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In recent decades, educational datasets have become increasingly rich and com-
plex, offering many opportunities for analysing student behaviour to improve
educational outcomes. The analysis of student behaviour, particularly tempo-
ral trends in this behaviour, has played a major role in many recent studies
in areas including automated feedback provision [8,12,16,19], dropout analysis
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Abstract. Techniques for clustering student behaviour offer many
opportunities to improve educational outcomes by providing insight into
student learning. However, one important aspect of student behaviour,
namely its evolution over time, can often be challenging to identify using
existing methods. This is because the objective functions used by these
methods do not explicitly aim to find cluster trends in time, so these
trends may not be clearly represented in the results. This paper presents
‘DETECT’ (Detection of Educational Trends Elicited by Clustering
Time-series data), a novel divisive hierarchical clustering algorithm that
incorporates temporal information into its objective function to priori-
tise the detection of behavioural trends. The resulting clusters are simi-
lar in structure to a decision tree, with a hierarchy of clusters defined by
decision rules on features. DETECT is easy to apply, highly customis-
able, applicable to a wide range of educational datasets and yields easily
interpretable results. Through a case study of two online programming
courses (N > 600), this paper demonstrates two example applications of
DETECT: 1) to identify how cohort behaviour develops over time and
2) to identify student behaviours that characterise exercises where many
students give up.
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Introduction

[17,18,22], collaborative learning [4,21,23] and student equity [6,9,13].

However, a significant challenge in analysing student behaviour is its com-
plexity and diversity. As such, clustering techniques [24], which organise com-
plex data into simpler subsets, are an important resource for analysing student
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behaviour, and have been employed in many recent studies [5]. For example,
in [1] and [3] K-means clustering and a self-organising map, respectively, are
used to group students based on their interactions with an educational system.
In addition, in [7] student programs are clustered to identify common
misconceptions.

One limitation of standard clustering techniques is that they are not well-
suited to detecting behavioural trends in time. One solution is to use time-series
clustering techniques, which typically combine standard techniques with extra
processing steps [2]. For example, [15] uses dynamic time warping in conjunction
with K-means clustering to cluster time series’ of student Moodle activity data.
Alternatively, temporal information is often considered only after all student
work samples or behaviours have been clustered. For example, in [14] student
work is clustered to allow an interaction network over time to be built and in [10]
clusters of student behaviour over time are used in a second round of clustering.

Although it is possible to gain insight into student behavioural changes using
these techniques, one important limitation is that temporal trend detection is not
explicitly incorporated into the objective function when clustering. For example,
consider the case where K-means is first used to cluster student behaviours, and
then cluster changes over time are observed, as in [10]. Since the objective of
K-means is to minimise the distance between points (which in this case represent
student behaviours), the process will prioritise grouping behaviours that match
on as many features as possible. However, this may obscure important trends,
especially if many of the features are unrelated to these trends.

The contribution of this paper is ‘DETECT’ (Detection of E ducational
Trends FElicited by Clustering Time-series data), a novel divisive hierarchical
clustering algorithm that incorporates trend detection into its objective function
in order to identify interesting patterns in student behaviour over time. DETECT
is highly general and can be applied to many educational datasets with tempo-
ral data (for example, from regular homework tasks or repeated activities). In
addition, it can be customised to detect a variety of trends and produces clusters
that are well-defined and easy to understand. Moreover, it does not require that
the features be independent, or that the objective function be differentiable.

Broadly, DETECT has similar properties to the classification technique of
decision trees [20]. In particular, it produces a hierarchy of clusters distinguished
by decision rules. However, whereas decision trees are a supervised technique
requiring the existence of classes in order to calculate entropy, DETECT is unsu-
pervised and uses an objective function completely unrelated to this measure.

This paper is set out as follows: Sect.2 describes the DETECT algorithm,
including the input it takes, its flexibility and how the output is interpreted.
Section 3 then shows example usage of the algorithm through a case study and
Sect. 4 concludes with a summary of the main ideas of the paper.
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2 DETECT Algorithm

2.1 Overview

DETECT produces clusters of student behaviour that reveal cohort behavioural
trends in educational datasets. Such trends can include changes in behaviour over
time, anomalous behaviours at specific points in the course or a variety of other
customisable trends. This is achieved by iteratively dividing student behaviours
into clusters that maximise a time-based objective function. The clusters found
can then be interpreted by teachers and course designers to better understand
student behaviour during the course.

DETECT can be applied to a wide range of datasets, of the form described
in Table 1. In particular, the data should be temporal - that is, able to be divided
into a series of comparable time steps. For example, a series of homework tasks
or fixed time periods during an intervention could be considered as comparable
time steps. In addition, for each student and time period, there should be a
set of features describing the behaviour of the student during that time period.
These features could be numeric, such as the number of exercise attempts, or
categorical, such as a label for the style of their work. Note that features are not
required to be independent or equally important, since the objective function
can determine the quality of features and penalise less useful ones.

Table 1. Structure of input data, where the number of cells in the table is equal to S
(number of students) x T (number of time periods) x M (number of features). F1, ...,
FM are different feature names.

Student | Time | F1 F2 ... FM

1 1 V111 | V112 | e | V1M

1 2 vi21 | V122 | ... | VizMm

1 T VIT1 |V1T2 | e | VITM
S 1 UN11 |UN12 | .. | UNIM
S T UNT1 | UNT2 | - | UNTM

DETECT outputs clusters of student behaviour explicitly defined by rules
on feature values. For example, a cluster may be defined as all rows of the input
data where ‘num_submissions’ < 7 and ‘completed’ == 'yes'. These clusters
are organised into a hierarchical structure where, in each successive level, an
additional condition is added, similarly to a decision tree. Examples of this are
given in Sect. 3, as part of the case study.

It is important to note that the clusters are not clusters of students but
rather clusters of the input data rows (which each represent the behaviour of
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one student at one time period). This means students are in many clusters - one
for each time period. By observing changes to the distributions of clusters over
time, trends in student behaviour can be identified (see Sect. 3).

2.2 Cluster Formation

Clusters are formed divisively through an iterative process with four main steps,
as summarised in Fig. 1. Initially, all examples are placed in the same cluster.
Then, during each iteration, a search is performed to find the best feature and
value to split this cluster on. If this split would result in new clusters that are
larger in size than a specified lower-limit (e.g. at least 100 examples each), then
the split it performed, creating two new clusters, and the process is repeated
recursively on the new clusters. Otherwise, the split is not performed. The algo-
rithm terminates when no cluster can be split further.

Using the given objective functions and assuming the cluster size threshold
scales proportionally with the number of examples (which places a constant
upper bound on the number of clusters), the time complexity of this process is
O(nmlogn), where m is the number of features and n the number of examples.

Current Data ¢ 3. Split the data and 4. Stop;
repeat on each subset don’t split

Yes No
>2 Would this split

m—p F1215 = Ultin large

>3
enough clusters?
2. Choose the split that
1. Try splitting on different maximises the objective
features and values function

Fig. 1. A summary of the steps involved in DETECT.

Feature and Value Search. Before a cluster is divided, a search is performed
to find the best feature and value to split on. For each feature, this can be per-
formed in O(nlogn) time (where n is the cluster size) using the given objective
functions in the next subsection. For numeric features, the process is as follows:

1. Sort the examples in ascending order based on the feature value.

2. Create two new clusters, one containing no examples (C,) and the other

containing all (Ch).

Set a threshold, ¢, that is lower than the smallest feature value.

4. While there are still examples in Cj, increase t to the next smallest feature
value (or larger) and add all examples < t from C} to C,, each time checking
if this improves the objective function value (and, if so, remembering t).

©w
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The best feature and split will then be the one that optimises the function
values. Similarly, for categorical features, each category can be iterated through
to find the best one to split off from the rest. Note that we recommend minimising
the amount of missing data (e.g. by selecting subsets of students or making time
periods relative to students as in [11]). However, if required, missing values can
be treated as another category if the feature is categorical, or, if the feature
is numeric, the process can be repeated twice — once where the missing value
examples are always in C,, and once where they are always in Cj.

Objective Function. The objective function is used to determine the quality
of potential cluster divisions using temporal information, thereby controlling
the types of trends detected by the algorithm. More specifically, this function
maps the distributions of C, and C} over time, along with optional additional
parameters, to a score. It can be customised to suit different purposes and there
are no constraints such as differentiability on the function. Two examples of an
objective function are defined here:

Let n = [ng(t;),ns(t;)] be the number of students in clusters C, and Cj
respectively at time ¢ and T be the number of time steps in total. In addition,
for f3, let x be a time step of interest. Then:

Bln(t).n(t). ..o mit)) = | Pl rele) nelin) el

_ 114 (te) — na(teq1)] + na(te) — na(te—1)|
2

fa(n(t1),n(t2),...,n(tr), z)

The first function, f;, compares the average number of students in C, at
the beginning of the course to the average at the end. As such, it is a measure
of how many students change cluster from the start to the end of the course,
and will be maximised when there is a large shift in behaviour. In contrast, the
second function, fs, compares the number of students in C, at time x to the
adjacent time periods and finds the average difference. As such, it is maximised
when behaviours at time x vary greatly from those at neighbouring times.

3 Case Study

This section demonstrates two example applications of DETECT using the two
objective functions introduced in Sect.2.2. Specifically, in the first example we
apply DETECT to an intermediate course using f; to find behavioural trends
over time. In the second example, we then apply DETECT to a beginner course
using fo to find behaviours that characterise an exercise where many students
give up. While the data come from programming courses, we only use gen-
eral features not specific to this domain to demonstrate the generality of the
approach.
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3.1 Data

Our data come from school students participating in two online Python program-
ming courses of different difficulty levels: intermediate (N =4213') and beginners
(N =7164(see footnote 1)). These courses were held over a 5-week period during
2018 as part of a programming challenge held primarily in Australia. The courses
involved weekly notes, which introduced students to new concepts, and program-
ming exercises to practice these skills. Students received automated feedback on
their work from test cases and were able to improve and resubmit their work.

From this data, we extracted 10 features per student per exercise: 1-3) the
number of times the student viewed, failed and passed the exercise, 4) the number
of times their work was automatically saved (triggered when unsaved work was
left for 10s without being edited), 5-8) the time of the first view, autosave, fail
and pass relative to the deadline, 9) the average time between successive fails
and 10) the time between the first fail and passing. Note that these features did
not need to be independent (see Sect.2.1).

3.2 Example 1: Using f; to Detect Changes over Time

When analysing student behaviour during a course, one important question is
how this behaviour changes in time. To answer this, f; was applied to the data
from the intermediate course. Since exercises from the last week differed in struc-
ture from the others (i.e. students were given significantly less time to complete
them), these were excluded, leaving a total of 20 exercises. Each of the remain-
ing exercises were then considered as a time period. The resulting behavioural
clusters are given in Table 2 and the number of students in each of the final clus-
ters at each time period is shown in Fig. 2. Note that only data from completing
students (N =658) was used to minimise the amount of missing data.

Table 2. Clusters formed by applying fi to the intermediate course, using a minimum
cluster size threshold of 400 - i.e. an average of 20 students per time period. The clusters
are defined by the number of autosaves (level 1) and how long before the deadline the
exercise was completed (level 2).

Level 1 Level 2 Label

autosaves < 9 | Completed 7.25 days or more before deadline | C11
Completed within 7.25 days of deadline Cia

autosaves > 9 Co

From Fig. 2 and Table 2, the most important difference in behaviour between
the beginning and end of the course was the number of autosaves, which increased
over time. In particular, Fig. 2 shows that most students began in Cy; (with <9

! These refer to the number of students who attempted at least the first exercise.
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Fig. 2. The distribution of final clusters over time when f; is applied to data from

all students who completed the course. Most students begin in C71, but transition to
other clusters over time.

autosaves) and ended in Cy (with > 9 autosaves). Since these autosaves were
triggered when a student paused for 10 or more seconds, this could indicate
increased difficulty (if the students were pausing to read notes or think) or
increased disengagement (if they were frequently stopping to do other activities).

Interestingly, even the students who had a smaller number of autosaves
changed in behaviour over time, with an increasing proportion completing the
exercises closer to the deadline as the course progressed. This can be seen by
the increasing proportion of students in Ci5 compared to Cy; over time. For
the importance of this change to be apparent, note that passing these exercises
within 7 days of the deadline actually indicates that a student is behind sched-
ule. This is because each week of exercises is intended to take one week, but the
deadlines for the first four weeks allow two weeks. If students were falling behind
over time, this may suggest that the course content was too dense, and perhaps
reducing the amount of content or spreading the course over a larger time period
could be beneficial for students.

Furthermore, the distribution of clusters does not change smoothly over time.
In particular, the plot lines are jagged, indicating that student behaviour varies
a lot even between adjacent exercises. This is particularly interesting considering
the features the clusters are defined by. For example, the fact that the number of
autosaves varies a lot between adjacent exercises indicates that some exercises
may be more interesting or difficult than similar exercises. For instance, the
number of students in C7; (where there are < 9 autosaves) drops by almost 100
from Exercise 3 to Exercise 4, then increases again at Exercise 5, even though
all three exercises involve if-else statements. This could indicate that Exercise 4
is more difficult or less interesting than the others, since students pause more
here (either because they are thinking or doing something else).

Another interesting observation is that there are three general and overar-
ching changes to the cluster distributions over the course. In particular, from
around Exercises 1 to 7, C1 is most dominant. Upon inspection, these exercises
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are primarily revision exercises (e.g. printing, variables and if-statements). After
this period, there is an immediate shift in cluster distributions, with C1; and
C5 becoming similar in size, as students begin to learn about string slicing and
loops. This general change suggests that students may find these topics more
challenging than the previous ones. After Exercise 13, C'y becomes dominant
and C15 overtakes C7; in size as students learn about list operations, dictionar-
ies and files. Since these general changes in student behaviour seem to occur as
the topics become increasingly complex, perhaps the course could be improved
by condensing the large revision period and expanding the other topics to allow
for a more gradual difficulty change.

In summary, even by using DETECT with a simple objective function, fi,
and a highly general set of features, distinct and interpretable clusters can be
found that coherently represent changes in student behaviour over time. By
observing how the distributions of these clusters change at different scales (i.e.
over the whole course, over groups of exercises or between individual exercises),
important insights into student behaviour can be easily gained, and then used
for purposes such as informing course development.

3.3 Example 2: Using f» to Analyse Behaviour Where Many
Students Quit

Another topic of interest when analysing a course is the exercises that students
have difficulty completing. In particular, if students attempt an exercise but can-
not complete it, this can discourage them from continuing and lead to increased
disengagement. This is particularly concerning in a beginner course, where stu-
dents may not yet have confidence and could be dissuaded from pursuing further
study in the area. This section provides an example of how DETECT could be
used with objective function fo to explore such issues.

During the beginner course, 761 students attempted but could not complete
Exercise 29 - the highest out of any exercise during the first four weeks. To under-
stand how student behaviour differed during this exercise compared to others,
we applied DETECT to the data using fa (setting z = 29), which identified
clusters that distinguished this exercise from adjacent ones. The clusters formed
and their distributions over time are shown in Table3 and Fig. 3 respectively.

Table 3. Clusters formed by applying fo to data from completing beginner students
(N = 635) with parameter z = 29 and minimum size threshold of 660 (i.e. an average
of 20 students per time period). The clusters are defined by the number of autosaves
and the time between a student’s first failure and completion of the exercise.

Level 1 Level 2 Label

autosaves < 8 | Time from first fail to completion < 48s, or no fails | C11

Time from first fail to completion > 48s Ci2

autosaves > 8 Cy
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Fig. 3. The distribution of final clusters over time when f5 is applied to data from all
students who completed the course using Exercise 29 (marked in grey) as a parameter.
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Fig. 4. The number of students who attempt but do not complete each of the beginner
exercises from the first four weeks. Exercise 29, used for clustering, is marked in grey.

By comparing the cluster distribution at Exercise 29 to the adjacent exercises
in Fig. 3, three general differences can be observed. Firstly, the proportion of
students in Cy (> 8autosaves) is much higher for Exercise 29, indicating that
students paused more often. In addition, the proportion of students in C4; is
much lower. Since this cluster describes behaviour where students quickly solve
the task (i.e. with few pauses, and either no failed submissions or a short time
from their first fail to passing), a decrease in its frequency suggests this exercise
is especially challenging compared to the adjacent tasks. The slight increase in
the frequency of Cis (where the time from first failing to passing is > 48s)
supports this, suggesting students take longer to correct their work after failing.

Interestingly, the pattern of Cy sharply increasing and C1; sharply decreasing
is not limited to Exercise 29. For example, this change also occurs at Exercises
17 and 20. From Fig. 4, which shows the number of students who unsuccessfully
attempted each exercise, Exercises 17 and 20 also appear to have resulted in a
large number of students giving up, especially relative to the adjacent exercises.
Since information about these exercises was not used in the clustering, this is a
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strong indication that the cluster changes are not simply noise, but meaningful
behaviour associated with times when students give up.?

Since the clusters are distinguished by the number of autosaves and also the
time between a student’s first fail and completion, one potential use of this infor-
mation could be to improve interventions. For example, additional feedback or
support messages could be triggered if a student pauses too many times or is
unsuccessful in correcting their work for too long after their first fail. In addi-
tion, since students already receive automated feedback after failing an exercise,
perhaps longer correction times could indicate that this feedback is unclear and
could be revised. Finally, perhaps the information could be a useful tool when
testing future courses. For example, senior students or a teacher could test-run
a course, and the relative differences in the number of autosaves or time taken
after failing could be used to highlight potential issues in advance.

In summary, this example has demonstrated how DETECT can be used
to find different kinds of trends in educational data by changing the objective
function. This customisable feature allows for great flexibility so that DETECT
can be used for a range of interesting purposes.

4 Conclusion

This paper has presented a novel hierarchical clustering algorithm, DETECT,
for identifying behavioural trends in temporal educational data. In contrast to
current clustering approaches, DETECT incorporates temporal information into
its objective function to prioritise the detection of behavioural trends. It can be
applied to a wide range of educational datasets, produces easily interpretable
results and is easy to apply, since the input features do not need to be indepen-
dent. Two examples of objective functions have been provided, but these can be
customised to identify different trends with few constraints (e.g. the functions
do not need to be differentiable).

Through a case study, this paper has shown how DETECT can be used
to identify interesting behavioural trends in educational data, even when the
features are simple and not domain-specific. In particular, it can detect gen-
eral changes in student behaviour over time or highlight behaviours character-
ising exercises where students give up. Such information is invaluable to teach-
ers, course designers and researchers, who can use it to understand student
behaviour, stimulate further investigation and ultimately improve educational
outcomes.

In future, we hope to further develop DETECT by considering a greater
range of objective functions and stopping conditions, and exploring the impact
of additional domain-specific features and missing data on trend detection. In
addition, it would be interesting to consider how DETECT could be used in
conjunction with other techniques to, for example, analyse individual student

2 Indeed, regression analysis finds that the correlation between the percentage of stu-
dents in C2 and the number of students unsuccessfully attempting each exercise is
statistically significant with a p-value of 0.008.
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trajectories. Ultimately, in a time when educational data are becoming increas-
ingly abundant, this work aims to contribute to better-understanding student
behaviour in order to improve educational outcomes.
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