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Abstract. In the theory of special functions, a particular kind of mul-
tidimensional integral appears frequently. It is called the Euler integral.
In order to understand the topological nature of the integral, twisted
de Rham cohomology theory plays an important role. We propose an
algorithm of computing an invariant cohomology intersection number of
a given basis of the twisted cohomology group. We also develop an algo-
rithm of computing the Paffian system that a given basis satisfies. These
algorithms are based on the fact that the Euler integral satisfies GKZ
system and utilizes algorithms to find rational function solutions of dif-
ferential equations. We provide software to perform this algorithm.

Keywords: Cohomology intersection numbers · GKZ hypergeometric
systems · Gröbner basis

1 Introduction

In the study of hypergeometric functions in several variables, one often considers
the integral of the following form:

〈ω〉 =
∫

Γ

h1(x)−γ1 · · · hk(x)−γkxcω, (1)

where hl(x; z) = hl,z(l)(x) =
∑Nl

j=1 z
(l)
j xa(l)(j) (l = 1, . . . , k) are Laurent

polynomials in torus variables x = (x1, . . . , xn), a(l)(j) ∈ Z
n, γl ∈ C and

c = t(c1, . . . , cn) ∈ C
n are parameters, xc = xc1

1 . . . xcn
n , Γ is a suitable integration

cycle, and ω is an algebraic n-form on Vz = {x ∈ C
n | x1 . . . xnh1(x) . . . hk(x) �=

0}. As a function of the independent variable z = (z(l)j )j,l, the integral (1) defines
a hypergeometric function. We call the integral (1) the Euler integral.

Supported by JSPS KAKENHI Grant Number 19K14554 (the first author) and JST
CREST Grant Number JP19209317 (the first and the second authors).

c© Springer Nature Switzerland AG 2020
A. M. Bigatti et al. (Eds.): ICMS 2020, LNCS 12097, pp. 73–84, 2020.
https://doi.org/10.1007/978-3-030-52200-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52200-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-52200-1_7


74 S.-J. Matsubara-Heo and N. Takayama

We can naturally define the twisted de Rham cohomology group associated
to the Euler integral (1). We set N = N1+ · · ·+Nk, Gn

m = Specm C[x±
1 , . . . , x±

n ],
and A

N = Specm C[z(l)j ]. For any z ∈ A
N , we can define an integrable connection

∇x = dx − ∑k
l=1 γl

dxhl

hl
∧ +

∑n
i=1 ci

dxi

xi
∧ : OVz

→ Ω1
Vz

. The algebraic de Rham
cohomology group H∗

dR (Vz; (OVz
,∇x)) is defined as the hypercohomology group

H∗
dR (Vz; (OVz

,∇x)) = H
∗
(
Vz; (0 → OVz

∇x→ Ω1
Vz

∇x→ · · · ∇x→ Ωn
Vz

→ 0)
)

. (2)

Under a genericity assumption on the parameters γl and c, we have the vanishing
result Hm

dR (Vz; (OVz
,∇x)) = 0 (m �= n). Moreover, we can define a perfect

pairing 〈•, •〉ch : Hn
dR (Vz; (OVz

,∇x)) × Hn
dR

(
Vz; (O∨

Vz
,∇∨

x )
) → C which is called

the cohomology intersection form. Here, (O∨
Vz

,∇∨
x ) is the dual connection of

(OVz
,∇x).

The study of intersection numbers of twisted cohomology groups and twisted
period relations for hypergeometric functions started with the celebrated work by
K. Cho and K. Matsumoto [6]. They clarified that the cohomology intersection
number appears naturally as a part of the quadratic relation, a class of functional
relations of hypergeometric functions. They also developed a systematic method
of computing the cohomology intersection number for 1-dimensional integrals.
Since this work, several methods have been proposed to evaluate intersection
numbers of twisted cohomology groups, see, e.g., [2,3,10,11,14,17,19] and refer-
ences therein. All methods utilize comparison theorems of twisted cohomology
groups and residue calculus.

When z belongs to a certain non-empty Zariski open subset of A
N (the

non-singular locus), we proposed a new method in the paper [16] to obtain
cohomology intersection numbers by constructing a rational function solution of
a system of linear partial differential equations. One weak point of the method
was that it was not algorithmic to construct the Pfaffian system (the explicit form
of the integrable connection) for a given basis of the twisted cohomology group.
We will give a new algorithm to construct the Pfaffian system for a given basis
in this paper (Algorithm 1). To our knowledge, algorithms to find the Pfaffian
system (or equation) with respect to a given basis of twisted cohomology group
do not appear in the literature except the twisted logarithmic cohomology case1.
Our algorithm works for a more general class of twisted cohomology groups.
Moreover, it is more efficient by utilizing Saito’s b-function [23] expressed in
terms of facets of a polytope. The Sect. 2 is a brief overview of the paper [16]. The
Sect. 3 is the main part and in the Sects. 4 and 5, we will give demonstrations
of our implementation. As to the construction of rational function solutions,
we utilize the algorithm and the implementation by M. Barkatou, T. Cluzeau,
C. El Bacha, J.-A. Weil [5] (see also [4,18] and their references).

1 K. Nishitani, master thesis 2011 (in Japanese), Kobe University.
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2 General Results

2.1 The Cohomology Intersection Form

We denote by Hn
dR,c

(
V an

z ; (OV an
z

,∇an
x )

)
the analytic de Rham cohomology group

with compact support. By Poincaré-Verdier duality, the bilinear pairing

Hn
dR,c

(
V an

z ; (OV an
z

,∇an
x )

) × Hn
dR

(
V an

z ; (O∨
V an

z
,∇an∨

x )
)

→ C

∈ ∈

(φ, ψ) 	→ ∫
V an

z
φ ∧ ψ

(3)

is perfect. We say that the regularization condition is satisfied if the canoni-
cal morphism Hn

dR,c

(
V an

z ; (OV an
z

,∇an
x )

) → Hn
dR

(
V an

z ; (OV an
z

,∇an
x )

)
is an iso-

morphism. In the following, we always assume that the regularization condi-
tion is satisfied. A criterion for this assumption is explained in Sect. 2.3. Since
(OVz

,∇x) is a regular connection, the canonical morphism Hn
dR (Vz; (OVz

,∇x))
→ Hn

dR

(
V an

z ; (OV an
z

,∇an
x )

)
is always an isomorphism by Deligne-Grothendieck

comparison theorem ([7, Corollaire 6.3]). Therefore, we have a canonical iso-
morphism reg : Hn

dR (Vz; (OVz
,∇x)) → Hn

dR,c

(
V an

z ; (OV an
z

,∇an
x )

)
. Note that the

Poincaré dual of the isomorphism reg is called a regularization map in the the-
ory of special functions ([2, § 3.2]). Finally, we define the cohomology intersection
form 〈•, •〉ch between algebraic de Rham cohomology groups by the formula

〈•, •〉ch : Hn
dR (Vz; (OVz

,∇x)) × Hn
dR

(
Vz; (O∨

Vz
,∇∨

x )
) → C

∈ ∈
(φ, ψ) 	→ ∫

V an
z

reg(φ) ∧ ψ.
(4)

The value above is called the cohomology intersection number of φ and ψ.

2.2 The Secondary Equation

Now, we treat z as a variable. Let π : X = (Gm)n
x ×A

N
z \⋃k

l=1{(x, z) | hl,z(l)(x) =
0} → A

N
z = Y be the natural projection where subscripts stand for coordinates.

We define an OY -module Hn
dR by the hypercohomology group

Hn
dR = H

n
(
X;

(
0 → Ω0

X/Y
∇x→ Ω1

X/Y
∇x→ · · · ∇x→ Ωn

X/Y → 0
))

. (5)

Here, Ω•
X/Y denotes the sheaf of relative differential forms ⊕|I|=•OXdxI with

respect to the morphism π. Since Y is affine, Hn
dR is also identified with the

sheaf Rnπ∗(Ω•
X/Y ,∇x). For any z ∈ Y , there is a natural evaluation morphism

evz : Hn
dR → Hn

dR (Vz; (OVz
,∇x)). We define the dual object Hn∨

dR by replacing
∇x by ∇∨

x in the construction above. By the general theory of relative de Rham
cohomology, there exists a non-empty Zariski open subset U of Y such that
Hn

dR �U� O⊕r
U . Therefore, for any global sections φ of Hn

dR �U and ψ of Hn∨
dR �U ,

we can define the cohomology intersection number 〈φ, ψ〉ch as a function of z ∈ U
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by the formula U � z 	→ 〈evz(φ), evz(ψ)〉ch ∈ C. This actually defines a OU -
bilinear map 〈•, •〉ch : Hn

dR �U ×Hn∨
dR �U→ OU .

We can equip Hn
dR with a structure of a DY -module. For this purpose, we

only need to define a connection ∇GM : Hn
dR → Ω1

Y (Hn
dR) := Ωn

Y ⊗ Hn
dR. For

any section φ ∈ Hn
dR, we define

∇GMφ = dzφ −
∑
j,l

γl
xa(l)(j)

hl,z(l)(x)
dz

(l)
j ∧ φ. (6)

Here, the superscript GM stands for “Gauß-Manin”. The dual connection
∇∨GM : Hn∨

dR → Ω1
Y (Hn∨

dR) is defined by replacing γl by −γl in (6).
The DY -module structures of Hn

dR and Hn∨
dR are compatible with the coho-

mology intersection form. Namely, for any local sections φ of Hn
dR �U and ψ of

Hn∨
dR �U , we have

dz〈φ, ψ〉ch = 〈∇GMφ, ψ〉ch + 〈φ,∇∨GMψ〉ch. (7)

We call (7) the secondary equation. Let us rewrite it in terms of local frames.
Let {φi}r

i=1 (resp. {ψi}r
i=1) be a free basis of Hn

dR �U (resp. Hn∨
dR �U ). We set

I = Ich = (〈φi, ψj〉ch)i,j and call it the cohomology intersection matrix. On the
other hand, there is a r × r matrix Ω (resp. Ω∨) with values in 1-forms on U
such that the connection ∇GM (resp. ∇∨GM ) is trivialized as dz + Ω∧ (resp.
dz + Ω∨∧). Then, the secondary equation is equivalent to the system

dzI = tΩI + IΩ∨. (8)

We also call (8) the secondary equation. The theorem which our algorithm is
based on is the following

Theorem 1 [16]. Under the regularization condition, all the entries of the coho-
mology intersection matrix Ich are rational functions. Moreover, any rational
function solution I of the secondary equation (8) is, up to a scalar multiplica-
tion, equal to Ich.

2.3 GKZ System Behind

In [16], it is discussed that Theorem 1 is true for more general direct image
D-modules. However, by employing the combinatorial structure behind our inte-
grable connection Hn

dR �U , we can show that the cohomology intersection number
in question has a rational expression with respect to z and δ.

Let us recall the definition of GKZ system [8]. For a given d × N (d < N)
integer matrix A = (a(1)| · · · |a(N)) and a parameter vector δ ∈ C

d, GKZ system
MA(δ) is defined as a system of partial differential equations on C

N given by

MA(δ) :
{

Ei · f(z) = 0 (i = 1, . . . , d) (a)
�u · f(z) = 0

(
u ∈ Ker(A× : ZN×1 → Z

d×1)
)
, (b) (9)
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where Ei and �u for u = t(u1, . . . , uN ) are differential operators defined by

Ei =
N∑

j=1

aijzj
∂

∂zj
+ δi, �u =

∏
uj>0

(
∂

∂zj

)uj

−
∏

uj<0

(
∂

∂zj

)−uj

. (10)

For convenience, we assume an additional condition ZA
def
= Za(1)+· · ·+Za(N) =

Z
d. In our setting, we put Al = (a(l)(1)| . . . |a(l)(Nl)), d = n+k, N = N1 + · · ·+

Nk. We define an (n + k) × N matrix A by

A =

⎛
⎜⎜⎜⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1
A1 A2 · · · Ak

⎞
⎟⎟⎟⎟⎟⎠

. (11)

We put δ =
(

γ
c

)
. By abuse of notation, we also denote by MA(δ) the quotient

DY -module DY /J where J is the left ideal of DY generated by the operators
(10). It is known that GKZ system MA(δ) is holonomic ([1]). We say that the
parameter δ is non-resonant if it does not belong to any CΓ + Z

d where Γ is
any facet of the cone

∑N
j=1 R≥0a(j). Hn

dR (resp. Hn∨
dR) is isomorphic to GKZ

system MA(δ) (resp. MA(−δ)) and the regularization condition is true when the
parameter vector δ is non-resonant and γl /∈ Z (see [9, 2.9] and [15, Theorem
2.12]). We set dx

x = dx1
x1

∧ · · · ∧ dxn

xn
. The isomorphism MA(δ) � Hn

dR is given
by the correspondence [1] 	→ [dx

x ]. Thus, any section φ of Hn
dR can be written as

φ = P · [dx
x ] for some linear differential operator P ∈ DY . We define the field

Q(δ) as the field extension Q(γ1, . . . , γk, c1, . . . , cn) of Q.

Theorem 2 [16]. Suppose that A as in (11) admits a unimodular regular trian-
gulation T and δ is non-resonant and γl /∈ Z. Then, for any P1, P2 ∈ Q(δ)〈z, ∂z〉,
the cohomology intersection number 〈P1· dx

x ,P2· dx
x 〉ch

(2π
√−1)n belongs to the field Q(δ)(z).

3 An Algorithm of Finding the Pfaffian System for a
Given Basis

In this section, we set β := −δ. With this notation, we put HA(β) := MA(δ).
This is because we use some results from [12] and [23] where the hypergeometric
ideal is denoted by HA(β) while our main references [15,16] denote it by MA(δ).

Let ωq be the differential form

k∏
l=1

h
−q′

l

l xq′′ dx

x
, q = (q′, q′′) ∈ Z

k × Z
n. (12)

It is known that there exists a basis of the twisted cohomology group of which
elements are of the form ωq when δ is generic (see, e.g., [13, Th 2]). Let {ωq | q ∈
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Q} be a basis of the twisted cohomology group. We will give an algorithm to
find the Pfaffian system ∂

∂zi
ω = Piω with respect to this basis ω = (ωq | q ∈ Q)T .

Note that algorithms to translate a given holonomic ideal to a Pfaffian system
are well known (see, e.g., [12, Chap 6]). However, as long as we know, algorithms
to find the Pfaffian system with respect to a given basis of twisted cohomology
group do not appear in the literature. Note that the pairing of the twisted
homology and cohomology groups is perfect under our assumption. Then, the
Pfaffian equation of the fundamental solution matrix of solutions of the GKZ
system can be regarded as a relation of the twisted cycles.

Put ∂i = ∂
∂zi

. In this subsection, we use • to denote the action to avoid a
confusion with the multiplication. The function 〈ωq〉 is a solution of the hyper-
geometric system HA(β − q). The main point of our method is of use of the
following contiguity relation

1
a′

i · (β − q)
∂i • 〈ωq〉 = 〈ωq′〉, q′ = q + ai (13)

where ai= a(i) is the i-th column vector of A and a′
i is the column vector that

the first k elements are equal to those of ai and the last n elements are 0. For
example, a′

1 = (1, 0, . . . , 0), a′
2 = (1, 0, . . . , 0), . . ., a′

N1+1 = (0, 1, 0, . . . , 0)T , . . .,
a′

N = (0, . . . , 0, 1)T . The relation (13) can be proved by differentiating 〈ωq〉 =∫
Γ

h
−γ1−q′

1
1 · · · h−γk−q′

k

k xc+q′′ dx
x , with respect to zi where we have β−q = (−γ1−

q′
1, . . . ,−γk − q′

k,−c1 − q′′
1 , . . . ,−cn − q′′

n)T .
In [23, Algorithm 3.2], an algorithm to obtain an operator Ci satisfying

Ci∂i − bi(β) = 0 mod HA(β) (14)

is given. The polynomial bi is a b-function in the direction i [23, Th 3.2]. Note
that the algorithm outputs the operator Ci in C〈z1, . . . , zN , ∂1, . . . , ∂N 〉, which
does not depend on the parameter β. Since 〈ωq〉 is a solution of HA(β − q), we
have the following inverse contiguity relation

a′
i · (β − q′′)
bi(β − q′′)

Ci • 〈ωq〉 = 〈ωq′′〉, q′′ = q − ai. (15)

Example 1. (Gauss hypergeometric function 2F1.) Put

A =

⎛
⎝1 1 0 0

0 0 1 1
0 1 0 1

⎞
⎠ (16)

Then, h1 = z1 + z2x, h2 = z3 + z4x. We have

〈ω(1,0,0)〉 =
∫

Γ

h−γ1
1 h−γ2

2 xc 1
h1

dx

x
. (17)

We can show that {ω(1,0,0), ω(1,0,0) −ω(0,1,0)} is a basis of the twisted cohomolgy
group. This A is normal and the b-function b4(s) ∈ Q[s1, s2, s3] for the direction
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z4 is b4(s) = s2s3. Then, C4 = z2z3∂1 + (θ2 + θ3 + θ4)z4 where θi = zi∂i by
reducing (θ3 + θ4)(θ2 + θ4) by the toric ideal IA = 〈∂2∂3 − ∂1∂4〉 (see Algorithm
3.2 of [23]).

Our algorithm to find a Pfaffian system with respect to a given basis of the
twisted cohomology group is as follows.

Algorithm 1. Input: {ωq | q ∈ Q}, a basis of the twisted cohomology group. A
direction (index) i.
Output: Pi, the coefficient matrix of the Pfaffian system ∂i − Pi.

1. Compute a Gröbner basis G of HA(β) in the ring of differential operators
with rational function coefficients. Let S be a column vector of the standard
monomials with respect to G.

2. Put

F (Q) = (F (q) | q ∈ Q)T , F (q) =
∏
ri<0

C−ri
i

∏
ri>0

∂ri
i

1
BB′ , q =

N∑
i=1

riai

(18)
It is a vector with entries in the ring of differential operators and the order
of the product is i = N,N − 1, . . . , 3, 2, 1. In other words, we apply operators
from ∂1. The polynomial B is derived from the coefficient of the contiguity
relation (15) and is equal to

B =
N∏

j=1,rj<0

bj(β′
j + aj)

a′
j · (β′

j + aj)
bj(β′

j + 2aj)
a′

j · (β′
j + 2aj)

· · · bj(β′
j + (−rj)aj)

a′
j · (β′

j + (−rj)aj)
, (19)

β′
j = β −

∑
rl>0

rlal +
j−1∑

l=1,rl<0

(−rl)al. (20)

The polynomial B′ comes from the denominator of the contiguity relation
(13) and is equal to

B′ =
N∏

j=1,rj>0

(
a′

j · (β′
j)

) (
a′

j · (β′
j − aj)

) · · · (a′
j · (β′

j − (rj − 1)aj)
)
, (21)

β′
j = β −

∑
rl>0,l<j

rlal. (22)

3. Compute the normal form of the vectors ∂iF (Q) and F (Q). Write the normal
forms of them as P ′S and P ′′S respectively where P ′ and P ′′ are matrices
with rational function entries.

4. Output Pi = P ′(P ′′)−1.

The matrix P ′′ is invertible if and only if the given set of differential forms {ωq}
is a basis of the twisted cohomology group.



80 S.-J. Matsubara-Heo and N. Takayama

We show the correctness of the algorithm. Take an element q ∈ Q. We express
〈ωq〉 in terms of 〈ω0〉, which is a solution of HA(β), by the contiguity relations
(13) and (15). Note that the contiguity relations for functions 〈ωq〉 give the
contiguity relations for cohomology classes [ωq] by virtue of the perfectness of
the pairing between the twisted homology and the twisted cohomology groups.
The point of the correctness is the following identity

F (q) • ω0 = ωq. (23)

Let us illustrate how to prove (23) by examples. We assume that q = 2a1 + a2
and N1 ≥ 2. Then ωq can be obtained by applying (13) with i = 1 for two times
and that with i = 2. We have

ωa1 =
1

a′
1 · β

∂1 • ω0, (24)

ω2a1 =
1

a′
1 · (β − a1)

∂1 • ωa1 , (25)

ω2a1+a2 =
1

a′
2 · (β − 2a1)

∂2 • ω2a1 . (26)

Thus, we obtain the numbers (21) and then (23). Let us consider the case that
q = −2a1−a2 and N1 ≥ 2. Then ωq can be obtained by applying (15) with i = 1
for two times and that with i = 2. Since 〈ω−a1〉 is a solution of HA(β + a1), we
have

[c1∂1 − b1(β + a1)] • ω−a1 = 0 (27)

from [23]. Then, we have

ω−a1 =
a′
1 · (β + a1)
b1(β + a1)

c1 • ω0, (28)

ω−2a1 =
a′
1 · (β + 2a1)
b1(β + 2a1)

c1 • ω−a1 , (29)

ω−2a1−a2 =
a′
2 · (β + 2a1 + a2)
b2(β + 2a1 + a2)

c2 • ω−2a1 . (30)

Thus, we obtain the numbers (19) and then (23). The general case can be shown
by repeating these procedures. When the normal form F (q) with respect to the
Gröbner basis G is

∑
p′′

i si where S = (si) and p′′
i is a rational function in z and

β, we have ωq = F (q) • ω0 =
∑

p′′
i si • ω0. The correctness of the last two steps

follows from this fact.

Example 2. This is a continuation of Example 1. We have (1, 0, 0)T = a1 and
(0, 1, 0)T = a3. Then, the basis of the twisted cohomology group F (Q) is
expressed as F (Q) = (∂1/β1, ∂1/β1−∂3/β2)T and ∂4F (Q) = (∂4∂1/β1, ∂4∂1/β1−
∂4∂3/β2)T . We can obtain a Gröbner basis whose set of the standard mono-
mials is {∂4, 1} by the graded reverse lexicographic order such that ∂i >
∂i+1. We multiply β1β2 to F (Q) and ∂4F (Q) in order to avoid ratio-
nal polynomial arithmetic. Then, the normal form, for example, of β2∂1 is
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1
z1z4−z2z3

(
(β1(β1 + β2)z4)∂4 − β2

2β3

)
. By computing the other normal forms, we

obtain the matrix

P4 =

( −β2(z3−z1)
z1z4−z2z3

β2z3
z1z4−z2z3−((β2z3+(−β2+β3)z1)z4+(β1−β3)z2z3−β1z1z2)

z4(z1z4−z2z3)
(β2z3+β3z1)z4+(β1−β3)z2z3

z4(z1z4−z2z3)

)
.

(31)

4 Implementation and Examples

We implemented our algorithms on the computer algebra system Risa/Asir [21]
with a Polymake interface. Polymake (see, e.g., [20,22]) is a system for polyhedral
geometry and it is used for an efficient computation of contiguity relations ([23,
Algorithm 3.2]). Here is an input2 to find the coefficient matrix P4 for Example
1 with respect to the variable z4 when z1 = z2 = z3 = 1 (note that in our
implementation x is used instead of z).
P4=pfaff_eq(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]],

Beta=[-gamma1,-gamma2,-c],

Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]],

Rvec = [[1,0,0,0],[0,0,1,0]],DirX=[dx4] //Rvec is the set of r’s in Algorithm 1.

| xrule=[[x1,1],[x2,1],[x3,1]],

cg=matrix_list_to_matrix([[1,0], [1,-1]]));//get Pfaffian sys for cg*(the basis omega_q)

It outputs the following coefficient matrix

P4 =

(
0 −γ2

x4−1
c

x4

(−c−γ2)x4+c−γ1
(x4−1)x4

)
(32)

Example 3. (3F2, see, e.g., [24, p.224], [19].) Let A =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 1 0 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠. The inte-

grals are ∫
Γ

(z1x1 + z2)−γ1(z3x2 + z4x1)−γ2(z5 + z6x2)−γ3xc1
1 xc2

2 ωi (33)

where

ω1 =
dx1dx2

(z1x1 + z2)x1x2
, ω2 =

dx1dx2

(z5 + z6x2)x1x2
, ω3 =

dx1dx2

(z3x2 + z4x1)x1x2
(34)

When z2 = −1, z3 = z4 = z5 = z6 = 1, the coefficient matrix for z1 for the basis
(〈ω1〉, 〈ω2〉, 〈ω3〉)T is

P1 =

⎛
⎜⎝

β4z1+β2+β3+β4+β5
z1(z1−1)

β3(β4−β1−β2)
β1z1(z1−1)

(−β4+1)β2(−β2+β4+β5+1)
β4β1z1(z1−1)

(β2+β3−β5)β1
β3(z1−1)

β1z1+β2−β4
z1(z1−1)

(−β4+1)β2(−β2+β4+β5+1)
β4β3z1(z1−1)

β4(β2+β3−β5)β1
(−β4+1)β2(z1−1)

β4β3(β1+β2−β4)
(−β4+1)β2(z1−1)

(−β2+β4+β5+1)
z1−1

⎞
⎟⎠ (35)

The result can be obtained in a few seconds.
2 The Algorithm 1 is implemented in saito-b.rr distributed at [25].
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5 An Algorithm of Finding the Cohomology Intersection
Matrix

Theorem 3 [16]. Given a matrix A = (aij) as in (11) admitting a unimod-
ular regular triangulation T . When parameters are non-resonant, γl /∈ Z and
moreover the set of series solutions by T is linearly independent, the intersec-
tion matrix of the twisted cohomology group of the GKZ system associated to the
matrix A can be algorithmically determined.

We denote by Ωi the coefficient matrix of Ω with respect to the 1-form dzi.
The algorithm we propose is summarized as follows.

Algorithm 2. (A modified version of the algorithm in [16]).
Input: Free bases {φj}j ⊂ Hn

dR �U , {ψj}j ⊂ Hn∨
dR �U which are expressed as

(12).
Output: The secondary equation (8) and the cohomology intersection matrix

Ich = (〈φi, ψj〉ch)i,j.

1. Obtain a Pfaffian system with respect to the given bases {φj}j and {ψj}j,
i.e., obtain matrices Ωi = (ωijk) and Ω∨

i = (ω∨
ijk) so that the equalities

∂iφj =
∑

k

ωikjφk, ∂iψj =
∑

k

ω∨
ikjψk (36)

hold by Algorithm 1.
2. Find a non-zero rational function solution I of the secondary equation

∂iI − tΩiI − IΩ∨
i = 0, i = 1, . . . , N. (37)

To be more precise, see, e.g., [4,5,18] and references therein.
3. Determine the scalar multiple of I by [15, Theorem 8.1].

Example 4. This is a continuation of Example 3. We want to evaluate the
cohomology intersection matrix Ich = (〈ωi, ωj〉ch)3i,j=1. By solving the sec-
ondary equation (for example, using [5]), we can verify that (1, 1), (1, 2), (2, 1),
(2, 2) entries of Ich are all independent of z1. Therefore, we can obtain the
exact values of these entries by taking a unimodular regular triangulation
T = {23456, 12456, 12346} and substituting z1 = 0 in [15, Theorem 8.1]. Thus,
we get a correct normalization of Ich and the matrix Ich

(2π
√−1)2

is given by

⎡
⎢⎢⎢⎣

r11
β4+β5

β5β4(β2−β4−β5)
β4+β5

β5β4(β2−β4−β5) r22
β4(β1+β2−β4−β5)z1−β5β3

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1)
−β4β1z1+β5(β2+β3−β4−β5)

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1)

β4(β1+β2−β4−β4)z1−β5β3
β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)

−(β4β1z1−β5β2−β5β3+β5β4+β2
5)

β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)
r33

⎤
⎥⎥⎥⎦ (38)
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where

r11 = − (β4β2 + (β4 + β5)β3)β1 + β4β2
2 + (β4β3 − β2

4 − β5β4)β2 + (−β2
4 − β5β4)β3

β5β4β1(β2 − β4 − β5)(β2 + β3 − β5)
(39)

r22 = − (β5β2 + (β4 + β5)β3 − β5β4 − β2
5)β1 + β5β

2
2 + (β5β3 − β5β4 − β2

5)β2

β5β4β3(β2 − β4 − β5)(β1 + β2 − β4)
(40)

r33 = − β4{a0z1
2−2β1β3β4β5z1+a2}

β5β2(β4−1)(β4+1)(β2−β4−β5)(β2−β4−β5−1)(β2−β4−β5+1) (41)

a0 = (β1β2 − β1β5 + β2
2 − β2β4 − 2β2β5 + β4β5 + β5

2)β1β4 (42)

a2 = (β2
2 + β2β3 − 2β2β4 − β2β5 − β3β4 + β4

2 + β4β5)β3β5 (43)

Example 5. Let A =

⎛
⎝1 1 1 1 1

0 1 0 2 0
0 0 1 0 2

⎞
⎠. The integrals are

∫
Γ

h−γ1
1 xc1

1 xc2
2 ωi, h1 = z1 + z2x1 + z3x2 + x4x

2
1 + z5x

2
2 (44)

where

ω1 =
dx1dx2

x1x2
, ω2 = x1ω1 =

dx1dx2

x2
, ω3 = x2

2ω1 =
x2dx1dx2

x1
, ω4 = x1x2ω1 = dx1dx2. (45)

Note that this A is not normal. When z1 = z4 = z5 = 1, we have obtained the
coefficient matrices P2 and P3 in about 9 h 45 min on a machine with Intel(R)
Xeon(R) CPU E5-4650 2.70 GHz and 256 GB memory. The (1, 1) element of P2

is
((b2z22 + b123)z23 + b2z

4
2 + b132z

2
2 − 32b1 + 16b2 + 16b3 − 16)

z2(z2 − 2)(z2 + 2)(z23 + z22 − 4)
(46)

where b1 = −γ1, b2 = −c1, b3 = −c2 and bijk = 8bi − 4bj − 8bk + 4. A complete
data of P2 and P3 is at [25]. The intersection matrix can be obtained by [5] in
a few seconds when we specialize bi’s to rational numbers. See [25] as to Maple
inputs for it.

References

1. Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke
Math. J. 73, 269–290 (1994)

2. Aomoto, K., Kita, M.: Theory of Hypergeometric Functions. Springer, Tokyo
(1994). https://doi.org/10.1007/978-4-431-53938-4. (in Japanese)

3. Aomoto, K., Kita, M.: Theory of Hypergeometric Functions. Springer, Tokyo
(2011). (English translation of [2])

4. Barkatou, M.: On rational solutions of systems of linear differential equations. J.
Symb. Comput. 28, 547–567 (1999)

https://doi.org/10.1007/978-4-431-53938-4


84 S.-J. Matsubara-Heo and N. Takayama

5. Barkatou, M., Cluzeau, T., El Bacha, C., Weil, J.-A.: IntegrableConnections
– a maple package for computing closed form solutions of integrable con-
nections (2012). https://www.unilim.fr/pages perso/thomas.cluzeau/Packages/
IntegrableConnections/PDS.html

6. Cho, K., Matsumoto, K.: Intersection theory for twisted cohomologies and twisted
Riemann’s period relations I. Nagoya Math. J. 139, 67–86 (1995)
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