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Abstract. With the rising success of adversarial attacks on many NLP
tasks, systems which actually operate in an adversarial scenario need to
be reevaluated. For this purpose, we pose the following research question:
How difficult is it to fool automatic short answer grading systems? In par-
ticular, we investigate the robustness of the state of the art automatic
short answer grading system proposed by Sung et al. towards cheating
in the form of universal adversarial trigger employment. These are short
token sequences that can be prepended to students’ answers in an exam
to artificially improve their automatically assigned grade. Such triggers
are especially critical as they can easily be used by anyone once they
are found. In our experiments, we discovered triggers which allow stu-
dents to pass exams with passing thresholds of 50% without answering a
single question correctly. Furthermore, we show that such triggers gen-
eralize across models and datasets in this scenario, nullifying the defense
strategy of keeping grading models or data secret.

Keywords: Automatic short answer grading · Adversarial attacks ·
Automatic assessment

1 Introduction

Adversarial data sample perturbations, also called adversarial examples, intend-
ing to fool classification models have been a popular area of research in recent
years. Many state of the art (SOTA) models have been shown to be vulnerable
to adversarial attacks on various data sets [8,44,47].

On image data, the extent of modifications needed to change a sample’s
classified label are often so small they are imperceptible to humans [2]. On
natural language data, perturbations can more easily be detected by humans.
However, it is still possible to minimally modify samples so that the semantic
meaning does not change but the class assigned by the model does [3,6,13,17,
22,29,30].

While the existence of such adversarial examples unveils our models’ short-
comings in many fields, they are especially worrying in settings where we actu-
ally expect to face adversaries. In this work, we focus on one such setting: auto-
matic short answer grading (ASAG) systems employed in exams. ASAG systems
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take free-text answers and evaluate their quality with regards to their semantic
content, completeness and relevance to the answered question. These free-text
answers are provided by students and are typically somewhere between a phrase
and a paragraph long.

The willingness of college students to cheat has been well-studied [1,9,11,18,
36,37]. And while the exact percentage of cheating students varies greatly from
study to study, Whitley [42] reports a mean of 43.1% of students cheating on
examinations over 36 studies in his review. Klein et al. [19] report similar values
for cheating on exams in their large scale comparison of cheating behaviors in
different schools.

In these studies cheating behavior included copying from other students,
getting the exam questions beforehand or bringing a cheat sheet to the exam. We
argue that exploiting weaknesses in automatic grading schemes is just another,
albeit less explored, form of cheating and expect the students’ willingness to
exhibit such behavior to be similar. Therefore, if we wish to employ automated
grading systems in exams, we should ensure that the perceived cost of cheating
them outweighs the benefits.

The perceived cost of cheating is made up of various factors, such as the
punishment when caught, moral considerations or the difficulty of cheating in
the first place [26]. In this work, we aim to investigate the last factor: How
difficult is it to fool automatic short answer grading systems?

For this purpose, we first reproduce the SOTA approach to ASAG [39] which
is based on the transformer model BERT [10]. Then we subject the reproduced
models to adversarial attacks. In particular, we employ and modify the universal
trigger attack proposed by Wallace et al. [41]. It generates short sequences of
tokens, called universal adversarial triggers, which try to make a model predict
a target class regardless of the actual sample.

In our context, students could prepend such a universal trigger targeted at
the correct class to all of their answers in an exam to artificially improve their
score. An example of such a trigger can be seen in Table 1. This kind of universal
trigger attack is especially critical as such triggers can be easily employed by
anyone once they are found.

In this work we make the following novel contributions:

– Application of SOTA natural language processing insights to the educational
scenario of exam grading

– Modification of Wallace et al.’s universal trigger attack to make it more tar-
geted at a specific class, namely the correct class

– Investigation of trigger transferability across datasets and models

2 Related Work

Two research areas are relevant for our work: automatic short answer grading
and adversarial attacks.
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Table 1. An example showing how prepending the trigger sequence “none exits” to a
student answer - taken from SciEntsBank’s question EM-21b’s unseen answers [12] -
changes the prediction from incorrect to correct.

Question: Georgia found one brown mineral and one black mineral.
How will she know which one is harder?

Reference Answer: The harder mineral will leave a scratch on the less hard
mineral. If the black mineral is harder, the brown
mineral will have a scratch

Student Answer: that it stay the scratch. → incorrect

Triggered Answer: none exits that it stay the scratch. → correct

2.1 Adversarial Attacks in NLP

Adversarial attacks can be categorized into input dependent and input indepen-
dent attacks. Input dependent attacks aim to modify specific inputs so that
the model misclassifies them. Strategically inserting, deleting or replacing words
with their synonyms [29], their nearest neighbors in the embedding space [3] or
other words which have a high probability of appearing in the same context [47]
are examples of such an attack. Samanta and Mehta [35] also consider typos
which in turn result in valid words, e.g. goods and good, for their replacement
candidate pool. Modifications can also be made on the character level by insert-
ing noise, such as swapping adjacent characters or completely scrambling words
[6]. Finally, the text can also be paraphrased to change the syntactic structure
[17].

Input agnostic attacks, on the other hand, aim to find perturbations that lead
to misclassifications on all samples. For instance, this can be done by selecting
a single perturbation in the embedding space which is then applied to all tokens
indiscriminately [15]. Alternatively, Ribeiro et al. [30] propose an approach that
first paraphrases specific inputs to find semantically equivalent adversaries and
then generalizes found examples to universal, semantically equivalent adversarial
rules. Rules are selected to maximize semantic equivalence when applied to a
sample, induce as many misclassifications as possible and are finally vetted by
humans. An example of such a rule is “What is” → “What’s”.

Another input independent approach involves concatenating a series of adver-
sarial words - triggers - to the beginning of every input sample [5]. The universal
trigger attack [41] utilized in this work also belongs to this category. In Sect. 4
the attack is explained in more detail. Additional information on adversarial
attacks can also be found in various surveys [44,48].

2.2 Automatic Short Answer Grading

Systems that automatically score student answers have been explored for multi-
ple decades. Proposed approaches include clustering student answers into groups
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of similar answers and assigning grades to whole clusters instead of individ-
ual answers [4,16,45,46], grading based on manually constructed rules or mod-
els of ideal answers [21,43] and automatically assigning grades based on the
answer’s similarity to given reference answers. We will focus on similarity-based
approaches here because most recent SOTA results were obtained using this kind
of approach. However, more information on other approaches can be found in
various surveys [7,14,32].

The earlier similarity-based approaches involve manually defining features
that try to capture the similarity of answers on multiple levels [12,24,25,33,34,
38]. Surface features, such as lexical overlap or answer length ratios, are utilized
by most feature engineered approaches. Semantic similarity measures are also
common, be it in the form of sentence embedding distances or measures derived
from knowledge bases like WordNet [28]. Some forms of syntactic features are
also often employed. Dependency graph alignment or measures based on the
part-of-speech tags’ distribution in the answers would be examples of syntactic
features. A further discussion of various features can be found in [27].

More recently, deep learning methods have also been adapted to the task
of automatic short answer grading [20,31,40]. The key difference to the feature
engineered approaches lies in the fact that the text’s representation in the fea-
ture space is learned by the model itself. The best performing model (in terms
of accuracy and F1 score) on the benchmark 3-way SemEval dataset [12] was
proposed by Sung et al. [39]. They utilize the uncased BERT base model [10]
which was pre-trained on the BooksCorpus [49] and the English Wikipedia. It
was pre-trained on the tasks of predicting randomly masked input tokens and
whether a sentence is another’s successor or not. Sung et al. then fine-tune this
deep bidirectional language representation model to predict whether an answer
is correct, incorrect or contradictory compared to a reference answer. For this
purpose, they append a feed-forward classification layer to the BERT model.
The authors claim that their model outperforms even human graders.

3 Reproduction of SOTA ASAG Model

To reproduce the results reported by Sung et al. [39], we trained 10 models with
the hyperparameters stated in the paper. Unreported hyperparameters were
selected close to the original BERT model’s values with minimal tuning. The
models were trained on the shuffled training split contained in the SciEnts-
Bank dataset of the SemEval-2013 challenge. As in the reference paper, we use
the 3-way task of predicting answers to be correct, incorrect or contradictory.
Then the models were evaluated on the test split. The test set contains three dis-
tinct categories: unseen answers, unseen questions and unseen domains. Unseen
answers are answers to questions for which some answers have already been seen
during training. Unseen questions are completely new questions and the unseen
domains category contains questions belonging to domains the model has not
seen during training.

We were not able to reproduce the reported results exactly with this setup.
Out of the 10 models, Model 4 and 8 performed best. A comparison of their
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and the reported model’s results can be seen in Table 2. The 10 models’ average
performance can be seen in Fig. 1. Since the reported results are mostly within
one or two standard deviations of the results achieved in our experiments, more
in-depth hyperparameter tuning and reruns with different random seeds may
yield the reported results. Alternatively, the authors may have taken steps that
they did not discuss in the paper. However, as this is not the focus of this work,
we deemed the reproduced models sufficient for our experiments.

Table 2. Performance of best reproduced models, Model 4 and 8, compared to the
results reported by Sung et al. [39] in terms of accuracy (Acc), macro-averaged F1
score (M-F1) and weighted-averaged F1 score (W-F1). Each category’s best result is
marked in bold.

Unseen answers Unseen questions Unseen domains

Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

#4 0.744 0.703 0.741 0.675 0.555 0.665 0.624 0.490 0.609

#8 0.737 0.690 0.732 0.674 0.561 0.662 0.670 0.599 0.661

Ref. 0.759 0.720 0.758 0.653 0.575 0.648 0.638 0.579 0.634

4 Universal Trigger Attack

In this work, we employ the universal trigger attack proposed by Wallace et al.
[41]. It is targeted, meaning that a target class is specified and the search will try
to find triggers that lead the model to predict the specified class, regardless of the
sample’s actual class. The attack begins with an initial trigger, such as “the the
the”, and iteratively searches for good replacements for the words contained in
the trigger. The replacement strategy is based on the HotFlip attack proposed by
Ebrahimi et al. [13]. For each batch of samples, candidates are chosen out of all
tokens in the vocabulary so that the loss for the target class is minimized. Then,
a beam search over candidates is performed to find the ordered combination of
triggers which maximizes the batch’s loss.

We augment this attack by also considering more target label focused objec-
tive functions for the beam search than the batch’s loss. Namely, we experiment
with naively maximizing the number of target label predictions and the targeted
LogSoftmax function depicted in Eq. 1. Here, L = {correct, incorrect, contra-
dictory}, t is the target label, n denotes the number of samples in the batch x
and fl(x) represents the model’s output for label l’s node before the softmax
activation function given a sample x.

TargetedLogSoftmax(t,x) =
n∑

i=0

log

(
exp(ft(xi))∑

jεL exp(fj(xi))

)
(1)
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Fig. 1. Average performance of the 10 reproduction models compared to the results
reported by Sung et al. [39]. The black bars represent one standard deviation in each
direction. Please note that the y axis begins at 0.4 instead of 0.

5 Experiments

In this section, we first give a short overview of the datasets used in our experi-
ments. Then, we present the best triggers found, followed by a short investigation
of the effect of trigger length on the number of successful flips. Next, the effect of
our modified objective function is investigated. Finally, we report on the trans-
ferability of triggers across models.

5.1 Data

The SemEval ASAG challenge consists of two distinct datasets: SciEntsBank
and Beetle. While the Beetle set only contains questions concerning electric-
ity, the SciEntsBank corpus includes questions of various scientific domains,
such as biology, physics and geography. We do not include the class distribution
of the 3-way task here, as it can be found in the original [12] and the ASAG
reference paper [39].

5.2 Experiment Setup

Unless explicitly stated, all experiments were conducted in the following way.
Model 8 was chosen as the victim model because it has the overall best perfor-
mance of all reproduction models. See Table 2 for reference. Since the model was
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trained on the complete SciEntsBank training split as stated in the reference
paper, we selected the Beetle training split as basis for our attacks. While the
class labels were homogenized for both datasets in the SemEval challenge, the
datasets are still vastly different. They were collected in dissimilar settings, by
different authors and deal with disparate domains [12]. This is important,
as successful attacks with this setup imply transferability of triggers
across datasets. In practice, this would allow attackers to substitute secret
datasets with their own corpora and still find successful attacks on the original
data. To the best of our knowledge, experiments investigating the transferability
of natural language triggers across datasets are a novel contribution of our work.

From the Beetle training set all 1227 incorrect samples were selected. The
goal of the attack was to flip their classification label to correct. We would
also have liked to try and flip contradictory examples. However, the model was
only able to correctly predict 18 of the 1049 contradictory samples without any
malicious intervention necessary. Finally, the triggers found are evaluated on the
SciEntsBank test split.

5.3 Results

In the related work, the success of an attack is most often measured in the drop in
accuracy it is able to achieve. However, this would overestimate the performance
in our scenario as we are only interested in incorrect answers which are falsely
graded as correct in contrast to answers which are labeled as contradictory.
Therefore, we also report the absolute number of successful flips from incorrect
to correct.

During the iterative trigger search process described in Sect. 4 a few thousand
triggers were evaluated on the Beetle set. Of these, the 20 triggers with the
most achieved flips were evaluated on the test set and of these, the best triggers
can be seen in Table 3. On the unseen answers test split, the model without any
triggers misclassified 12.4% (31) of all incorrect samples as correct. The triggers
“none varies” and “none would” managed to flip an additional 8.8% of samples
so that 21.3% (53) are misclassified in total. On the unseen questions split, the
base misclassification rate was 27.4% (101) and “none would” added another
10.1% for a total of 37.5% (138). On the unseen domains split, “none elsewhere”
increased the misclassification rate from 22.0% (491) to 37.1% (826).

Effect of Trigger Length. Wallace et al. [41] state that the trigger length is a
trade-off between effectiveness and stealth. They experimented with prepending
triggers of lengths between 1 and 10 tokens and found longer triggers to have
higher success rates. This differs from observations made in our experiments.
When the correct class is targeted, a trigger length of two achieves the best
results, as can be seen in Table 3. On the unseen answers split, the best trigger
of length 3 is “heats affected penetrated” and it manages to flip only 42 samples.
The number of successful flips further decreases to 9 for the best trigger of length
4, “##ired unaffected least being”. The same trend also holds for the other test
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Table 3. The triggers with the most flips from incorrect to correct for each test split.
The number of model 8’s misclassifications without any triggers can be found in the
last row. For the sake of comparability with related work, the accuracy for incorrect
samples is also given. UA stands for “unseen answers”, UQ denotes “unseen questions”
and UD represents “unseen domains”.

Triggers Number of flips Accuracy

UA UQ UD UA UQ UD

none varies 53 134 687 71.08 54.62 63.69

none would 53 138 810 41.77 31.25 31.15

none elsewhere 50 121 826 47.79 36.14 37.93

Base misclassification 31 101 491 84.74 70.65 76.93

splits but is omitted here for brevity. This difference in observation may be due
to the varying definitions of attack success. Wallace et al. [41] view a trigger
as successful as soon as the model assigns any class other than the true label,
while we only accept triggers which cause a prediction of the class correct. The
educational setting of this work may also be a factor.

Effect of Objective Function. We compared the performance of the three
different objective functions described in Sect. 4, namely the original function
proposed by Wallace et al. [41], the targeted LogSoftmax depicted in Eq. 1 and
the naive maximization of the number of target label predictions. To make the
comparison as fair as possible while keeping the computation time reasonable,
we fixed the hyperparameters of the attack to a beam size of 4 and a candidate
set size of 100. The attack was run for the same number of iterations exactly
once for each function. The best triggers found by each function can be seen
in Table 4. The performance is relatively similar, with the targeted function
achieving the most flips on all test splits, closely followed by the original function
and, lastly, the naive prediction maximization. Qualitative observation of all
produced triggers showed that the original function’s triggers resulted in more
flips from incorrect to contradictory than the proposed targeted function’s.

Table 4. A comparison of the objective functions.

Objective function Best trigger Number of flips

UA UQ UD

Naive none cause 42 107 647

Original nobody penetrated 43 121 673

Targeted none elsewhere 50 121 826
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Transferability. One of the most interesting aspects of triggers relates to the
ability to find them on one model and use them to fool another model. In this
setting, attackers do not require access to the original model, which may be kept
secret in a grading scenario. Trigger transferability across models allows them
to train a substitute model for the trigger search and then attack the actual
grading model with found triggers. We investigate this aspect by applying all
good triggers found on Model 8 to Model 4. Note that this also included triggers
from a search on the SciEntsBank training split and not just the Beetle
training set. The best performing triggers in terms of flips induced in Model 4
can be seen in Table 5. We also included the triggers which performed best on
Model 8 here.

Table 5. Performance of the triggers found on Model 8 evaluated on Model 4. For
reference, the number of flips originally achieved on Model 8 are also given. The first
rows are the best performing triggers on Model 4. The middle block contains the best
triggers on Model 8. Finally, the last row gives the number of samples misclassified by
Model 4 without any triggers.

Trigger Number of flips on Model 4 and 8

UA UQ UD

4 8 4 8 4 8

nowhere changes 81 51 184 135 957 640

anywhere. 58 45 108 105 1027 682

none else 73 53 158 136 941 818

none varies 49 53 79 134 576 687

none would 38 53 97 138 495 810

none elsewhere 60 50 115 121 701 826

Base misclassification 44 31 100 101 646 491

While there are triggers that perform well on both models, e.g. “none else”, the
best triggers for each model differ. Interestingly, triggers like “nowhere changes”
or “anywhere.” perform even better on Model 4 than the best triggers found
for the original victim model. On UA, “nowhere changes” flips 14.9% of all
incorrect samples to correct. In addition to the base misclassification rate, this
leads to a misclassification rate of 32.5%. On UQ, the same trigger increases the
misclassification rate by 22.8% to a total of 50%. On the UD split, prepending
“anywhere.” to all incorrect samples raises the rate by 17.1% to 46.1%.

As a curious side note, the trigger “heats affected penetrated” discussed in
the section regarding trigger length performed substantially better on Model 4,
so that it was a close contender for the best trigger list.
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6 Discussion and Conclusion

In our scenario, a misclassification rate of 37.5% means that students using
triggers only need to answer 20% of the questions correctly to pass a test that
was designed to have a passing threshold of 50%. If an exam would be graded by
Model 4, students could pass the test by simply prepending “nowhere changes”
to their answers without answering a single question correctly! However, this
does not mean that these triggers flip any arbitrary answer, as a large portion
of the flipped incorrect answers showed at least a vague familiarity with the
question’s topic similar to the example displayed in Table 1. Additionally, these
rates were achieved on the unseen questions split. Translated to our scenario this
implies that we would expect our model to grade questions similar to questions
it has seen during training but for which it has not seen a single example answer,
besides the reference answer. To take an example out of the actual dataset, a
model trained to grade the question What happens to earth materials during
deposition? would also be expected to grade What happens to earth materials
during erosion? with only the help of the reference answer “Earth materials are
worn away and moved during erosion.”. The results suggest that the current
SOTA approach is ill-equipped to generalize its grading behavior in such a way.

Nevertheless, even if we supply training answers to every question the mis-
classification rates are quite high with 21.3% and 32.5% for Model 8 and 4,
respectively. Considering how easy these triggers are employed by everyone once
someone has found them, this is concerning. Thus, defensive measures should
be investigated and put into place before using automatic short answer grading
systems in practice.

In conclusion, we have shown the SOTA automatic short answer grading
system to be vulnerable to cheating in the form of universal trigger employment.
We also showed that triggers can be successful even if they were found on a
disparate dataset or model. This makes the attack easier to execute, as attackers
can simply substitute secret grading components in their search for triggers.
Lastly, we also proposed a way to make the attack more focused on flipping
samples from a specific source class to a target class.

7 Future Work

There are several points of interest which we plan to study further in the future.
For one, finding adversarial attacks on natural language tasks is a very active
field at the moment. Exposing ASAG systems to other forms of attacks, such
as attacks based on paraphrasing, would be very interesting. Additionally, one
could also explore defensive measures to make grading models more robust. An
in-depth analysis of why these attacks work would be beneficial here. Finally,
expanding the transferability study conducted in this work to other kinds of
models, such as RoBERTa [23] or feature engineering-based approaches, and
additional datasets may lead to interesting findings as well.
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