performance. The latter result is surprising, given that hints
give away part of the correct solution, and it contrasts with prior work [10,
18]. This may be explained by our preliminary finding that hint quality varied
across situations, which suggests the need for future work investigating whether
contextual factors, such as student prior knowledge and problem difficulty, may
mediate hints’ usefulness.

References

1. Aleven, V., Koedinger, K.R.: Investigations into Help seeking and Learning with a
Cognitive Tutor. In: Papers of the AIED 2001 Workhop ‘Help Provision And Help
Seeking In Interactive Learning Environments’, pp. 47–58 (2001)

2. Aleven, V., Stahl, E., Schworm, S., Fischer, F., Wallace, R.: Help seeking and help
design in interactive learning environments. Rev. Educ. Res. 73(3), 277–320 (2003)

3. Altadmri, A., Kölling, M., Brown, N.C.C.: The cost of syntax and how to avoid it:
text versus frame-based editing. In: CELT: COMPSAC Symposium on Comput-
ing Education & Learning Technologies; Part of COMPSAC 2016: The 40th IEEE
Computer Society International Conference on Computers, Software & Applica-
tions (2016)

4. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelli-
gent tutoring systems. In: Proceedings of the International Conference on Intelli-
gent Tutoring Systems, pp. 531–540 (2004)

5. Choudhury, R.R., Yin, H., Fox, A.: Scale-driven automatic hint generation for cod-
ing style. In: Proceedings of the International Conference on Intelligent Tutoring
Systems, pp. 122–132 (2016)

6. Collier, S., Downing, M.: A qualitative analysis of students’ understanding of con-
ditional control structures. In: Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, pp. 1293–1293 (2019)

7. Hartmann, B., Macdougall, D., Brandt, J., Klemmer, S.R.: What would other
programmers do? suggesting solutions to error messages. In: Proceedings of the
ACM Conference on Human Factors in Computing Systems, pp. 1019–1028 (2010).
https://doi.org/10.1145/1753326.1753478

8. Ko, A., Myers, B., Aung, H.: Six learning barriers in end-user programming sys-
tems. In: Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 199–206 (2004)

9. Marwan, S., Dombe, A., Price, T.: Unproductive Help-seeking in Programming:
what it is and how to address it? In: To be published in the Proceedings of the 25th
Annual Conference on Innovation and Technology in Computer Science Education
(2020)

10. Marwan, S., Jay Williams, J., Price, T.: An evaluation of the impact of automated
programming hints on performance and learning. In: Proceedings of the Interna-
tional Computing Education Research Conference (2019)

11. Piech, C., Sahami, M., Huang, J., Guibas, L.: Autonomously generating hints by
inferring problem solving policies. In: Proceedings of the second (2015) ACM Con-
ference on Learning@ Scale, pp. 195–204 (2015)

https://doi.org/10.1145/1753326.1753478


An Evaluation of Data-Driven Programming Hints in a Classroom Setting 251

12. Price, T., Zhi, R., Barnes, T.: Evaluation of a data-driven feedback algorithm
for open-ended programming. In: International Educational Data Mining Society
(2017)

13. Price, T.W., Dong, Y., Barnes, T.: Generating data-driven hints for open-ended
programming. In: Proceedings of the International Conference on Educational Data
Mining (2016)

14. Price, T.W., Dong, Y., Lipovac, D.: iSnap: towards intelligent tutoring in novice
programming environments. In: Proceedings of the ACM Technical Symposium on
Computer Science Education, pp. 483–488 (2017)

15. Price, T.W., Dong, Y., Zhi, R., Paaßen, B., Lytle, N., Cateté, V., Barnes, T.: A
comparison of the quality of data-driven programming hint generation algorithms.
Int. J. Artif. Intell. Educ. 29(3), 368–395 (2019). https://doi.org/10.1007/s40593-
019-00177-z

16. Price, T.W., Liu, Z., Catete, V., Barnes, T.: Factors Influencing Students’ Help-
Seeking Behavior while Programming with Human and Computer Tutors. In: Pro-
ceedings of the International Computing Education Research Conference (2017)

17. Price, T.W., Zhi, R., Barnes, T.: Hint generation under uncertainty: the effect of
hint quality on help-seeking behavior. In: André, E., Baker, R., Hu, X., Rodrigo,
M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 311–322.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0 26

18. Rivers, K.: Automated Data-Driven Hint Generation for Learning Programming.
Ph.D. thesis, Carnegie Mellon University (2017). http://krivers.net/files/thesis.pdf

19. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37–64
(2015). https://doi.org/10.1007/s40593-015-0070-z

20. Roll, I., Baker, R.S.D., Aleven, V., Koedinger, K.R.: On the benefits of seeking
(and avoiding) help in online problem-solving environments. J. Learn. Sci. 23(4),
537–560 (2014)

21. Stamper, J.C., Eagle, M., Barnes, T., Croy, M.: Experimental evaluation of a auto-
matic hint generation for a logic tutor. Int. J. Artif. Intell. Educ. 22, 3–17 (2013)

22. VanLehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3),
227–265 (2006)

23. Watson, C., Li, F.W.B., Godwin, J.L.: BlueFix: using crowd-sourced feedback to
support programming students in error diagnosis and repair. In: Proceedings of
the International Conference on Web-based Learning, pp. 228–239 (2012)

https://doi.org/10.1007/s40593-019-00177-z
https://doi.org/10.1007/s40593-019-00177-z
https://doi.org/10.1007/978-3-319-61425-0_26
http://krivers.net/files/thesis.pdf
https://doi.org/10.1007/s40593-015-0070-z

	An Evaluation of Data-Driven Programming Hints in a Classroom Setting
	1 Introduction and Background
	2 Data-Driven Python Hints
	3 Method
	3.1 Results and Discussion

	4 Conclusion and Future Work
	References




