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Chapter 12
Blood to Molecules: The Fossil Record 
of Blood and Its Constituents

Dale Greenwalt

Abstract Contrary to prevalent assumptions, blood—the ultimate “soft tissue”—
has a substantial fossil record. Although initial reports of blood remnants from the 
Holocene were deservedly controversial—and reports of blood cells and proteins in 
Cretaceous therapods remain controversial today—there is currently good evidence 
for original blood components in fossils more than 500 million years old. In this 
review, our knowledge of the fossil record of blood and its cellular and molecular 
constituents is documented and appraised. Cellular components have been described 
from both amber (e.g., erythrocytes and protozoan parasites such as Plasmodium 
and Leishmania) and mineralized bone tissue (erythrocytes and capillary vessels). 
Although small molecules such as hemoglobin-derived heme and hemocyanin- 
derived copper are documented in the fossil record, sequenceable polymeric mole-
cules proteins and DNA have the greatest potential for informing us of ancient 
behavior and physiology—examples include the functionality of mammoth hemo-
globin and the disease states of pharaohs.

Keywords Blood · Ancient biomolecules · Erythrocytes · Blood parasites · DNA · 
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12.1  Introduction

Vertebrate blood, as an environmental milieu, a source of nutrition, and/or a means 
of transmission, has played a critical role in the evolution of parasitism (Lukashevich 
and Mostovski 2003; Mans and Neitz 2004; Perkins et  al. 2010; Mans 2011; 
Peñalver and Pérez-de la Fuente 2014; O'Donoghue 2017). A parasite’s interaction 
with blood may be transitory and limited to a single portion of an organism’s life 
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cycle or, as in the case of human-to-human transmission of the protozoan Babesia 
microti, the sole locus of a parasite’s life cycle (Saito-Ito et al. 2000). Blood and its 
many constituents, including organismal (i.e., parasites), cellular, and molecular 
components, provide obvious candidates in the search for a fossil record of parasit-
ism (De Baets and Littlewood 2015). Unfortunately, as a “soft tissue,” blood is 
exceedingly rare in the fossil record. Nevertheless, it is of interest to note that cop-
per found in fossils of Marrella splendens, an arthropod from the 508 Ma Burgess 
Shale, was reported to be derived from the blood pigment hemocyanin (Pushie et al. 
2014)—but see Gaines et al. (2019) for an alternative interpretation. In this chapter, 
the fossil record of blood and its constituents is reviewed. Although it is not the 
intent of this review to catalogue all published data relevant to the molecular paleo-
biology of blood, it is hoped that the examples described will provide an adequate 
assessment of the history and current status of the science. Given the newly devel-
oping techniques of molecular paleobiology, the constituent molecules of fossilized 
blood have a large and exciting potential, with their informational content poten-
tially transformational (Briggs and Summons 2014; De Baets and Littlewood 2015).

This review is not limited to the fossil record of blood as it relates to parasitism. 
Rather, it seeks to cover all aspects of ancient blood and its constituents. The field of 
ancient biomolecules is new and exciting and covers, as will this review, a very 
broad array of research topics, including, for example, the chemistries involved in 
the preservation of such molecules. Most sections of this review begin with a general 
discussion of the current status of ancient biomolecule research as it relates to the 
specific type of biomolecule (i.e., DNA, proteins, and small molecules) or structures 
(cells and blood vessels) addressed, so as to place the blood-related data in context.

Although there are rare exceptions due to taphonomic variables, data gleaned 
from the fossil and archeological records usually decrease in both quantity and 
quality with time. For the purposes of this review, a provisional timescale (Fig. 12.1) 
depicts the maximum ages currently known for preservation of various types of 
biomolecules. Small molecules such as heme can survive for billions of years 
(Briggs and Summons 2014). However, the polymeric sequences of DNA and pro-
tein are much more fragile. In the case of proteins, that age is controversial; the 
consensus is that proteins cannot survive for more than a few million years although 
some research groups have published polypeptide sequences from specimens over a 
hundred million years old. Records of blood and its constituents, including blood 
parasites, from relatively young time periods are rich in both ancient DNA and pro-
tein. Medieval and Roman-era skeletons provide obvious targets, and have provided 

Fig. 12.1 A provisional timescale for the fossil record of various types of biomolecules
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fascinating data, including diagnoses of diseases such as multiple myeloma, sickle 
cell anemia, tuberculosis, leprosy, and metastatic carcinoma (Maat 1991; Cattaneo 
et al. 1994; Schultz 2001). It is the wealth of mummified humans, both embalmed 
and desiccated, from Egypt and South America, however, that has provided the 
majority of information on ancient blood and blood-borne parasites. Although 
molecular archeology is still in its infancy, these data are both copious and varied. 
For example, Guhl et al. (1999) used PCR to amplify the multiple repeat minicircle 
DNA sequences of the kinetoplast of Trypanosoma cruzi, the causative agent of 
Chagas disease, from Chinchorro mummies. These particular mummies, preserved 
via burial in the dry sands of the Atacama Desert in Peru and Chile, are the world’s 
oldest known mummies at approximately 9000 years in age (Marquet et al. 2012). 
Although the deep time fossil record of blood and its constituents lacks DNA data 
and contains limited examples of ancient protein, it is well documented by morpho-
logical data, such as that preserved in hematophagous arthropods and their parasites 
preserved in amber (Lukashevich and Mostovski 2003; Poinar and Poinar 2010; 
Peñalver and Pérez-de la Fuente 2014; Poinar 2018).

12.2  Blood Residues and Vessels

Residues of fossil blood per se are common within the archaeological timeframe 
and have been identified from a wide variety of specimens (reviewed in Smith and 
Wilson 2001 and Moore et al. 2016). In a particularly gruesome example, the lips of 
exceptionally preserved mummies of a 7-year-old boy and a 15-year-old girl, sacri-
ficed as part of a religious ritual 500 years ago and subsequently buried under a half 
meter of volcanic ash at the summit of a 6739 m volcano in Salta, Argentina, were 
covered with blood (Corthals et al. 2012). The field of tool residue analysis was 
established by Thomas Loy in 1983 with his publication of data from an examina-
tion of 1–6 Ka obsidian, chert, and basalt tools from coastal middens and boreal 
forests in British Columbia and documented the presence of “residual blood films” 
on many tools (Loy 1983). Subsequently, portions of fluted projectile points from 
eastern Beringia were found to be coated with blood residues, and some of the blood 
specimens were purportedly identified as being from large mammal species; the 
data was used to support the hypothesis that indigenous North Americans engaged 
in big-game hunting at the close of the Pleistocene (Loy and Dixon 1998). Other 
examples include Loy and Wood (1989), who reported human blood from both a 
stone alter and an associated flint knife of Neolithic age from the Cayönü Tepesi site 
in Turkey, and Kononenko et al. (2016), who identified blood residues on the sur-
faces of Holocene obsidian tools used in tattooing in the Solomon Islands.

Even older blood residues were reported on stone tools from a cave in Israel, 
dated to 90 Ka (Loy and Hardy 1992), and Oldowan stone tools from the Sterkfontein 
Caves located in the Blaaubank river valley of South Africa and dated to approxi-
mately 2 Ma (Loy 1998; Williamson 2000). However, many of these early reports 
were widely criticized (reviewed by Odell 2001; Craig and Collins 2002). The 
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presence of blood was often based, in part, on a colorimetric assay for the presence 
of heme, an integral component of hemoglobin. This technique, and a modern ver-
sion in which luminol (3-aminophthalhydrazine) is oxidized in the presence of 
sodium perborate and a peroxidase-like catalyst [e.g., the iron in heme] to produce 
luminescence (Blum et al. 2006), is subject to false-positive reactions due to inter-
actions with nonspecific oxidizing agents such as other metals and the peroxidase 
enzymes of bacterial and fungal contaminants. Newman and Julig (1989), who 
identified human blood on a 9 Ka stone scraper from a paleo-Indian site in Ontario, 
reported that only a fraction of paleotools initially identified as having blood resi-
dues tested positively with polyvalent polyclonal antisera produced against an array 
of animal sera. Residues on the surfaces of the 2 Ma Oldowan stone tools from the 
Sterkfontein Caves initially reported by Loy (1998) and Williamson (2000) were in 
fact shown to be due to contamination (Langejans 2012). Matheson and Veall (2014) 
and Lombard (2014) have suggested and/or developed improvements relative to the 
specificity of peroxidase-dependent reagents. Modern protocols require multiple 
confirmatory biochemical and molecular assays.

Remnants of coagulated blood are often present within blood vessels in vertebrate 
specimens preserved in permafrost for hundreds of thousands of years. The very first 
histological examination of a mammoth was reported nearly 60 years ago by Ezra 
and Cook (1959); both blood vessels and bone marrow were observed. Histological 
examination of a 1-month-old baby woolly mammoth (Mammuthus primigenius) 
found on the Yamal Peninsula in northwest Siberia (Fisher et al. 2012) and dated to 
41.8 Ka revealed blood vessels and remnants of blood within lung, liver, and cecal 
tissues (Papageorgopoulou et al. 2015). More recently, a large amount of coagulated 
blood was found in a hematoma in muscle tissue of the lateral wall of the abdomen 
of a 30 Ka mammoth from an island off the northern coast of Siberia (Grigoriev et al. 
2017). The specimen also contained dark brown liquid adjacent to dark brown- 
colored ice; a blood vessel was reported to be filled with hemolyzed blood. Schweitzer 
et  al. (2007a) demonstrated the presence of blood vessels in the much older 
Pleistocene mammals Mammut americanum and Mammuthus columbi, both 300 Ka 
in age; in the latter, “vascular contents”/“intravascular material” were observed.

There are a number of reports of fossil blood 10 Ma or older. McNamara et al. 
(2006) reported preservation of vascular structures and hematopoietic bone marrow 
in a 10 Ma frog from the Libros basin in Spain. This same laboratory, in a histologi-
cal examination of skeletal muscle of an 18 Ma old salamander from lacustrine sedi-
ments of Ribesalbes, again in northeastern Spain, revealed “solidified blood residue” 
within the lumen of a blood vessel (McNamara et al. 2010). Of similar age are sand 
flies (Diptera: Psychodidae: Phlebotominae) in Dominican amber that were 
described as “replete, probably with a blood meal” (Grimaldi 1996). Another inclu-
sion, in 99 Ma amber from Myanmar, is Palaeomyia burmitis, a female sand fly with 
a “dark area” suggested to be “remains of a blood meal” in its abdomen (Poinar 
2004). Given the time course of blood meal digestion in extant phlebotomines, it 
was suggested that the fly had acquired its meal only 2–3 h before its death. Although 
blood per se was not preserved, Peñalver et  al. (2017) argued that Deinocroton 
draculi, a 99 Ma female tick from Myanmar amber, was engorged based on its large 
volume, extruded genital area, and the smooth surface of its dilated integument and 
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Yao et al. (2014) have argued that elevated iron content indicated that a fossil hemip-
teran in the extinct family Torirostratidae may have taken a blood meal immediately 
prior to its death. And yes, dinosaurs suffered from parasitic infections; the tick 
Cornupalpatum burmanicum was found entombed in Myanmar amber and in inti-
mate contact with a feather from its host, an unidentified Cretaceous feathered dino-
saur (Peñalver et al. 2017).

Diptera of the superfamily Hippoboscoidea are all obligate blood feeders as 
adults but their eggs hatch and develop in utero; the adult fly gives birth to a prepu-
parium and pupation occurs soon after birth. The clade includes the tsetse and bat 
flies among others, and consists of four families: the Hippoboscidae, Glossinidae, 
Nycteribiidae, and Streblidae which are represented by 1, 2, 0, and 1 fossil species, 
respectively. Only the streblid is preserved in amber; the remaining specimens are 
in shale from the Rott and Florissant Formations (Statz 1940; Maa 1966; Grimaldi 
1992; Poinar and Brown 2012). Unfortunately, none of the original descriptions, 
redescriptions, or photographs of the specimens available at the Florissant Fossil 
Database (2017) indicate preservation of remnants of blood meals.

Without question, the most interesting and the most controversial specimens 
reported to contain fossil blood and blood vessels are Late Cretaceous dinosaurs 
(Saitta et  al. 2018a, 2019). Schweitzer et  al. (2007b) identified blood vessels in 
specimens of Tyrannosaurus rex (65 and 68 Ma), Triceratops horridus (65 Ma), and 
Brachylophosaurus canadensis (78 ma). In one case, T. rex vessels with endothelial 
cell nuclei were reported (Schweitzer et al. 2005a). Schweitzer and colleagues have 
even developed protocols for the isolation of blood vessels from the fossil bones of 
Brachylophosaurus canadensis and other species (Cleland et  al. 2015). Other 
groups have reported similar data. For example, “blood vessels and possible pre-
served blood products” were identified from the supraorbital horn of a Late 
Cretaceous Triceratops horridus (Armitage and Anderson 2013; Armitage 2016). 
Preserved blood vessels were also reported in an 80  Ma dinosaur (Pawlicki and 
Nowogrodzka-Zagórska 1998). In addition, Lindgren et al. (2010) reported a “large, 
reddish pigmentation” within the lower rib cage of an approximately 80 Ma mosa-
saur, Platecarpus tympaniticus, from Kansas, USA; no attempt at a chemical char-
acterization of this area was attempted.

The oldest fossil with purported blood vessels is the 520-million-year-old arthro-
pod Fuxianhuia protensa from the Yunnan Province of China. This spectacular fos-
sil preserved the ancient organism’s entire cardiovascular system—recognized 
based on pattern recognition—as a thin carbon film (Ma et al. 2014). Other exam-
ples include the 300 Ma hagfish Myxinikela siroka from the Carbondale Formation 
in Illinois, in which branchial blood vessels were identified (Bardack 1991) and, 
nearly as old, blood vessels of a 270  Ma Nothosaurus from Poland which were 
reported to contain both hydroxylysine and hydroxyproline, amino acids character-
istic of collagen (Surmik et al. 2016). Less ancient are blood vessels in a Miocene 
whale from the 10–12 Ma Pisco formation in Peru (Vidal 2010) and the arterioscle-
rotic plaques imaged in Ötzi, a 5300-year-old mummy preserved in ice in the 
European Alps (Murphy Jr et al. 2003). The blood residues and vessels reported in 
the fossil record represent a gradation of compositions from largely molecularly 
intact, as in desiccated Andean mummies, to pliable Cretaceous era vessels as 
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reported by Schweitzer and colleagues, to permineralized replicas of vessels as in 
the hagfish. Although vessels in situ have a greater potential for preservation than 
blood per se, limits to the identification and characterization of original biomole-
cules in these and many other fossils have yet to be determined.

12.3  Blood Cells

A.L. Seitz (1907), in one of the first attempts at histological examination of fossil 
dinosaur bone, described, with a degree of reservation, “fossil blood” in a Cretaceous 
Iguanodon. Subsequent histological examination of a wide array of different kinds 
of fossils has revealed an astonishing array of preserved tissues and cells (reviewed 
by Schultz 2001; Ricqlès 2011; Houssaye 2014; Kolb et al. 2015). Perhaps most 
spectacular are the preserved cellular architecture of flight muscle in a fly (Diptera: 
Empididae) and a bee (Hymenoptera: Apidae: Proplebeia), both from Dominican 
amber, and an elopomorph fish from the Cretaceous Santana Formation in Brazil, in 
which individual sarcomeres and mitochondrial cristae are beautifully preserved 
(Martill 1990; Henwood 1992; Grimaldi et al. 1994). Unfortunately, preservation of 
larger polymeric biomolecules (e.g., chitin, DNA, and protein) has so far not been 
shown to occur in amber inclusions (Stankiewicz et  al. 1998; Martı́nez-Delclòs 
et al. 2004; Kowalewska and Szwedo 2009). In fact, Penney et al. (2013) failed to 
recover ancient DNA from insects in copal (young and poorly or unpolymerized 
resin) as little as 60 years old (Peris et al. 2020).

A controversial report by Loy (1983) identified enucleated mammalian erythro-
cytes on the surface of a chert flake from northern British Columbia dated as 3.5 ± 
2.5 Ka. Equally contentious was the work reported by Loy and Wood (1989) in an 
investigation of what has been called the skull building in Cayönü Tepesi Turkey. 
The building contains a large stone slab which they suggested served as a site of 
ritualistic or mortuarial dismemberment. Enucleated erythrocytes found on the slab 
were identified as belonging to Homo sapiens, Ovis sp., and Bos primigenius, an 
extinct species of cattle (aurochs). Species determinations were based on the shape 
of hemoglobin crystals produced from blood residues isolated from the surface of 
the slab. Since B. primigenius was extinct, Loy and Wood obtained museum sam-
ples of B. primigenius bones and reportedly extracted enough hemoglobin to pro-
duce crystals of that protein, the structures of which he thought to be species 
specific. Subsequent criticisms, which documented the inability to differentiate 
crystal structure at the microscopic level (X-ray diffraction is a far superior tech-
nique), the improbability of obtaining sufficient amounts of protein for crystalliza-
tion, and the fact that even slightly degraded protein will impede crystallization and/
or produce abnormal crystal structures, severely undermined Loy’s work (Gurfinkel 
and Franklin 1988; Smith and Wilson 1992; Cattaneo et al. 1993; Remington 1994). 
Modern characterization of Holocene tool residues often utilizes immunological 
assays and nondestructive mass spectrometry (e.g., Heaton et al. 2009; Moore et al. 
2016). Although examples of the recovery and use of DNA from ancient stone tools 
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have been reported (Hardy et al. 1997; Kimura et al. 2001; Shanks et al. 2005), such 
efforts have been limited due to the dual problems of contamination and rapid deg-
radation of this biomolecule in unprotected environments (Damgaard et al. 2015; 
Hagelberg et al. 2015; Sarkissian et al. 2015).

Preservation of the physical architecture and morphology of fossil erythrocytes 
is a different matter. Early reports of intact ancient erythrocytes, from a 2  Ka 
mummy from Kentucky and the 3.2 Ka Egyptian mummy Nahkt, were made by 
Zimmerman (1973) and Hart et al. (1977), respectively. In an examination of the 
marrow cavity of a rib of a 2.1 Ka soldier from Failaka in the Persian Gulf, Maat 
(1991, 1993) visualized white blood cells complete with microvilli. In a very lengthy 
actualistic experiment, Hortolà (2002) covered the surface of a small piece of frac-
tured chert with fresh human blood, dried it in a dark, air current-free room, and 
then stored the specimen for 122 months in closed non-sterile conditions with fluc-
tuating temperatures (11–34 °C) and humidity (38–84%). Upon examination, many 
of the erythrocytes displayed a shape and size essentially identical to fresh cells 
(Fig. 12.2a). Erythrocytes from a Paleo-American several thousand years old (Loy 
1983); a biopsy of a wound in Ötzi, the Tyrolean Iceman (Janko et al. 2012); a tick 
in Dominican amber (Poinar Jr 2017); and the tibia of a Late Cretaceous 
Tyrannosaurus rex (Schweitzer et al. 2007b) are also well preserved (Fig. 12.2b-e). 
A more recent report describes the preservation of erythrocytes on six 3 Ka obsidian 
tools from Polynesia (Kononenko et al. (2016). Other types of blood cells have also 
been reported in the fossil record. For example, Grigoriev et al. (2017) reported the 
presence of erythrocyte ghosts, as well as nucleated neutrophils, lymphocytes, and 
monocytes, with preserved chromatin, in a 30 Ka mammoth from Siberia.

Maat (1991) reported the presence of crescent-shaped sickle cells in the cortical 
bone of a 2 Ka human skull characterized by porotic hyperostosis; normal erythro-
cytes were absent, and it was suggested that the individual had suffered from sickle 
cell anemia (Maat and Baig 1990; Maat 1991). Diagnosis of sickle cell anemia has 
been a favorite activity of paleopathologists, especially when porotic hyperostosis, 
a condition in which the bone of the cranial fault is very porous, is diagnosed 
(Schultz 2001). However, Walker et al. (2009) argue that anemias per se are not 
responsible for the bone lesions and diagnosis of sickle cell disease in fossil skele-
tons is, in the absence of additional confirmatory information, impossible. A far 
more reliable detection of sickle cell anemia is based on ancient DNA. Marin et al. 
(1999) examined the DNA of six mummies from Egypt dated to approximately 
5.2 Ka and identified the sickle cell hemoglobin mutation in three of the specimens.

The blood-feeding lifestyle is quite successful in insects and ticks. Such a life-
style is thought to have evolved about 30 different times in insects alone and is 
practiced by over 16,000 species and members of four different orders, two of 
which, fleas (Siphonoptera) and sucking lice (Anoplura), are obligatory blood feed-
ers (Lukashevich and Mostovski 2003; Grimaldi and Engel 2005). Despite the com-
mon occurrence of hematophagy in insects and ticks, the number of fossil arthropods 
with preserved identifiable blood is exceedingly small. Although amber does not 
appear to preserve the original protein and DNA constituents of insect inclusions, its 
preservation of morphological detail can be spectacular. Examples of erythrocytes 
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Fig. 12.2 Preserved and/
or fossilized erythrocytes. 
(a) Fresh human cells dried 
on a chert flake and stored, 
dry and unburied, for 10+ 
years (Hortolà 2002); (b) 
mammalian cells removed 
from the surface of a 3.5 ± 
2.5 Ka flake from northern 
British Columbia (Loy 
1983); (c) erythrocytes 
from a biopsy of a wound 
in Ötzi, the Tyrolean 
Iceman (Janko et al. 2012); 
(d) mammalian cells 
surrounding a tick 
entombed in Dominican 
amber (Poinar Jr 2017); (e) 
cells entrained within a 
blood vessel from a Late 
Cretaceous Tyrannosaurus 
rex (Schweitzer et al. 
2007b). Scale bars in A–D 
and E = 10μm and 50μm, 
respectively
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preserved in amber include enucleated red blood cells from a tick (Ixodidae: 
Amblyomma) in 20 Ma Dominican amber, nucleated (reptilian?) erythrocytes from 
the midgut of a sand fly (Psychodidae: Phlebotominae) in 100 Ma Myanmar amber, 
and blood cells near the mouthparts of a basal mandibulate chironomid fly in 130 Ma 
Lebanese amber (Poinar Jr and Poinar 2004; Azar and Nel 2012; Poinar Jr 2017).

Reports of blood cells in vertebrates from deep time are also few in number. 
Erythrocytes from a lizard in the Middle Eocene lignite of the Geiseltal near Halle 
in central Germany were reported by Voigt (1939, 1988) and Chin et  al. (2003) 
described undigested tissue in a coprolite of an approximately 75 Ma tyrannosaurid 
(the volume of the coprolite was 6 L) from Alberta, Canada, that contained “tiny 
blocks” that resembled “red blood cells in capillaries”; the composition of this 
material was mostly carbon. Without question, the most well-known and influential 
work in the field is that of Schweitzer and colleagues. Initial reports of small red 
intravascular microstructures in bones of Tyrannosaurus rex, some of which were 
described as having “opaque central regions,” were published by Schweitzer et al. 
(1997a, 1997b). Similar results were subsequently obtained with the same specimen 
and two different specimens of T. rex (Schweitzer and Horner 1999; Schweitzer 
et al. 2005a, 2007a). Schweitzer et al. (2005a) also reported the presence of struc-
tures “morphologically consistent with endothelial cell nuclei” in T. rex blood ves-
sels. Small red microstructures/erythrocytes were also identified in bone tissues of 
a 1 Ka moa, a 300 Ka mammoth (Mammuthus columbi), and a 78 Ma specimen of 
Brachylophosaurus canadensis; however, such structures were not observed in the 
bone tissues of a 65 Ka mastodon Mammut americanum (Schweitzer et al. 2007a). 
More recently, Bertazzo et  al. (2015) reported concave structures that resembled 
erythrocytes from a theropod dinosaur bone although, at approximately 2 nm in 
diameter, they were very small. Three-dimensional reconstructions of serial sec-
tions of these erythrocytes, when examined by scanning electron microscopy for 
backscattered electrons, revealed central areas of high density that were postulated 
to be nuclei. Interestingly, the bone specimens, from the Campanian Dinosaur Park 
Formation in Alberta, Canada, consisted of fragments that were “not exceptionally 
preserved.” Nevertheless, mass spectrometric analysis of the “erythrocytes” identi-
fied peaks in common with whole blood from an extant emu (Chin et al. 2003).

Pawlicki and Nowogrodzka-Zagórska (1998) performed a scanning electron 
microscopic examination of femoral and toe bone fragments of an 80  Ma 
Tarbosaurus bataar from the Gobi Desert of Mongolia and reported the presence of 
endothelial cells lining the vessel walls. In addition, cells 15–18μm in diameter 
which “strongly resembled the erythrocytes in contemporary reptiles” were observed 
in vessel lumina. The identification of these structures as “erythrocytes” was sup-
ported by energy-dispersive spectroscopy which revealed that iron was concentrated 
20-fold in the erythrocytes relative to the walls of the vessels. A more recent study 
described Haversian canals in the horn of a Triceratops horridus from the late 
Cretaceous Hell Creek Formation in Montana with permineralized (bi?)concave 
“red blood cell-like microstructures” 6–12μm in diameter (Armitage and Anderson 
2013; Armitage 2016). Adjacent vessels contained large (≤50μm long) cuboidal 
crystals referred to as “possible blood products.” It has been pointed out that all 
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structures that look like fossil erythrocytes are not necessarily cells; iron-rich pyritic 
framboids and bacterial films can mimic cell and vessel-like structures (Kaye et al. 
2008). Martill and Unwin (1997), David (1997), and Cadena (2016) have reviewed 
the literature and registered warnings that still apply today.

12.4  Blood Parasites In Situ

About 14,000 species of extant arthropods have developed the capacity to feed on 
vertebrate blood (Graça-Souza et  al. 2006). There are 28 species of mosquitos 
(Diptera: Culicidae) recorded in the Paleobiology Database (accessed/2017), 30 
species of sand flies (Psychodidae: Phlebotominae), 17 species of fleas 
(Siphonaptera), 1 species of lice (Phthiraptera), 2 species of soft ticks, and 2 species 
of hard ticks (Ixodidae) and a single species of a “kissing bug” (Reduviidae: 
Triatominae). The majority of these organisms were undoubtedly hematophagic and 
many were vectors of other parasites but only a very few of them have been pre-
served as fossils with observable blood meals (Labandeira and Li 2021). Among 
those that have are sand flies from 15–20 Ma Dominican amber and Palaeomyia 
burmitis in Cretaceous amber from Myanmar which were both described as having 
preserved remnants of a blood meal (Grimaldi 1996; Poinar 2004). Similarly, a 
blood-engorged mosquito from 46 Ma lacustrine shale in Montana (Greenwalt et al. 
2013) and a nymphal tick, Amblyomma sp., in Dominican amber with mammalian 
erythrocytes within its gut (Poinar Jr 2017), have been described.

Fossils of hosts with the blood stages of the organisms with which they are para-
sitized are, not surprisingly, rare as well. Even well-preserved mummies, although 
commonly preserved with the anatomical pathologies of parasite infestations, have 
not revealed the parasites themselves within blood vessels and/or blood cells. For 
example, although Ruffer (1910) reported calcified eggs of the blood fluke (Bilharzia 
hemotobium) in kidney tissue of a 20th dynasty Egyptian mummy, neither schisto-
somulae nor adults have been observed in blood vessels of mummies. Similarly, 
while “nests” of the amastigote stage of Trypanosoma cruzi have been observed in 
cardiac muscle of an Inca mummy from Peru, the blood stage of the parasite, the 
trypomastigotes, has not (Fornaciari et al. 1992).

The main mechanism for the preservation of deep time blood stages of parasites 
seems to be entombment of their hosts in amber (Poinar 2014, 2018, 2021). Such 
specimens have provided numerous examples of parasite blood stages in situ. In an 
examination of inclusions in 99 Ma amber from Myanmar, Poinar and Poinar (2010) 
found that approximately 50% of all fossil sand flies (Psychodidae: Phlebotominae) 
were infected with trypanosomatid parasites. The collective taxon Paleoleishmania 
was created by Poinar and Poinar (2004) for fossil “digenetic trypanosomes associ-
ated with sand flies.” The genus contains two species, P. proterus from Myanmar 
amber and P. neotropicum from Dominican amber. The former’s midgut contained 
promastigotes within the remains of a blood meal (Poinar Jr and Poinar 2004; Poinar 
and Poinar 2004). P. neotropicum contained amastigotes on its proboscis, preserved, 
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as the authors speculated, as a result of being entombed immediately after feeding 
(Poinar 2008). Amastigotes of another leishmanial trypanosome were localized 
within nucleated (reptilian) erythrocytes in the midgut of the 99  Ma psychodid 
Palaeomyia burmitis (Fig.  12.3a, b; Poinar 2004; Poinar Jr and Poinar 2004). 
Trypanosomatid parasites were also figured in the blood meal of a midge (Diptera: 
Ceratopogonidae: Protoculicoides?) from 99  Ma Myanmar amber (Fig.  12.3c; 
Poinar and Poinar 2005).

Blood stages of malarial parasites have also been reported as fossils. The mos-
quito Culex malariager described from Dominican amber by Poinar (2005a) was 
shown to harbor ookinetes and, possibly, microgametes of Plasmodium dominicana 
(Fig. 12.3d, e; Poinar 2005b). Although Poinar and Telford (2005) described oocysts 
and sporozoites in the abdominal cavity of Paleohaemoproteus burmacis from a 
99 Ma ceratopogonid, these structures/cells may have been in the epithelial cells 
that line the gut of the insect and not a component of the blood meal per se. Finally, 
the prolific Poinar Jr (2017) also described an intraerythrocytic piroplasm in red 
blood cells of a tick (Ixoidea: Ambylomma sp.) (Fig. 12.3f).

12.5  Molecular Components of Blood

12.5.1  DNA

Integral to this review is an assessment of the fossil record of blood-related biomol-
ecules, including DNA and protein. These biomolecules, and small molecules such 
as pigments, complex carbohydrates, and biochelates, vary dramatically in both the 
time span over which they survive and their informational content; unfortunately, 
these characteristics are inversely proportional. In a study of DNA preservation in 
fossil moas of ages ranging from 602 to 7839 years, Allentoft et al. (2012) calcu-
lated half-life values for a 30-base-pair fragment at 25 °C, 5 °C, and -5 °C of 500, 
20,000, and 158,000 years, respectively, suggesting that survival of DNA fragments 
of informative lengths past 106 years of age is exceedingly unlikely. To date, that 
estimate appears accurate. However, preservation is dependent upon depositional 
environment and taphonomic conditions and recent advances in extraction technol-
ogy, prevention and recognition of contamination, third-generation sequencing, etc. 
have vastly enhanced our ability to obtain valuable sequence information from 
ancient DNA (Schadt et al. 2010; Wood et al. 2013; Damgaard et al. 2015; Hagelberg 
et al. 2015; Sarkissian et al. 2015; Llamas et al. 2017; Wood 2018). Only 17 years 
ago the technical limit on DNA retrieval was thought to be 40  Ka (Smith et  al. 
2001). In striking contrast, the complete genome of a 560–780 Ka Equus fossil from 
the Yukon region of Canada currently stands as the oldest ancient DNA (Orlando 
et  al. 2013). The report of DNA sequence from an 80  Ma unidentified dinosaur 
however is now regarded as inaccurate (Woodward et al. 1994).
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Fig. 12.3 Blood-stage parasitic organisms preserved as fossils. (a) A nucleated erythrocyte 
(arrow) in the thoracic midgut of a 99 Ma sand fly Palaeomyia burmitis (Diptera: Psychodidae: 
Phlebotominae). Insert depicts an erythrocyte of an extant lizard (Poinar and Poinar 2004); (b) 
putative parasitophorous vacuole (arrow) with developing amastigotes of a leishmanial trypanoso-
matid in an erythroid cell in the thoracic midgut lumen of the fly in A. Note chromatin clumps in 
the nucleus below vacuole; (c) trypanosomatid promastigotes in the midgut lumen of a biting 
midge (Diptera: Ceratopogonidae) preserved in 99 Ma Myanmar amber (Poinar and Poinar 2005); 
(d, e) microphotograph and drawing, respectively, of a putative oökinete of Plasmodium domini-
cana in a mosquito (Diptera: Culicidae: Culex) in Dominican amber (Poinar 2005b); (f) dividing 
stages of the piroplasm Paleohaimatus calabresi (arrows), some still connected at base, in erythro-
cytes of a tick (Ixodidae: Ambylomma) in Dominican amber (Poinar 2017). Scale bars in A–F = 3, 
3, 5, 5, 5, and 10μm, respectively
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Numerous studies have obtained blood parasite DNA sequence data from 
mummies and skeletons. For reviews, see David (2000), Araújo et  al. (2009), 
Dittmar (2009), and Guhl (2017). These include detection of Trypanosoma cruzi 
kinetoplastid DNA in Brazilian, Chilean, and Peruvian mummies, some as old as 
9 Ka (Guhl et al. 1997, 1999, 2014; Ferreira et al. 2000; Madden et al. 2001; Dittmar 
et al. 2003; Aufderheide et al. 2004; Fernandes et al. 2008; Lima et al. 2008), and 
T. brucei DNA in 4 Ka Egyptian mummies (Zink et al. 2006). The oldest parasite 
DNA sequence, of the gastrointestinal microsporidian Enterocytozoon bieneusi, 
was recovered from a 48 Ka specimen of Homo neanderthalensis (Weyrich et al. 
2017). However, given the multiple stages of many blood parasites which them-
selves are often tissue specific, DNA-based confirmation of the actual presence of 
the blood form of a parasite may not be straightforward. For example, Matheson 
et al. (2014) reported amplification of Schistosoma mansoni- and S. haematobium-
specific DNA sequences from liver and intestinal tissues from two approximately 
3.9 Ka Egyptian mummies. One might assume that the PCR products confirmed 
detection of the schistosomulae and/or adults of these parasites, which are restricted 
to portal and mesenteric blood vessels of the host. However, the primers used were 
based on an intergenic spacer region in S. haematobium near the 28S ribosomal 
RNA gene (Kane and Rollinson 1998) and a 121 bp tandem repeat sequence from 
Schistosoma mansoni known as Sm1-7 (Hamburger et al. 1991); the latter could 
also detect schistosomal DNA sequences in infected snails. Neither probe appears 
therefore to be blood stage specific. The distinction however may be overfine and an 
unproductive exercise in splitting hairs.

A more definitive case is the detection of malaria in King Tutankhamun and his 
ancestors (Hawass et  al. 2010). To test for Plasmodium falciparum DNA, PCR 
primers were designed to specifically amplify several P. falciparum gene fragments, 
one of which encoded a portion of the erythrocyte infective merozoite-specific mer-
ozoite surface protein 1. PCR products and cloned DNA fragments were sequenced 
to reveal that not only had Tutankhamun been infected, but two of his 18th-dynasty 
ancestors, Thuya and Yuya, also had malaria. In fact, detection of two distinct P. fal-
ciparum alleles of merozoite surface protein 1 demonstrated that both Tutankhamun 
and Yuya had been infected on two separate occasions. Tutankhamun is also thought 
to have had sickle cell disease (Timmann and Meyer 2010). The disease is caused 
by one of several different mutations in the hemoglobin gene thought to have 
evolved in response to malaria. The most common mutation results in the substitu-
tion of valine for glutamic acid at position 6 in the beta-globin chain to yield what 
is termed hemoglobin S, a variant of hemoglobin that, via multiple mechanisms, 
both confers host tolerance to the parasite and decreases the pathology of the dis-
ease (Ferreira et al. 2011). Sickle cell nucleotide mutations have been detected in 
several >5 Ka Egyptian mummies (Marin et al. 1999).

Much of the currently available data on ancient blood and blood cell DNA has 
been derived from recent whole nuclear genome sequences. The relative ease with 
which ancient genomes can be sequenced is demonstrated by the recent spate of 
research on human ancestry (reviewed in Haber et al. 2016). A short list of such 
genomes includes that of a 50–30 Ka Denisovan, a Paleo-American from a Clovis 
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site in Montana, a 50 Ka Neanderthal, and a 45 Ka modern human from Siberia and 
Ötzi (Keller et  al. 2012; Meyer et  al. 2012; Fu et  al. 2014; Prüfer et  al. 2014; 
Rasmussen et al. 2014). The oldest human genome sequenced to date is the mito-
chondrial genome of a >300 Ka hominin morphologically similar to Homo heidel-
bergensis from northern Spain (Meyer et al. 2014). Examinations of whole-genome 
sequence data have revealed that Otzi was blood group O+ while a 4 Ka Paleo- 
Eskimo from Greenland was blood group A (Rasmussen et al. 2010; Keller et al. 
2012). Olalde and colleagues (Olalde et al. 2014) identified 24 genes for immune 
modulators, many of which are blood cell specific, such as cytokines, chemokines, 
and their receptors, from the genome of a 7000-year-old Mesolithic European.

Whole genomes of the blood-borne pathogen Yersinia pestis that, with the rat as 
its vector, causes the plague, have been obtained from teeth of numerous human 
skeletons dating from the sixth to the eighteenth centuries (Bos et al. 2011; Wagner 
et al. 2014). Upon infection, Y. pestis invades macrophage cells from which it then 
emerges resistant to subsequent phagocytosis by immune cells; the bacterium can 
reach blood concentrations as high as 100 million/mL. In 2015, Rasmussen and col-
leagues obtained whole genomes from 101 individuals that dated from approxi-
mately 3000 to 800 BC and demonstrated that, prior to 1686 BC, Y. pestis lacked a 
critical virulence factor (Yersinia murine toxin) without which it was incapable of 
causing the bubonic plague (Rasmussen et al. 2015).

In an instructive study of the last surviving population of woolly mammoths 
(Mammuthus primigenius) on Wrangel Island, Pečnerová et al. (2016) demonstrated 
a pronounced decrease in genetic variation relative to several loci of the MHC DQA 
gene. The major histocompatibility complex (MHC) class II protein heteromer con-
sists, in part, of alpha (DQA) subunits anchored in the membrane of immune cells 
such as B lymphocytes, dendritic cells, and macrophages and is essential to immune 
reactions to foreign antigens. The small and isolated population of mammoths, hav-
ing survived 6000 years longer than mainland populations, exhibited a 20% loss in 
autosomal heterozygosity and a 37% loss in allelic richness; inbreeding and genetic 
drift may have been largely responsible for the eventual extinction of the species.

In a study that exemplifies the power and potential of future molecular paleobio-
logical research, Campbell et al. (2010), using DNA extracted from a 43 Ka Siberian 
woolly mammoth, isolated the genes for the α- and β/δ-globin chains of hemoglo-
bin. The sequences differed in several positions relative to the Asian elephant. 
Specifically, the woolly mammoth β/δ-globin chain had acquired three amino acid 
substitutions: threonine to alanine at position 12, alanine to serine at position 86, 
and glutamic acid to glutamine at position 101. When the recombinant mammoth 
protein was synthesized and assayed for its ability to bind and release oxygen, the 
changes in the structure of the hemoglobin molecule that resulted from the three 
amino acid substitutions were shown to enhance the binding of chlorine ions and 
2,3-bisphosphoglycerate, allosteric effectors that, while not directly involved in 
oxygen binding, functioned to promote the release of oxygen at cold temperatures. 
This phenotypic adaptation to colder arctic temperatures was probably critical to the 
success of the mammoths and allowed them to dominate the arctic Pleistocene for 
hundreds of thousands of years.
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Can DNA sequence be obtained from fossils in rocks older than 1 Ma? As early 
as the mid-1990s, ancient DNA was purportedly detected in deep time fossils 
through the use of histochemical stains. For example, Pawlicki (1995) reported 
staining of DNA in osteocytes from bones of an 80 Ma specimen of Tarbosaurus 
bataar through the use of both ethidium bromide and Feulgen’s method (Schiff 
reagent). Schweitzer and colleagues later reported localization of DNA in the lacu-
nae (osteocytes) of a 66  Ma bone fragment of Tyrannosaurus rex with a bis- 
benzimide Hoechst DNA stain and subsequently repeated the observations in 
isolated “osteoclasts” with antibodies to DNA and the DNA stains propidium iodide 
and DAPI in both the Tyrannosaurus rex and an 80 Ma specimen of Brachylophosaurus 
canadensis (Schweitzer et  al. 1997a; Schweitzer et  al. 2013). Woodward et  al. 
(1994) reported the isolation of DNA sequence from small (20 cm) bone fragments 
from an unidentified vertebrate preserved in the 80 Ma Blackhawk Formation in 
Utah. The interpretations of Woodward and colleagues were however questioned by 
numerous investigators (Hedges and Schweitzer 1995; Henikoff 1995; Allard et al. 
1995; Zischler et al. 1995; Allentoft et al. 2012). There are other claims for the isola-
tion of DNA from deep time fossils (e.g., Golenberg et al. 1990; Sutlovic et al. 2008) 
but here too, the consensus is that these data are artifactual (Allentoft et al. 2012 and 
references therein). While these data are intriguing, verifiable DNA sequence data 
from deep time have yet to be reported. The oldest fossil genome dates back approx-
imately 700,000 years (Orlando et al. 2013); older DNA may well be buried, undis-
covered, and waiting to be extracted and sequenced—particularly in permafrost.

Given the fidelity of the preservation of cellular and even subcellular structures 
in amber inclusions, amber would seem to be a plausible source of ancient 
DNA. Despite numerous attempts however, the consensus is that DNA is not pre-
served in such resins (Lindahl 1993; Howland and Hewitt 1994; Austin et al. 1997; 
Walden and Robertson 1997; Gutiérrez and Marin 1998; Hebsgaard et  al. 2005; 
Peris et al. 2020).

12.5.2  Protein

The development of high-throughput shotgun protein sequencing technologies has 
dramatically increased the feasibility and potential of paleoproteomics (Altelaar 
et al. 2013; Mann et al. 2013; Zhang et al. 2013; Schweitzer et al. 2019). Current 
technology provides the ability to sequence large numbers of proteins simultane-
ously. For example, Cappellini et al. (2012) reported the determination of more than 
100 partial protein sequences from a 43 Ka mammoth from Siberian permafrost, 
nearly 20% of which were blood cell or plasma proteins. The ability to more effec-
tively characterize the fossil proteome is particularly important because the fossil 
record of protein is older than that of DNA (Allentoft et  al. 2012; Tomiak et  al. 
2013; Briggs and Summons 2014). And while whole genomes provide a staggering 
amount of data of potential phylogenetic value, unlike the proteome, they do not 
allow analysis of that fraction of the genome that is actually translated into protein 
(i.e., levels of expression).
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Abelson (1954, 1957) was the first to report the presence of amino acids in fos-
sils—amino acid profiles similar to those of collagen and amino acids from fossils 
as old as 360  Ma. In 1974, De Jong et  al. (1974) demonstrated cross-reactivity 
between antisera to decalcified extracts of the shell of the 70  Ma cephalopod 
Belemnitella junior and related extant species and cross-reactivity between antisera 
to extracts of the extant species and those of the fossil. Any attempt to identify the 
oldest fossil from which a protein has been identified must deal with numerous 
older controversial reports. For example, Gurley et al. (1991) reported unidentified 
non-collagenous proteins from a 150  Ma Seismosaurus (Diplodocus) from the 
Morrison Formation of New Mexico. Different fractions of proteinaceous material 
were defined by amino acid profiles but sequencing per se was not attempted. It 
must be kept in mind that the existence of “deep time” sequenceable protein is 
highly controversial with viable arguments that such material is not preserved for 
more than a few million years (Pevzner et al. 2008; Buckley et al. 2008, 2017). The 
consensus is that the oldest verifiable ancient protein sequences are those of the 
protein struthiocalcin in 3.8 Ma egg shells from Laetoli (Demarchi et al. 2016).

The first attempt to identify blood antigens in archeological and/or fossil speci-
mens was that of Boyd and Boyd (1934) who identified blood groups in Egyptian 
mummies using standard serological techniques. Early (i.e., ≥20 years old) reports 
(albeit not an exhaustive list) of the detection of ancient blood proteins are listed in 
Table 12.1. Most of the proteins identified are among the most abundant blood pro-
teins, i.e., albumin and hemoglobin. Nearly all of the reports utilized immunoas-
says, at that point the only viable technology available. In more recent studies, 
Lindgren et al. (2017) identified hemoglobin in the shell of a specimen of Tasbacka 
danica, a 55 Ma turtle from the Fur Formation in Denmark, and Schweitzer et al. 
(2009) reported identification of hemoglobin, again through the use of immunolo-
calization assays, in an 80 Ma Brachylophosaurus canadensis. Similarly, Schweitzer 
et al. (1997b, 2002) reported cross-reactivity of antiserum to extracts of bone tissues 
from both T. rex and a 200 Ka ± 100 Ka mammoth with extant hemoglobin. However, 
the design, application, and interpretation of antibody-based assays have many 
potential pitfalls that are compounded when applied to fossil material (Schweitzer 
et al. 2008; Potter et al. 2010; Saitta et al. 2018b). Histochemical techniques have 
also been used. For example, Grigoriev et al. (2017) used the hemoglobin cyanide 
method to detect hemoglobin at a concentration of 22  g/dL in dark brown fluid 
obtained from a 30 Ka frozen mammoth from Siberia.

Modern mass spectrometry-based protein sequencing technologies now provide 
the paleobiologist and paleoanthropologist with the ability to generate ancient, 
albeit incomplete, proteomes. Such potential is exemplified by the work of 
Cappellini et al. (2012) that produced partial sequences for 126 different proteins 
from a metapodial bone of a 43 Ka mammoth preserved in Siberian permafrost. 
Twenty-six of these were either plasma proteins or protein constituents of blood 
cells (Table 12.2). Cappellini’s group obtained 47% of the sequence of albumin and 
went on to demonstrate two mutations, at positions 68 and 218. A comparison with 
the sequences of the African and Indian elephant albumins supported the 
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well- known monophyly of that group. Orlando et al. (2013) obtained sequence data 
for 73 different proteins from the femur of a 560–780 Ka Equus buried in perma-
frost in the Yukon of Canada, 15 of which were plasma proteins. Lists of the plasma 
proteins from the studies of Orlando et al. (2013) and Cappellini et al. (2012) show 
that nearly half (18/41; 44%) of the plasma proteins identified in the two studies 
were either coagulation factors or coagulation-related proteins (Table  12.2). 
Coagulation factors VII, IX, and X were common to both specimens. Hill et  al. 
(2015) obtained sequences of 33 proteins from the skull of a 120 Ka specimen of 

Table 12.1 Early reports of detection of ancient proteins

Protein Specimen Age
Site/
country Techniquea Reference

Blood group B 
antigen

Mummy 3.2 Ka Egypt IA Boyd and Boyd 
(1934); Hart 
et al. (1977)

Albumin Mammoth 40 Ka Siberia ID Prager et al. 
(1980)

Albumin Mammoth; 
Tasmanian wolf

Holocene Siberia; 
Australia

RIA Lowenstein 
et al. (1981

Albumin Mammoth; 
mastodon

10 Ka Siberia; 
Michigan

ID, RIA Shoshani et al. 
(1985)

Hemoglobin Human skeletal 
bone

4 Ka Italy IB Ascenzi et al. 
(1985)

Albumin Mastodon 13 Ka Venezuela IB Tuross (1989)
Hemoglobin Human skeletal 

bone
2 Ka Italy ELISA Smith and 

Wilson (1990)
Albumin, IgG Native American 1 Ka United 

States
IB Tuross (1991)

Albumin, IgG Human skeletal 
bone

Iron and 
Bronze ages

Europe ELISA Cattaneo et al. 
(1992)

Hemoglobin Stone tool 90 Ka Israel Crystallization Loy and Hardy 
(1992)

IgA Human cranium Medieval Europe ELISA Cattaneo et al. 
(1994)

Hemoglobin Stone tool 1.5 Ka Chile ELISA Tuross and 
Dillehay (1995)

Albumin Hominid fossil 
bone

1.6 Ma Spain ELISA, RIA Borja et al. 
(1997)

Hemoglobin Tyrannosaurus 
rex

65 Ma Montana ELISA Schweitzer et al. 
(1997b)

IgG Hominid and 
equid

1.6 Ma Spain IB Torres et al. 
(2002)

Albumin, 
a1-trypsin, 
a2-HSGP

Human skeletal 
bone

Pre- 
Columbian

Peru ELISA Brandt et al. 
(2002)

aID Immunodiffusion, RIA radioimmunoassay, IB immunoblot, ELISA enzyme-linked immunosor-
bent assay, IA immunoassay
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Table 12.2 Lists of mass spectrometry-derived ancient blood protein sequences from fossil 
Mammuthus, Equus, and Ötzi

Mammuthus 
(Cappellini et al. 2012)

Equus (Orlando 
et al. 2013)

Ötzi (Maixner et al. 
2013)

Blood protein ranka 
(Farrah et al. 2011)

Hemoglobin 1
Albumin Albumin 2

Fibrinogen alpha chain 3
Apolipoprotein 
A-I precursor

5

Antitrypsin Alpha-1- 
antitrypsin

Alpha-1-antitrypsin 8

C3 complement 
component

C3 complement-like 9

Alpha-2-HS- 
glycoprotein

Alpha-2-HS- 
glycoprotein

16

Antithrombin-III 20
C1 inhibitor 23

Apolipoprotein A-IV Apolipoprotein 
A-IV

25

Alpha-trypsin 
inhibitor heavy 
chain H1-like

31

Plasminogen 34
Heparin 
cofactor 2

38

C9 complement 51
C8 complement, beta 
polypeptide

56

Apolipoprotein 
C-II precursor

59

Apolipoprotein E 63
Vitamin 
k-dependent 
protein S

68

C8 complement, 
gamma polypeptide

76

Coagulation factor IX Coagulation 
factor IX

99

Coagulation factor 
X-like

Coagulation 
factor X-like

105

Thrombospondin 1 120
Coagulation factor II 
(prothrombin)

Prothrombin Prothrombin 172

Vitamin K-dependent 
protein Z

Vitamin 
K-dependent 
protein Z

543

Coagulation factor 
VII

Coagulation 
factor VII

604

Annexin A5 Annexin A5 829
Leukocyte CD47 NA

(continued)
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Bison latifrons, from near Snowmass, Colorado. Of these, albumin, alpha-2-serum 
glycoprotein, and prothrombin are plasma proteins.

In contrast, an ancient proteome obtained from brain tissue of Ötzi, the 5.3 Ka 
mummy from the Tyrolean Alps, consisted of sequences from 502 proteins, only 11 
of which were blood related (Maixner et al. 2013). Albumin sequences provided 
87% coverage of that protein; other proteins included three different subunits of 
hemoglobin, fibrinogen, and leukocyte CD47 (Table 12.2). Partial sequences of pro-
thrombin and anti-thrombin III, both coagulation-related proteins, were also 
obtained. Maixner et al. (2013) stated that their presence “could support the theory 
of an injury of the head near the site where the samples have been extracted.” The 
most notable aspect of these data is the number of coagulation-related proteins, such 
as the coagulation factors, in the Equus and Mammuthus proteomic data. Stachowicz 
et al. (2017) produced a human clot proteome that consisted of 476 different pro-
teins. In addition to the expected proteins directly related to coagulation, a major 
component of the clot proteome consisted of proteins characteristic of extracellular 
vesicles generated by platelet activation. Clot proteome proteins are highlighted in 
Table 12.2. While a number of the clot-related proteins are also some of the more 
prevalent proteins in plasma, several (e.g., coagulation factors II, VII, IX, and X, 
thrombospondin) are present in normal plasma at two or three orders of magnitude 

Mammuthus 
(Cappellini et al. 2012)

Equus (Orlando 
et al. 2013)

Ötzi (Maixner et al. 
2013)

Blood protein ranka 
(Farrah et al. 2011)

Annexin A5 Annexin A5
Immunoglobulin 
gamma 7 heavy 
chain

NA

C-type lectin domain 
family 11, member A

NA

Immunoglobulin 
gamma 1 heavy chain

NA

Immunoglobulin 
superfamily, member 3

NA

Kininogen A5 NA
Protein C NA
Protein S alpha NA
Serpin peptidase 
inhibitor

NA

Serpin peptidase 
inhibitor, D

NA

Unidentified 
immunoglobulin

NA

Clot proteome proteins are highlighted in bold
aIn some cases the presence of a fragment or subunit of a protein is equated to the presence of the 
intact protein. The ranking of the most common proteins in blood is from those referenced in 
Farrah et al. as “Published”

Table 12.2 (continued)
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less (e.g., Farrah et al. (2011) list coagulation factor VII as the 604th most prevalent 
protein in plasma). The presence of coagulation-related proteins in fossil bone pro-
teomes is undoubtedly the result of postmortem thrombogenesis (blood clot forma-
tion). Whether or not clotting-based fractionation of proteins into aggregated and 
potentially more proteolytically resistant forms is responsible for survival of one or 
more of these ancient proteins is unknown.

Fibrinogen was absent from the Equus and Mammuthus proteomes but was recov-
ered from the brain tissue of Ötzi. Fibrinogen makes up about 7% of plasma protein 
and polymerized fibrin is the major component of a clot. However, postmortem fibri-
nolytic activity can remove that fibrin. Janko et al. (2012) and Ferrón et al. (2014) 
both reported the presence of large blood clots near one or more wounds incurred 
immediately before Ötzi’s death. Janko et  al. (2012) concluded that fibrinolytic 
activity had occurred due to their inability to detect fibrin fibrils and/or meshwork.

Proteome analysis of a swab of the blood-covered lips of the 500-year-old 
Andean mummy of a young girl identified 67 different proteins. Partial sequences 
for albumin, immunoglobulins, hemoglobin, serotransferrin, apolipoproteins A-I 
and A-II, fibrinogen, and hemopexin as well as several neutrophil proteins (neutro-
phil defensins 1 and 3, neutrophil elastase) were obtained; coagulation factors were 
not among the proteins identified. The girl had apparently suffered severe inflamma-
tion due to a pulmonary bacterial infection; DNA amplification identified the pres-
ence of Mycobacterium sp. (Corthals et al. 2012). Barbieri et al. (2017) obtained 30 
human protein sequences from dental pulp—a favored source of ancient protein and 
DNA—of several 300-year-old skeletons from France. Of these, prothrombin and 
coagulation factors IX and X were present along with the plasma proteins albumin, 
alpha-2-serum glycoprotein, IgA, and IgG.

Reports of blood proteins from dinosaurs and similarly old fossils are rare. 
Schweitzer et al. (1997b) reported reactivity of an antiserum made to Tyrannosaurus 
rex bone extracts to purified recent hemoglobin. Bern et  al. (2009) reported 
sequences of very short peptides that matched bird hemoglobin in an analysis of 
bone from a 68 Ma specimen of T. rex. Isolated blood vessels from an 80 Ma speci-
men of the dinosaur Brachylophosaurus canadensis were prepared by Cleland et al. 
(2015) and analyzed for proteins. Partial amino acid sequences from actin, myosin, 
tropomyosin, and both α- and β-tubulin were reported. A series of actin sequences 
that contained 252 residues aligned with a consensus sequence 402 residues 
in length.

As previously indicated, the first attempts to identify blood-borne parasite anti-
gens in archeological and/or fossil specimens utilized immunological assays. 
Records of detection of proteins and/or antigens on the surfaces of blood-borne 
parasites and pathogens in medieval skeletons, Egyptian and American mummies, 
etc. are dominated by work on three parasites, Plasmodium, Schistosoma, and 
Trypanosoma. Schistosomiasis is most often diagnosed with an immunoassay 
directed at circulating anodic antigen (CAA), a branched disaccharide that contains 
at least 30 repeating units composed of 2-acetamido-2-deoxy-β-D-galactopyranose 
and β-D-glucopyranuronic acid that is released from the parasite into the host’s 
blood (Bergwerff et al. 1994). Although attached to a protein via O-glycosylation, it 
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is the carbohydrate portion of the protein that is both immunogenic and highly 
stable. Immunocytochemical and ELISA assays have been used to diagnose schis-
tosomiasis in Egyptian mummies as old as 5.2 Ka by numerous laboratories (Deelder 
et al. 1990; Miller et al. 1992, 1994; Rutherford 1999, 2000, 2005, 2008; Lambert- 
Zazulak 2003; Hibbs et al. 2011).

The presence of Plasmodium is usually determined via the detection of either 
P. falciparum histidine-rich protein 2 antigen or Merozoite surface protein 1. The 
former is a large protein that is found both at the erythrocyte cell surface and soluble 
in the blood. It is unique in that it contains numerous repeats of alanine and histidine- 
rich sequences (e.g., AHHAAAHHEAATH, AHHAHHVAD, and AHHTHHAAD) 
(Baker et al. 2010). Merozoite surface protein 1 is assayed by detection of the highly 
immunogenic 19 kDa C-terminal domain of the protein which remains on the sur-
face of the parasite after processing of the much larger 200 kDa precursor (Mazumdar 
et al. 2010). Both Plasmodium falciparum and P. haematobium have been detected 
by immunochemical assays in Egyptian mummies as old as 5.2 Ka (Miller et al. 
1994; Bianucci et al. 2008; Rutherford 2008).

An immunoassay was used by Fornaciari et al. (1992) to detect Trypanosoma 
cruzi in a 0.6 Ka Peruvian mummy. Other blood-borne pathogens that have been 
detected in archeological and paleontological specimens by immunological assays 
include Yersinia in 0.3  Ka dental pulp from France (Barbieri et  al. 2017) and 
Treponema in ancient human skeletal remains from North America (Ortner et al. 
1992). The oldest specimen in which Treponema has been identified, by an immu-
nochemical assay, is an 11.5 Ka Pleistocene bear (Rothschild and Turnbull 1987).

12.5.3  Small Molecules

The vast majority of all known ancient biomolecules are small molecules, defined 
here as everything other than polymeric DNA and protein. For example, both oil and 
coal consist largely of fragmented and derivatized biomolecules derived from 
plants. Similar molecules serve as biomarkers for specific types of organisms 
(reviewed in Eglinton and Eglinton 2008; Briggs and Summons 2014). For exam-
ple, 24-isopropylcholestanes are derived from large sterol compounds synthesized 
by desmosponges and have been reported in rocks as old as 635 Ma (Love et al. 
2009). Small molecules such as chitin, a homopolymer of N-acetylglucosamine, 
and a major component of arthropod exoskeletons, and the pigment melanin have 
been found in fossils ca. 505 Ma and >160 Ma old, respectively (Glass et al. 2012; 
Ehrlich et al. 2013).

Grigoriev et al. (2017) detected creatinine at a concentration as high as 1000-fold 
higher than normal in dark brown fluid obtained from a 30 Ka frozen mammoth 
from Siberia. The assumption was that the creatinine originated with massive deg-
radation of phosphocreatine from the animal’s muscle. This report of “blood” cre-
atinine however is an exception. The preservation of blood-specific or even 
blood-associated small biomolecules in deep time fossils is typically limited to a 
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single compound, heme, and its derivatives. Heme (C34H32O4N4Fe) is a planar- 
conjugated heterocycle comprised of four 5-membered substituted pyrrole rings 
with a mass of 616. At its center is an atom of iron, bound by the four nitrogen atoms 
of the pyrrole rings. In the absence of iron, the molecule is referred to as a porphy-
rin. It is not known to be synthesized abiotically and is extremely stable—so much 
so that it has been proposed as a target in NASA’s search for life on Mars (Suo et al. 
2007). Metalloporphyrins are ubiquitous; they serve as redox centers that are essen-
tial for respiration and as charge-transfer centers in proteins such as cytochromes, 
catalases, and other enzymes; chlorophyll is a porphyrin. As one would expect, the 
fossil record of porphyrins is well documented; as early as 1933, Fikentscher (1933) 
reported the characterization of porphyrin from a crocodilian coprolite from the 
Middle Eocene lignite of the Geiseltal near Halle in central Germany. The oldest 
metalloporphyrins have been isolated from Carboniferous deposits (Izmailova 
et al. 1996).

Heme is the prosthetic group of hemoglobin, a protein that accounts for approxi-
mately two-thirds of the total protein in whole blood. After degradation of the pro-
teinaceous portion of hemoglobin in deep time fossils, heme, or its components iron 
and porphyrin, often remains and serves as a proxy for the protein. Pawlicki and 
Nowogrodzka-Zagórska (1998) reported “dinosaur erythrocyte iron” in an 80 Ma 
specimen of Tarbosaurus bataar from the Gobi Desert. Elemental analysis docu-
mented a 20-fold higher level of iron in the contents of blood vessels vs. the bone of 
the dinosaur itself. The first report of heme in fossil dinosaur bones was that of 
Schweitzer et al. (1997b). Several spectroscopic techniques (nuclear magnetic reso-
nance, electron spin resonance, and Raman scattering) were used to detect iron and 
heme or heme fragments in 66 Ma Tyrannosaurus rex bone tissue from the Hell 
Creek Formation in Montana. In addition, polyclonal antisera raised against tissue 
extracts of fossil trabecular bone from this specimen demonstrated binding to puri-
fied turkey and rabbit hemoglobin by immunosorbent assays, and to pigeon and 
rabbit (but not snake) hemoglobin in immunoblot assays. Geist et al. (2002) used 
mass spectrometry and X-ray diffraction to detect both iron and porphyrin deriva-
tives within the body cavity of the mosasaur Platecarpus tympaniticus collected 
from approximately 83 Ma exposures of the Niobrara Chalk Formation in Kansas. 
The presence of iron in this same specimen was confirmed by Lindgren et al. (2010). 
Lindgren et  al. (2017) subsequently reported the presence of iron, Fe(CN)2, Fe 
(CN)3, and higher molecular weight fragments of the heme prosthetic group in the 
sea turtle Tasbacka danica from the 55 Ma Fur Formation of Denmark. They also 
used immunohistochemical staining of fossil turtle tissues with polyclonal antisera 
to the hemoglobins of Alligator mississippiensis and the ostrich (Struthio camelus) 
to demonstrate the presence of the protein or fragments thereof; staining with the 
anti-alligator sera was more intense than that of the antisera against bird hemoglobin.

Mosquitos (Diptera: Culicidae) have existed for over 100 million years and 28 
different fossil species have been described (Borkent and Grimaldi 2016; PBDB 
2017). It was only recently however that a fossil of a blood-engorged mosquito was 
discovered (Fig. 12.4a; Greenwalt et al. 2013). The preservation of a mosquito, its 
abdomen distended with a blood meal, would seem improbable (Briggs 2013) but 
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several such specimens have been discovered in the 46 Ma Kishenehn Formation in 
northwestern Montana (author, pers. observ.). In one of the specimens, the iron con-
tent was nearly tenfold greater in the insect’s abdomen than in the abdomen of a male 
collected from the same site. Mass spectrometry provided a spectrum essentially 
identical to that of heme from reference hemoglobin (Fig. 12.4b-g); heme was not 
detected in the male mosquito, the thorax of the blood-engorged female, or shale 
matrix adjacent to the female. Factors that may have been involved in the preserva-
tion of the blood-engorged mosquito are discussed in the section on taphonomy below.

Recently, Yao et  al. (2014) published interesting data suggesting that extant 
hematophagous true bugs (Hemiptera) could be distinguished from phytophagous 
and predatory species by their overall iron content. The authors then extrapolated 
these data to suggest that fossil Hemiptera could be identified as hematophagous 
based on this same criterion. Flexicorpus acutirostratus and Torirostratus pilosus 
(Hemiptera: Cimicomorpha: Torirostratidae), both from the 125  Ma Yixian 
Formation of China, were found to have iron concentrations twice that of four other 
fossil bugs identified as being either phytophagous or predatory, as determined by 
electron-dispersive spectroscopy. The authors also speculated that differences in 
iron content of the abdomen and rostrum (average = 7.31 wt %) vs. that of the legs, 
thorax, antennae, and head (average = 5.02%) of Torirostratus pilosus suggested 
that the insect had eaten immediately prior to its death. The presence of active trans-
port systems for iron and the excretion of excess iron by insects are well docu-
mented (Nichol et al. 2002; Winzerling and Pham 2006). In tsetse fly (Glossina) 
feeding experiments with a radioactive isotope of iron, Kabayo et al. (1988) demon-
strated that 98% of blood meal iron was lost after 5 days; the remainder was lost 
upon completion of the reproductive cycle. Similarly, Warren-Hicks et al. (1979) 
showed that fleas (Xenopsylla Cheopsis) allowed to feed on rats injected with 59Fe 
incorporated “little of the iron … into the tissues.” While the iron contents of the 
extant hemipterans measured by Yao et al. differed between the phytophagous and 
predatory insects (2.18 ng/g and 2.51 ng/g, respectively) and the hematophagous 

Fig. 12.4 Detection of the porphyrin heme in a 46-million-year-old blood-engorged mosquito 
(Greenwalt et al. 2013). (a) The fossil blood-engorged mosquito. Scale bar = 2 mm; (b) ToF-SIMS 
spectrum of the abdomen of the blood-engorged mosquito; (c) spectrum of heme (m/z = 616) and 
the heme-derived porphyrins in purified pig hemoglobin. Peaks m/z 455, m/z 469, and m/z 483 are 
three of numerous peaks present in both the abdomen of the female mosquito and pure hemoglo-
bin; (d) spectrum obtained from the matrix adjacent to the abdomen of the female mosquito; (e–g) 
enlarged insets of mass region 460–474 of spectra B–D further illustrate the Gaussian distribution 
of peaks and near identity between the abdominal and hemoglobin control spectra
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insects (9.74 ng/g), there was no indication of the age, sex, or feeding status of the 
ten specimens examined; two specimens were reared in the lab; the others were col-
lected from the wild. While Yao et al.’s work is intriguing, much larger, detailed, and 
more controlled experiments are required before their conclusions can be embraced. 
Wang et al. (2009) demonstrated iron concentrations in both a fossil fly and beetle 
from the Middle Jurassic (160 Ma) Jiulongshan Formation in China that were sig-
nificantly higher than those in the matrix. However, the iron in the beetle was shown 
to be the result of pyrite deposition. Obviously, depositional environment and tapho-
nomic conditions greatly influence iron retention.

12.6  Taphonomy

Given the relative lability of essentially all biomolecules, and, despite this, the pres-
ervation of some ancient proteins, pigments, DNA, etc. for hundreds of thousands if 
not millions of years (Briggs et al. 2000), are there identifiable factors and/or envi-
ronments (“preservational niches,” “privileged niches,” “recalcitrant structures,” 
“molecular refugia”) responsible for their survival? Almost all ancient biomolecules 
have been recovered from bone, teeth, or shells. Although there are exceptions, the 
existence of DNA and blood proteins on 50,000-year-old tools buried in soil simply 
cannot be explained given our current incomplete understanding of tool-residue 
taphonomy. Amber on the other hand, which, at first glance, would appear to be a 
very effective preservational niche, is not. In any attempt to understand ancient bio-
molecule preservation, both physical and chemical environments as well as the 
innate chemical nature of the biomolecule itself must be considered.

Ancient vertebrate DNA is invariably isolated from bone and/or teeth although 
the isolation of DNA from eggshells has also been reported (Oskam et al. 2010). 
DNA binds to hydroxyapatite, a process which is thought to promote preservation 
of the nucleic acid (Grunenwald et al. 2014a, 2014b). Brundin et al. (2013, 2014) 
have shown that the enzyme DNase is less effective at hydrolyzing DNA when the 
nucleic acid is bound to either hydroxyapatite or dentin. Evidence for the preserva-
tion of DNA in the bones of both dinosaurs from Montana and human skeletons 
from Pompeii, as determined by fluorescent DNA-specific probes, has been pre-
sented by several laboratories although it is difficult to determine if staining is in 
ancient osteocytes or on the surfaces of osteocyte lacunae (Pawlicki 1995; 
Schweitzer et al. 1997a; Guarino et al. 2000). Interestingly, Brundin et al. (2014) 
also demonstrated that DNA bound to collagen, the major protein of bone tissue, 
was much less susceptible to cleavage by DNase.

Many of the more commonly preserved ancient biomolecules are those that exist at 
exceedingly high concentrations in the original organism (e.g., chitin in arthropod 
cuticles and hemoglobin in blood). Approximately 90% of all protein in bone is col-
lagen and albumin is present in bone at concentrations 50- to 100-fold higher than in 
blood plasma (Owen and Triffitt 1976; Schmidt-Schultz and Schultz 2015). In a study 
of 31 Bronze and Iron Age skeletons, 23 contained albumin while only a single 
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specimen contained immunoglobulin (Cattaneo et al. 1992). Other factors that may 
contribute to the preservation of ancient proteins include their quaternary structure and 
the presence of posttranslational derivatization. The quaternary structure of several 
different types of collagen (i.e., the fibril) is highly resistant to protease activity 
(Perumal et al. 2008). In addition, Hill et al. (2015) recently demonstrated relatively 
high recoveries of collagen peptides that contained galactosyl- and glucosyl- 
galactosyl-modified hydroxylysine residues from 120 Ka bone tissue of Bison lati-
frons, collected from the Ziegler Reservoir fossil site in Colorado. Thought to be 
natural posttranslational modifications made while the animal was alive, their pres-
ence in the fossil was proposed to be the result of preferential survival during the fos-
silization process.

The preservation of albumin, which is not per se particularly resistant to prote-
olysis, and other proteins, may be due to their ability to bind to hydroxyapatite 
(Owen and Triffitt 1976; Masters 1987; Deniro and Weiner 1988; Tuross and 
Stathoplos 1993; Wadsworth and Buckley 2014). Wiechmann et al. (1999) demon-
strated that nearly all preserved non-collagenous proteins from pre-Columbian 
Peruvian human skeletons had isoelectric points below 4.5. This may indicate the 
presence of relatively large numbers of negatively charged amino acid residues that 
could mediate binding to hydroxyapatite. Fossilization-mediated derivatization 
(e.g., deamidation of asparagine resides) may also be a factor. Poser and Price 
(1979) and Collins et al. (2000) have demonstrated that binding of osteocalcin to 
hydroxyapatite, via the γ-carboxylated glutamic acid residues at the middle of the 
protein, protects this portion of the protein from degradation. Similarly, Demarchi 
et al. (2016) demonstrated that the aspartic acid-rich domain of the ostrich egg pro-
tein SCA-1 is preferentially recovered from fossils as old as 3.8 Ma. Proteins that 
bind to hydroxyapatite (or to aragonite in turtle and mollusk shells and to calcite in 
bird egg shells) have been recovered from fossil egg shells (Schweitzer et al. 2005b; 
Demarchi et al. 2016), turtle shells (Muyzer et al. 1992), tooth enamel (Porto et al. 
2011), and mollusk shells (Weiner et al. 1976).

Another mechanism through which proteins survive into deep time involves their 
cross-linking and subsequent polymerization. As early as 1999, Wiechmann et al. 
(1999) found that non-collagenous proteins were present in pre-Columbian Peruvian 
skeletons as very-high-molecular-weight components as determined by SDS- 
polyacrylamide gel electrophoresis. Briggs and colleagues (Briggs 1999; Gupta 
et al. 2007; Cody et al. 2011; Glass et al. 2013) have subsequently demonstrated that 
covalent “biopolymerization”/cross-linking is a nearly universal phenomenon and 
affects all types of biomolecules through deep time. Cross-linking of proteins con-
tributes to resistance to proteolysis/degradation. Wadsworth and Buckley (2014) 
observed that while collagenase effectively removed collagen from modern bone 
tissue, it was much less effective at hydrolyzing resident collagen from bones dating 
from 10 Ka to 900 Ka. Most recently, Wiemann et al. (2018) have demonstrated that 
soft tissues, including blood vessels, isolated from an array of Mesozoic fossils, 
consist primarily of N-heterocyclic polymers derived from the oxidative cross- 
linking of proteins. They propose that the transformation of ancient proteins into 
nonproteinaceous polymers explains the very unexpected presence of soft tissues in 
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deep time fossils. Aggregation and cross-linking of proteins also lead to a loss of 
immunoreactivity which can confound immunoassay-based analysis of ancient pro-
teins (Koch et al. 1998; Anderson and Waite 2000; Terwilliger et al. 2005). Despite 
these observations, the preservation of collagen and other proteins is exceedingly 
poor compared to other compounds (Saitta et al. 2019).

The ability of a variety of metals, including copper, zinc, and manganese, to 
induce the aggregation of proteins is well known (Bush 2003; Brown 2010). These 
metals also have bactericidal properties which have been suggested as a mechanism 
of the preservation of ancient biomolecules (Schultz 1997, 2001). Schweitzer et al. 
(2014) have proposed that iron, specifically that derived from hemoglobin, can 
induce oxygen radical-mediated cross-linking and subsequent protease resistance. 
Copper and zinc have been shown to mediate the auto-oxidation of beta-amyloid 
protein with a concomitant increase in protease resistance (Brown 2010). Metal 
binding alone, in the absence of oxygen radical formation, can also increase the 
resistance of proteins to proteolysis (Nielson et al. 1985; reviewed in Brown 2010). 
However, in some cases, the oxidation of proteins can actually make them more 
susceptible to proteolysis (Davies et al. 1987).

Racemization of the amino acid constituents of proteins (e.g., crystallins and 
amyloid proteins) can lead to conformational changes that lead to aggregation 
(reviewed in Gallart-Palau et  al. 2015). The D enantiomers of most amino acids 
accumulate readily in preserved specimens; the D/L ratio of Asx in the bone tissue 
of a 45 Ka bison was recently found to be 0.39 (Buckley and Collins 2011). The 
degree to which amino acid racemization might lead to the potentially protective 
effect of protein aggregation is unknown.

There is no single best preservational niche. The best studied such niche, bio-
films (reviewed in Krumbein et  al. 2003), may not be particularly applicable to 
blood and its constituents although Peterson et al. (2010) have suggested that crys-
tallization of biofilms may isolate internal areas of bones, a process they termed 
“microbial masonry,” and be responsible for exceptional preservation of dinosaur 
soft tissue. Similarly, Rybczynski et  al. (2013) described what could be termed 
“chemical masonry” in a >3.4  Ma tibia of Paracamelus, an ancestor of modern 
camels from Ellesmere Island, Canada—the bone was coated with fine-grain pre-
cipitates of iron oxyhydroxide and barium sulfate which infilled the pores of the 
bone and sealed in areas of carbon-rich organic material from which collagen was 
isolated and sequenced. Bone and teeth provide a physical mechanism for the isola-
tion of tissue as well as chemical mechanisms of preservation such as iron-mediated 
cross-linking, bactericidal activity, and hydroxyapatite-mediated protein and DNA 
stabilization. Salamon et  al. (2005) have suggested that sodium hypochlorite- 
resistant, nanometer-scale crystals from bone harbor high-quality DNA. Permafrost- 
mediated freezing and desert-mediated dehydration will continue to provide the 
most frequently utilized, albeit relatively young, sources of tissue for studies of 
blood-derived ancient biomolecules. Increases in our understanding of taphonomy, 
as provided by, for example, actualistic studies, will enhance our ability to discover 
new ancient biomolecules (e.g., Saitta et al. 2019).

D. Greenwalt



403

12.7  Conclusions

The isolation of ancient biomolecules from fossil blood holds the promise of under-
standing the origins of blood types, blood diseases, and blood-borne parasites. 
Given advances in DNA extraction and sequencing technologies, the vast majority 
of future ancient blood and blood cell DNA sequence data will be derived from 
whole-genome studies. This revolution is exemplified by the recent work of Haber 
and colleagues (Haber et al. 2017) in which the complete genomes of five 3700-year- 
old individuals recovered from the city of Sidon, an ancient Canaanite city-state on 
the eastern coast of the Mediterranean Sea, and the genomes of 99 individuals from 
present-day Lebanon were sequenced in a study of genetic diversity. Whole genomes 
of organisms greater than a half million years in age are now routinely obtained 
from permafrost specimens. Given that sequenceable DNA in older specimens pre-
served in rock is currently only hinted at, the absence of verifiable DNA data older 
than the Ionian Age is due, in part, to the absence of specimens obtained from older 
permafrost. Much older permafrost does exist however, for example that found in 
the interior of the Transantarctic Mountains, dated to 20  Ma (Dobinski 2011). 
Prospects for advances in the identification of ancient molecules other than DNA 
and protein in much older sediments are even brighter. The identification of chitin 
in Burgess Shale, porphyrins from 340 Ma oil, and the routine isolation of numer-
ous organic biomarkers from rocks more than two billion years old suggests that 
ancient biomolecules are far more commonly preserved than we might expect.
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