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Abstract. Now that themodeling of affective states is beginning tomature, under-
standing affect dynamics has become an increasingly realistic endeavor. However,
the results from empirical studies have not always matched those of theoretical
models, which raises questions as to why. In this study, we explore the relationship
between affective sequences that have been previously explored in the literature
and the activities students may engage in when interacting with Reasoning Mind,
a blended learning system for elementary mathematics. The strongest correlations
are found for students who shift from engaged concentration to frustration,making
fewer actions in the system. While confusion is generally associated with positive
patterns, and frustration and boredom have unexpectedly similar implications for
student activity.
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1 Introduction

Efforts to understand the relationship between affective states and learning have been
underway in earnest since researchers were first able to model affective constructs
through the use of sensors (e.g.,Grafsgaard et al. 2014;Bosch et al. 2016) and interaction-
basedmodeling (e.g., Baker andOcumpaugh 2014). Theoreticalmodels of how students’
experiences of affect change over time, such as those suggested byD’Mello andGraesser
(2012), have guided much of the discussion, but empirical findings have also had con-
siderable impact on the literature, with researchers suggesting, for example, that brief
instances of confusion and frustrationmay have different effects than extended confusion
and frustration (Liu et al. 2013), that different affective states tend to persist for different
amounts of time (D’Mello and Graesser 2011; Botelho et al. 2018), and that differences
in affective sequences can have substantial impacts on learning (Andres et al. 2019).
Work has suggested that affect can influence how students choose to interact with a
learning system. For instance, researchers have found that negative affective states such
as boredom tend to precede disengaged behaviors such as gaming the system (Baker
et al. 2010; Sabourin et al. 2011).
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The field has studied how affect manifests within AIED systems, and there have been
several attempts to influence affect through the design of AIED systems (Arroyo et al.
2011; Grawemeyer et al. 2017, Karumbaiah et al. 2017). However, there has been rela-
tively limitedwork to determine how the existing design ofAIED systems interacts affect
– i.e. how features not specifically intended to be affect-responsive nonetheless connect
with the affect students experience. In one example, Slater and colleagues (2016) inves-
tigated how the textual features of math problems within the ASSISTments platform.
They found relatively minor effects, perhaps due to the relatively minor differences in
content they studied. However, for systems that alternate between very different pedago-
gies (e.g., shifting between games andworkbook-style content), it is reasonable to expect
that affective experiences may be influenced more substantially by the kinds of tasks
students are being asked to complete and that affect may also drive students’ choices.

This paper looks at the affective sequences of students using one such system, Imag-
ine Learning’s ReasoningMind, which provides a blended learning curriculum inmathe-
matics that engages elementary-aged students in tasks that range frombasic instruction to
challenge problems to speed games to non-academic activities. Specifically, this study
looks at how the prevelance of affective patterns that have been studied in previous
research—including D’Mello and Graesser (2012) and Andres et al. (2019)—correlates
with different activities students may engage in when using Reasoning Mind.

2 Previous Research

Theorists working on the role of academic emotions have long suggested the need to
understand both their antecedents and their consequences (see discussion in Pekrun
2006; Pekrun and Linnenbrink-Garcia 2012). Therefore, it is becoming increasingly
important to understand how student affect relates to their engagement within different
kinds of learning environments.

Empirical investigations of academic emotions have produced a number of interest-
ing results, including findings that it is better to be frustrated than bored (Baker et al.,
2010). Researchers have also shown that both confusion and frustration appear to have
Goldilocks effects on learning, where either too little or toomuch can be detrimental (Liu
et al. 2013). These lead to important questions about when a system should intervene to
resolve confusion and frustration and when a student should be allowed or even guided
to shift into these affective states (Lehman and Graesser 2015).

As AIED environments have developed as research tools that can provide fine-
grained temporal data on the shifts in student cognition and emotion, there has emerged
a growing interest in affect dynamics— the study of how affect shifts and develops over
time. One of themost prominentmodels of affective dynamics comes to us fromD’Mello
andGraesser (2012). In thismodel, two sequences are hypothesized to be related to learn-
ing. The first, which is thought to encourage learning, involves a student cycling between
engaged concentration and confusion (and back again). The second, which is thought to
inhibit learning, involves a student cycling from engaged concentration to confusion to
frustration, and finally to boredom.

Subsequent research has sometimes found evidence for the two cycles proposed by
D’Mello and Graesser (2012), and in fact, efforts to promote confusion actually lead to
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positive learning outcomes (Lehman and Graesser 2015), but the cycles themselves are
less common than had originally been thought. A recent synthesis of published research
on affective dynamics (Karumbaiah et al. 2018) shows that the relative frequency of
the transitions captured by these sequences is often below chance. This raises important
questions for those hoping to build interventions triggered by affective sequences. If
these sequences are tied to learning outcomes, but they are unlikely to occur, we need
to know what behaviors within a learning environment might mediate their appearance.

3 Reasoning Mind

3.1 Reasoning Mind

Imagine Learning’s Reasoning Mind is an intelligent tutoring system for mathematics
that was used by over 100,000 pre-K to 8th grade students, primarily in the South-
ern United States. Research has shown that Reasoning Mind is associated with higher
state standardized test scores (Waxman and Houston 2012) and engagement measures
(Ocumpaugh et al. 2013).

Reasoning Mind activities are organized within the context of a virtual environment
known asRMCity, where students can navigate frombuilding to building to participate in
multiple modes, including:City Landscape (navigation page),Guided Study (theory and
tests on math concepts), Office (teacher-assigned topics),My Place (students use points
to purchase decorations for their virtual room) and Game Room (students participate in
speed games, that require them to race against a speed meter, or solve math puzzles, like
those found in the Riddle Machine). Content is further classified according to function
anddifficulty.Theory problemsguide students to learnmath concepts through animations
and exercises.Notes Test check comprehension at the end of segments of theorymaterial,
requiring a review crucial concepts while reinforcing good note-taking practices. A-level
problems reflect a fundamental understanding of basic material, while B-level problems
may requiremultiple skills to completemultiple steps.C-level problems are conceptually
advanced, requiring higher order thinking skills (Fig. 1).

Fig. 1. ReasoningMind’s pedagogical agent, the Genie (left) andRMCity (whereCity Landscape
Actions happen, right)



440 J. Ocumpaugh et al.

4 Methods

4.1 Students

This study examines data from 796 Texas students who used Reasoning Mind as part of
their regular 2nd to 6th-grade mathematics instruction during the 2017–18 school year.

4.2 Activities (Type of System Usage) Considered

Reasoning Mind students are offered a wide range of activities within the system. These
include activities related to the primary modes of instruction, from the most basic prob-
lems (A-levelActions,A-levelAccuracy, andGuidedStudyActions) that all studentsmust
complete to more challenging problems (B/C-level Actions) which are often optional.
They also include measures related to behaviors that vary in terms of their instructional
content. For example, the speed-drills (Game Room Actions) review learning modules
but do not provide instruction on new content. Meanwhile, the number of actions spent
in the RM City, (or City Landscape Actions) tell us how often a student is switching
between tasks, which may indicate either completion or dissatisfaction with the learning
environment. Finally, we also consider the how students are spending the points they
earn in Reasoning Mind’s virtual store (Items Purchased).

Four activities chosen for this analysis represent a range in the type of usage that stu-
dents using Reasoning Mind encounter: Guided Study Actions, B/C-Level Actions, City
Landscape Actions, and Items Purchased. The first two represent actions that involve
learning, while the latter may be less indicative of learning (although students are not
able to purchase items unless they have earned points through positive learning behav-
iors). These activities also represent a range in the amount of choice a student has in
whether they participate in that activity. Finally, they were carefully selected in order
to exclude any actions that might have contributed to the BROMP-based interaction
detectors developed by Kostyuk et al. (2018). (A-level Actions, for example, are a part
of several of Kostyuk’s affect detectors, and so they were excluded in order to avoid
circularity problems in the analysis.)

4.3 Affective Models and Sequences Considered

Models of Affective States. Affective states studied in this paper are modeled using
detectors built by Kostyuk et al. (2018). These cross-validated, interaction-based detec-
tors (e.g., Baker and Ocumpaugh 2014) were developed using the BROMP protocol
for classroom observation (Ocumpaugh et al. 2015). Table 1 shows detectors for four
academic emotions (boredom, confusion, engaged concentration, and frustration) and
for off-task behavior. Although detector performance was relatively weak, the scale of
data was sufficient to derive theoretically expected predictions for learning outcomes
(Kostyuk et al. 2018). The distribution of affect predictions were re-scaled to bring
the low incidence affective states back to the original distributions: Bor (13.7%), Eng
(78.8%), Con (31.1%), and Fru (1.1%).
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Table 1. Affective Models (from Kostyuk et al. 2018).

Algorithm AUC

Boredom (Bor) Random Forest 0.60

Engaged Concentration (Eng) Gradient Boosting Machine (GBM) 0.61

Confusion (Con) Stepwise forward selection linear regression 0.53

Frustration (Fru) Random Forest 0.65

Off-task (Off) Stepwise forward selection linear regression 0.64

Affective Sequences. A considerable body of research has emerged using D’Mello’s
L, a likelihood metric for studying individual transitions (D’Mello and Graesser 2012).
However, this metric does not handlemulti-state sequences, and recent research suggests
that L requires corrections in order to be valid (Karumbaiah et al. 2019). Therefore, we
take a different approach.

Instead, this study investigates affective sequences that were selected based on
two previous publications. Specifically, we include the two cycles from D’Mello and
Graesser’s (D’Mello and Graesser 2012) theoretical model, as well as include 16
sequences found to be important in Andres et al.’s (2019) exploration of affective
dynamics in Betty’s Brain, which (like this study) also made use of BROMP-based
detectors.

Specifically, Andres et al. (2019) examined 12 “three-step” transitions where the
first step was repeated (e.g., Eng-Eng-Bor, or Fru-Fru-Con) as well as four homoge-
nous “four-step” transitions, which repeated the same affective state across the entire
sequence (e.g., Bor-Bor-Bor-Bor). We also investigate two four-step sequences that
involve off-task behavior (also modeled using Kostyuk’s et al. (2018) BROMP-based
detectors), basedon evidence that off-taskbehavior ismore stronglynegatively correlated
with learning outcomes in ReasoningMind than other interactive learning environments
(Kostyuk et al. 2018). In total, this study investigates 20 affect sequences.

For each affect sequence, prevalence is computed using the method in Andres et al.
(2019). Prevalence is the total number of times a pattern occurred within a given stu-
dent’s data divided by the total number of times it could have occurred in that data.
The sequences involving only engaged concentration or confusion show the highest
prevalence with Eng-Eng-Eng-Eng at 63.4% and Con-Con-Con-Con at 13.1%. This
is followed by the sequences that have Bor with Eng-Eng-Bor at 6.2% and Bor-Bor-
Con at 1.3%. Lastly, the sequences with frustration show the lowest prevalence with
Eng-Eng-Fru at 0.29% and Eng-Con-Fru-Bor at 0.02%.

4.4 Analysis

Spearman’s Rho (ρ) was used to correlate the prevalence of 20 affect sequences studied
to the 4 types of student activities (types of usage) within Reasoning mind. Spearman’s
Rho is a non-parametric correlation coefficient that is often used when assumptions of
normality cannot be applied across an entire data set. Because this analysis resulted



442 J. Ocumpaugh et al.

in 80 separate statistical tests (20 affective states ×4 activity types within the system),
Benjamini and Hochberg’s (Benjamini and Hochberg 1995) post-hoc FDR correction
was applied. P-values in the results section are onlymarked as significant if they remained
significant after the B&H procedure was applied.

5 Results

Results for the relationship between the prevalence of affective sequences and the dif-
ferent types of activities within Reasoning Mind are given in Table 2, where they are
organized by the type of affective sequence being considered. These include (1) the
D’Mello and Graesser cycles (both the facilitative and the inhibitory), (2) the sequences
using the BROMP-based off-task detector, and then (3) the sequences studied by Andres
et al., (2019). The latter is organized by the dominant affect in each sequence (i.e.,
the one that appears most frequently), with the homogenous four-step sequences (i.e.,
Eng-Eng-Eng-Eng) given in the order of the D’Mello and Graesser’s inhibitory cycle
(i.e., engaged, followed by confusion, followed by frustration, followed by boredom).
However, readers will see that the results do not fully fit this model’s predictions.

Table 2. Correlations between prevalence of affective sequences and types of student actions.
Items that are non-significant after the B&H correction was applied are given in gray-scale.

Learning Actions Non-Learning Actions
Guided Study 

Problems
B/C-Level 
Problems

City Land-
scape 

N of Items 
Purchased

Rho p Rho p Rho p Rho p
Eng-Con-Con-Eng -0.02 0.4 -0.02 0.54 0.03 0.32 -0.06 0.06
Eng-Con-Fru-Bor -0.21 0 -0.1 0.01 -0.17 0 0.04 0.24
Off-Off-Off-Off -0.23 0 -0.09 0.01 -0.19 0 0.03 0.45
Off-Off-Off-Eng -0.13 0 -0.03 0.33 -0.18 0 -0.02 0.52
Eng-Eng-Eng-Eng 0.16 0 0.09 0 0.05 0.14 -0.05 0.18
Eng-Eng-Bor -0.16 0 -0.08 0.01 -0.11 0 0.09 0.01
Eng-Eng-Con 0 0.83 0 0.97 0.06 0.1 -0.07 0.03 
Eng-Eng-Fru -0.29 0 -0.12 0 -0.31 0 0.11 0
Con-Con-Con-Con -0.13 0 -0.07 0.03 -0.04 0.26 -0.02 0.66
Con-Con-Bor -0.22 0 -0.13 0 -0.08 0.01 0.07 0.03 
Con-Con-Eng -0.05 0.13 -0.03 0.31 0.03 0.48 -0.04 0.21
Con-Con-Fru -0.28 0 -0.13 0 -0.2 0 0.11 0
Fru-Fru-Fru-Fru -0.24 0 -0.09 0.01 -0.18 0 0.07 0.05
Fru-Fru-Bor -0.23 0 -0.1 0 -0.17 0 0.05 0.18
Fru-Fru-Con -0.28 0 -0.12 0 -0.21 0 0.08 0.02
Fru-Fru-Eng -0.27 0 -0.1 0 -0.23 0 0.08 0.02
Bor-Bor-Bor-Bor -0.26 0 -0.13 0 -0.13 0 0.07 0.03
Bor-Bor-Con -0.25 0 -0.13 0 -0.09 0 0.1 0
Bor-Bor-Eng -0.21 0 -0.12 0 -0.11 0 0.06 0.08
Bor-Bor-Fru -0.28 0 -0.14 0 -0.17 0 0.07 0.02
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5.1 Off-Task Sequences

Two sequences that were constructed using the BROMP-based off-task detectors were
included in these analyses in order to explore findings suggesting that off-task behavior
is correlated more negatively in learning in Reasoning Mind than in other interactive
learning environments (Kostyuk et al. 2018). The first, Off-Off-Off-Off, was negatively
correlated with three of the activity types: City Landscape Actions (ρ = −.19), Guided
Study Actions (ρ = −.23), and B/C-Level Actions (ρ = −.09). Interestingly, this effect
was nearly twice as strong forGuided Study Actions as it was for B- and C-Level Actions,
which may be because students spend less time in that mode overall. Off-Off-Off-Off
was not, however, significantly correlated with the Number of Items Purchased, perhaps
because students can only purchase items if they spend enough time on task to earn the
points to do so.

When we changed the fourth step from off-task to engaged, only two of the correla-
tions remained significant. While the City Landscape Actions correlation only changed
slightly (ρ = −.18), the Guided Study Actions correlation was half as strong for Off-
Off-Off-Eng (ρ=−.13) as it was for the homogenous four-step sequence. This suggests
that even a slight reduction in the duration of off-task behavior improves the outcomes
for Reasoning Mind students, in line with Pardos et al.’s (2014) findings.

5.2 D’Mello and Graesser’s (2012) Sequences

As discussed above, D’Mello and Graesser (2012) they theorized a number of different
transitions between affective states that were thought to be relevant to learning. In this
section, we explore results related to their facilitative and inhibitory sequences.

D’Mello and Graesser’s facilitative sequence, in which a student cycles between
engaged concentration and confusion, is operationalized here as Eng-Con-Con-Eng. As
the results in Table 2 show, this sequence has no statistically-significant relationship to
any of the activities within Reasoning Mind. Likewise, the three-step patterns related
to this sequence, Eng-Eng-Con and Con-Con-Eng, show similar results. The former
is only weakly significantly related to the Number of Items Purchased (ρ = −0.07),
where it shows the only negative correlation with that activity. The latter, like the main
D’Mello and Graesser facilitative sequence, has no significant relationships with any of
the activity types.

D’Mello andGraesser’s inhibitory sequence is operationalized here as Eng-Con-Fru-
Bor. Its results are similar to Off-Off-Off-Eng, as it shows non-significant relationships
with two of the action types (B/C-Level Actions and Number of Items purchased) and
negative relationships for the other two (ρ = −.17 for City Landscape Actions and ρ =
−.21 for Guided Study Actions).

5.3 Engaged Concentration Sequences

Four sequences in this study are composed primarily of engaged concentration, and these
sequences demonstrate some of the most divergent results. Much of this divergence
is driven by results from Eng-Eng-Fru, which, when compared to all other affective
sequences in this study, shows the strongest (negative) correlations with City Landscape
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Actions (ρ=−.31) and withGuided Study Actions (ρ=−.29). Eng-Eng-Fru also shows
one of the strongest correlations with B/C-Level Actions (ρ = −.12 compared to max ρ

=−.14). These results are stronger than those of Eng-Eng-Bor: City Landscape Actions
(ρ = −.11), Guided Study Actions (ρ = −.16), and B/C-Level Actions (ρ = −.08).
Compared to Eng-Eng-Con, which does not have significant relationships with these
actions, the results for Eng-Eng-Fru and Eng-Eng-Bor suggest that students who skip
confusion when transitioning from engaged concentration have lower levels of positive
behaviors.

Skipping confusion (i.e., not going through the Eng-Eng-Con transition) and going
to boredom (i.e., Eng-Eng-Bor) or frustration (i.e., Eng-Eng-Fru) also shows differences
for theNumber of Items Purchased.While the sequence with confusion shows a negative
relationshipwith this action type (ρ=−.07), the sequenceswith boredom and frustration
are positive (ρ = .09, .11, respectively).

Finally, Eng-Eng-Eng-Eng is significant for only two activity types. Notably, in
contrast to the results forEng-Eng-Fru andEng-Eng-Bor, Eng-Eng-Eng-Eng is positively
correlated with Guided Study Actions (ρ = .16), and B/C-Level Actions (ρ = .09). In
fact, these are the only positive correlations in the whole study that are not related to the
Number of Items Purchased.

5.4 Confusion Sequences

Sequences involving confusion also show some divergence in their relationships with
activity types, though not as extreme as those for engaged concentration. Most of the
significant relationships between sequences composed primarily of confusion and activ-
ity types are negative. As with the results for the engaged concentration sequences, the
exceptions to this pattern are for the Number of Items Purchased, which may some-
times be driven by a desire to go off-task, but also require a student to have successfully
completed a significant amount of work.

In general, these results show that Con-Con-Con-Con isweakly negatively correlated
to learning activities (ρ = −.16 for Guided Study Actions and ρ = −.07 for B/C-Level
Actions). (The relationship between Con-Con-Con-Con and City Landscape Actions
is not significant.) The relationships for Con-Con-Bor and Con-Con-Fru are slightly
stronger: City Landscape Actions (ρ =−.08,−.20, respectively), Guided Study Actions
(ρ = −.22, −.28, respectively), and B/C-Level Actions (ρ = −.13, −.13, respectively).
These results are not inconsistent with findings that confusion is beneficial to learning
(i.e. Lehman and Graesser 2015; Liu et al. 2013), but contrast with findings that suggest
that it is better to be frustrated than bored (i.e. Baker et al. 2010). Interestingly, Con-Con-
Eng is not significantly related to these learning activities. While this result is surprising,
it is consistent with the results for the facilitative D’Mello and Graesser sequence.

5.5 Frustration and Boredom Sequences

Nearly all of the relationships between sequences composed primarily of frustration
and activity types are significantly significant, and the same is true for those sequences
composed primarily of boredom. As with the results for confusion sequences, these
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show negative relationships with City Landscape Actions, Guided Study Actions, and
B/C-Level Actions and positive relationships with the Number of Items Purchased.

For City Landscape Actions and Guided Study Actions, the relationships with frus-
tration sequences tend to be stronger than those with boredom sequences, which also
contradicts the idea that frustration is better for learning than boredom. However, this
difference is small, and for B/C-Level Actions, that relationship is reversed. That is,
frustration and boredom both appear to be negatively associated with learning-related
activities (and positively associated with non-learning activities), but overall there is
little separation between them.

6 Conclusion

In this paper, we investigate how affective patterns connect to student activity choices
within Reasoning Mind. We find that the strongest patterns involve students who shift
from engaged concentration to frustration. These students interact less with the environ-
ment than other students, although they do spend more of their points purchasing virtual
decorations for theirMy Place room. We also find that confusion is generally associated
with positive behavioral patterns. Somewhat surprisingly, frustration and boredom gen-
erally correlate to the same usage patterns. Also, inhibitive sequences emerging from
D’Mello and Graesser’s (2012) theoretical model are relatively weakly associated with
activities within the system, while the facilitative sequence is not significantly associated
with any of the activities considered in this study.

The findings here, in concert with Karumbaiah et al.’s (2018) research synthesis of
affect dynamics research, which found that few patterns were more likely than chance
across studies, potentially raise concerns about the generalizability of findings from
previous research. However, they also point to the need for a more comprehensive
understanding of the relationship between affective dynamics, behavioral patterns, and
learning outcomes, as these findings suggest that these relationships may not be as
straight-forward as we once thought.

Overall, the findings here suggest that there are relationships between student affect
and the activities they engage in within a learning system. It is not entirely clear what the
direction of the effects is from our current evidence – are students with specific affective
patterns choosing different activities? Or are the activities driving the affective patterns?
Amore in-depth temporal analysis may be able to shedmore light on this issue, but these
issues are complex; affect may develop, and shape interaction choices but also shape
the future affect itself (i.e. D’Mello and Graesser 2012; Botelho et al. 2018). What our
findings indicate is that usage choices and affect are connected in many ways.

Overall, these findings point to the need for a more comprehensive understanding of
the relationship between affective dynamics, behavioral patterns, and learning outcomes,
as the findings here suggest that the relationship may not be as straight-forward as might
have been thought. Fully understanding these interconnections – and the role that the
design ofAIED systems plays – is an important area for future research, and an important
step towards AIED systems that are fully sensitive to the shifts in students’ affect and
how these shifts in turn impact behavior.
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