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1 Introduction

Hilbert’s 16th problem asks about topological constraints for real algebraic
hypersurfaces in projective space. In the 1980s Viro developed patchworking
as a combinatorial method to construct real algebraic hypersurfaces with unusu-
ally large Z2-Betti numbers [14–17]. A major breakthrough of this idea was
Itenberg’s refutation of Ragsdale’s Conjecture [9]. Today patchworking is most
naturally interpreted within the larger framework of tropical geometry [12]. In
this way patchworking is a combinatorial avenue to real tropical hypersurfaces.

Here we report on a recent implementation of patchworking and real tropical
hypersurfaces in polymake [1], version 4.1 of June 2020. The first software for
patchworking that we are aware of is the “Combinatorial Patchworking Tool” [4],
which works web-based and is restricted to the planar case. A second implemen-
tation is Viro.sage [18] which is capable of patchworking in arbitrary dimension
and degree. Our implementation has the same scope as Viro.sage but it is supe-
rior in two ways. First, it naturally ties in with a comprehensive hierarchy of
polyhedral objects in polymake; e.g., this allows for a rich choice of construc-
tions of real tropical hypersurfaces. Second, our implementation is more efficient.
This is demonstrated by several experiments with curves and surfaces of vari-
ous degrees. As a new mathematical contribution we provide a census of Betti
numbers of real tropical surfaces.

1.1 Tropical Hypersurfaces in TP
n−1

Let f =
⊕

v∈V cv � xv ∈ T[x1, . . . , xn] be a tropical polynomial where V is
a finite subset of Z

n. We use the multi-index notation xv = xv1
1 · · · xvn

n , and
T = R∪ {∞}, ⊕= min and �=+. The tropical hypersurface T (f) is the tropical
vanishing locus of f , i.e., the set of points in R

n, where the minimum of the
evaluation function x �→ f(x) is attained at least twice. Throughout we will
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assume that f is homogeneous of degree d, i.e., for each v ∈ V we have v1 + · · ·+
vn = d. In that case T (f) descends to the tropical projective torus R

n/R1, where
1 = (1, . . . , 1). The Newton polytope of f is N (f) = conv V , and the coefficients
of f induce a regular subdivision, S(f). The latter is dual to T (f). We refer to
[12] and [3] for further details.

The tropical projective space TPn−1 = (Tn−{∞1})/R1 compactifies Rn/R1.
It is naturally stratified into lower dimensional tropical projective tori, marked
by those coordinates which are finite. In this way the pair (TPn−1,Rn/R1) is
naturally homeomorphic with an (n−1)-simplex and its interior. Often we will
identify the tropical hypersurface T (f) with its compactification in TP

n−1.

1.2 Viro’s Patchworking

The following is essentially a condensed version of [13, §3.1], with minor varia-
tions. A sign distribution ε ∈ Z

V
2 can be symmetrized to the function

sε : Zn
2 → Z

V
2 , sε(z)(v) := ε(v) + 〈z, v〉 mod 2.

As in [6] we choose our signs in Z2 = {0, 1}, which corresponds to ±1 via
z �→ (−1)z. Further, the elements z ∈ Z

n
2 are in bijection with the 2n orthants

of Rn via z �→ pos{(−1)z1e1, . . . , (−1)znen}, where e1, . . . , en are the standard
basis vectors of R

n, and pos(·) denotes the nonnegative hull. We will use this
identification throughout and, consequently, we call z itself an orthant.

The tropical hypersurface T (f) is a polyhedral complex in TP
n−1, and its

k-dimensional cells are dual to the (n−1−k)-cells of S(f). In particular, each
maximal cell F of T (f) corresponds to an edge, V (F ) ⊂ V , of S(f). We write
Tn−2 for the set of maximal cells (which are (n−2)-dimensional polyhedra) and
denote powersets as P(·).

Note that there are no (n−2)-cells of T (f) in the boundary TP
n−1 −R

n/R1.
The real phase structure on T (f) induced by ε is the map

φε : Tn−2 → P(Zn
2 ) , F �→ {z ∈ Z

n
2 | sε(z)(v) �= sε(z)(w)} for {v, w} = V (F ).

That is, for each maximal cell F of T (f) this describes the set of orthants, in
which the symmetrized sign distribution takes distinct values on the two vertices
of the dual edge V (F ) in S(f). This extends to all cells G of T (f) by setting
φε(G) :=

⋃
φε(F ), where the union is taken over all maximal cells F ∈ Tn−2

containing G. The pair Tε(f) = (T (f), ε) is a real tropical hypersurface.
Let z, defined by zi = 1 − zi, be the antipode of z ∈ Z

n
2 . We define an

equivalence relation ∼ on Z
n
2 × TP

n−1, which identifies copies of TPn−1 along
common strata, by letting

(z, x) ∼ (z′, y) : ⇐⇒ x = y and
(
z = z′ or (xi = ∞ = yi ⇔ zi = 1 = z′

i)
)
.

This identifies {z} × TP
n−1 and {z} × TP

n−1 one to one for each z. It follows
that the quotient (Zn

2 ×TP
n−1)/∼ is homeomorphic to the real projective space

RP
n−1. Combinatorially that construction can be seen as follows: the union of
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Fig. 1. Real tropical elliptic curve (left) and its real part (right)

the 2n simplices conv{(−1)z1e1, . . . , (−1)znen}, where z ranges over all orthants,
gives the boundary of the regular cross polytope conv{±e1, . . . ,±en} in R

n.
Taking the quotient modulo antipodes yields RP

n−1.
The real part of the real tropical hypersurface Tε(f) = (T (f), ε), denoted

RTε(f), is now defined as the collection of polyhedral complexes in Z
n
2 × TP

n−1

consisting of the polyhedra
{
{z} × F | F ∈ Tn−2 and z ∈ φε(F )

}

and their faces. Note that {z} × F ∈ RTε(f) if and only if {z} × F ∈ RTε(f),
and hence we may restrict to the part of RTε(f) in ({0} × Z

n−1
2 ) × TP

n−1.
To avoid cumbersome notation and language we call the quotient of RTε(f)

by ∼ also the real part of Tε(f) and use the same symbol, RTε(f). In this way
RTε(f) becomes a piecewise linear hypersurface in RP

n−1 ≈ Z
n
2 × TP

n−1/∼.
The above construction is relevant for its connection with real algebraic

geometry. To simplify the exposition we now consider a special case: Setting
Δn−1 = conv{e1, . . . , en}, we assume that the set V = d ·Δn−1 ∩Z

n is the set of
lattice points in the dilated unit simplex. This entails that the projective toric
variety generated from V is the (complex) projective space CPn−1. The following
result comes in various guises; this version occurs in [15] and [8, Proposition 2.6].

Theorem 1 (Viro’s combinatorial patchworking theorem). Let f be a
homogeneous tropical polynomial of degree d with support V = d · Δn−1 ∩ Z

n.
Then, for each sign distribution ε ∈ Z

n
2 , there exists a nonsingular real algebraic

hypersurface X in CP
n−1, also with Newton polytope N (f) = d · Δn−1, such

that

(Zn
2 × TP

n−1/∼, RTε(f)) isZ2-homologous to (RPn−1, RX).

If additionally S(f) is unimodular, i.e., each simplex has normalized volume
one, this is “primitive patchworking”. In the primitive case stronger conclusions
hold [13,16]. The notion “combinatorial patchworking” refers to the condition
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N (f) = d·Δn−1. This is what our implementation supports, for arbitrary degrees
and dimensions. More general results require to carefully take into account the
toric geometry of N (f).

Example 2. With n = d = 3 we consider the tropical polynomial

f = x3 ⊕ 1x2y ⊕ 1x2z ⊕ 4xy2 ⊕ 3xyz ⊕ 4xz2 ⊕ 9y3 ⊕ 7y2z ⊕ 7yz2 ⊕ 9z3

in T[x, y, z], where we omit ‘�’ for improved readability. The tropical hyper-
surface T (f) is the tropical elliptic curve in R

3/R1 in Fig. 1 (left). The sign
distribution ε = (0, 1, 0, 1, 1, 1, 1, 0, 1, 1) yields a real tropical curve with real
part in Z

3
2 ×TP

2/∼ which has two components; cf. Fig. 1 (right). This primitive
patchwork corresponds to a classical Harnack curve of degree 3; cf. [9, Sec. 5].

2 Betti Numbers from Combinatorial Patchworking

Our goal is to exhibit a census of Betti numbers of real tropical surfaces in
Z
4
2×TP

3/∼. Throughout the following let f be a tropical polynomial of degree d
in n = 4 homogeneous variables; we will assume that S(f) is a regular and full
triangulation of V = d ·Δ3 ∩Z

4. That is, we focus on combinatorial patchworks.
A triangulation of V is full if it uses all points in V ; a unimodular triangulation
is necessarily full. While the converse holds in the plane, there are many more
full triangulations of d · Δ3 than unimodular ones if d ≥ 3. Further, with

k :=
1
6
d3 + d2 +

11
6

d + 1, (1)

which is the cardinality of V , we pick a sign vector ε ∈ Z
k
2 . This gives rise to a

real algebraic surface X in CP
3 whose real part RX is “near the tropical limit”

RTε(f) in the sense of [13]. Itenberg [6, Theorems 3.2/3.3] showed that the Euler
characteristic satisfies

χ(RX) ≥ 4d − d3

3
, (2)

with equality attained in the primitive/unimodular case. Moreover, by [6, The-
orem 4.2],

b1(RX) ≤ 2d3 − 6d2 + 7d

3
, (3)

where bq(·) are Z2-Betti numbers; see also [7] for bounds without the fullness
assumption. However, if S(f) is even unimodular then, by [6, Theorem 4.1],

b0(RX) ≤
(

d − 1
3

)

+ 1. (4)

See Table 1 for explicit numbers in the range which is relevant for our experi-
ments. The main result of [13] furnishes a vast generalization of (4) to arbitrary
dimensions.
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Table 1. Bounds for Euler characteristic and Betti numbers, depending on the degree d.
The values k, χ′, b′

0 and b′
1 are the right hand sides of (1), (2), (4) and (3), respectively.

d k χ′ b′
0 b′

1

3 20 −5 1 7

4 35 −16 2 20

5 56 −35 5 45

6 84 −64 11 86

Example 3. The subdivision S(f) induced by the tropical polynomial

f = 5x3 ⊕ 1x2y ⊕ 1xy2 ⊕ 5y3 ⊕ 2x2z ⊕ 0xyz ⊕ 2y2z

⊕ 0xz2 ⊕ 0yz2 ⊕ 1z3 ⊕ 2x2w ⊕ 0xyw ⊕ 2y2w ⊕ 1xzw

⊕ 1yzw ⊕ 1z2w ⊕ 3xw2 ⊕ 3yw2 ⊕ 4zw2 ⊕ 8w3

is a full triangulation of 3 · Δ3 which is not unimodular. Its f -vector reads
(20, 60, 64, 23), and its automorphism group is of order 6. The sign distribution

ε = (0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0)

yields a real tropical surface RTε(f) whose real part has Betti vector (2, 1, 2)
(Fig. 2).

Fig. 2. The real part of a cubic surface with Betti vector (2, 1, 2). There are three affine
sheets, of which the outer two account for one connected component in RP

3, which is
homeomorphic to S

2; the middle sheet forms a component homeomorphic to RP
2.
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Fig. 3. Distribution of Betti vectors for surfaces of degrees 3 and 4. The colors indicate
values for b0 = b2, the values on the x-axis indicate values for b1. For d = 3 the most
frequent vector is (1, 7, 1) with 67.52%. For d = 4 it is (1, 10, 1) with 19.86%.

2.1 Combinatorial Description of the Homology

The polyhedral description of RTε(f) directly gives a combinatorial description
of the homology; see also [13, Proposition 3.17]. The cellular chain modules read

Cq(RTε(f);Z2) =
⊕

σ cell of Tε(f),dimσ=q

⎛

⎝
⊕

z∈φε(σ)

Z
{σ×{z}}
2

⎞

⎠ (5)

and ∂(σ×{z}) = ∂(σ)×{z} defines the boundary maps. In fact this construction
is a special case of a cellular (co-)sheaf [11]. Algorithmically it is beneficial that
this does not require the geometric construction of RTε(f).

2.2 A Census of Betti Numbers of Real Tropical Surfaces

We used mptopcom [10] to compute regular and full triangulations of d · Δ3 for
3 ≤ d ≤ 6, which are not necessarily unimodular. For d = 3 the total number
of such triangulations is known to be 21 125 102 [10, Table 3], up to the natural
action of the symmetric group S4. For higher degrees the corresponding numbers
are unknown and probably out of reach for current hard- and software. Still we
can compute some of those triangulations, for each degree.

Our experiments suggest that, in order to see many different Betti vectors
(b0, b1, b0), it is preferable to look at many different triangulations. This is feasible
for degrees 3 and 4, where we created 1 000 000 and 100 000 orbits of triangula-
tions, respectively. Each of them was equipped with 20 sign distributions which
were picked uniformly at random; cf. Fig. 3. For d = 3 we obtain all values for
b1 which are allowed by (3) if the surface is connected (i.e., b0 = 1). Addition-
ally, 965 times we saw the Betti vector (2, 1, 2); cf. Example 3. In view of (4)
this occurs for non-unimodular triangulations only; all our examples of this kind
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Fig. 4. Distribution of Betti vectors for surfaces of degrees 5 and 6. The colors indicate
values for b0 = b2, the values on the x-axis indicate values for b1. For d = 5 the most
frequent vector is (1, 35, 1) with 21.9%. For d = 6 it is (1, 52, 1) with 18.97%.

share the same f -vector (20, 60, 64, 23). For d = 4 all the possible Betti vectors
occur; cf. (2) and (3).

The case of d = 5 turned out to be surprisingly difficult. In our standard
setup mptopcom quickly produced about a hundred full and regular triangulations
before it stalled. mptopcom’s algorithm employs a very special search through
the flip graph of the point configuration, and it finds all regular triangulations
plus some non-regular ones connected by a sequence of flips. Apparently, most
neighbors to our first 100 triangulations of 5 · Δ3 are not regular or not full.
As we were interested in exploring many different Betti vectors, we created a
second sample of triangulations; to this end we employed a random walk on the
flip graph of 5 · Δ3. After eliminating multiples, this gave an additional 13 000
regular and full triangulations. On each of the resulting 13 100 triangulations we
tried 500 random sign distributions; cf. Fig. 4 (left) for the combined statistic.
For d = 6 we checked 1 500 triangulations with 500 sign distributions each; cf.
Fig. 4 (right).

No matter how hard we try we will only see a tiny fraction of all possible real
tropical surfaces of higher degrees. So the distributions for d = 5 and d = 6 may
not even be close to the “truth”. Yet for d = 5 we observed b1 = 43, whereas
b′
1 = 45; cf. Table 1. We found 61 triangulations of 5 · Δ3 with five components,

none of which were unimodular. The maximal number of components in the
unimodular case was four. For d = 6 our census is way off the theoretical bounds.

3 Implementation in polymake

polymake is a comprehensive software system for polyhedral geometry and
related areas of mathematics [1]. Mathematical objects like tropical hyper-
surfaces are determined by their properties. Upon a user query the system
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directly returns a property (e.g., a tropical polynomial or the dual polyhedral
subdivision) if it is known, or it computes it by applying a sequence of rules.
Subsequently, the property asked for becomes known, along with any interme-
diate results. Throughout the life of such a big object the number of properties
grows; objects, with their properties, can be saved and loaded again. The latter
is useful, e.g., for processing data on a cluster and examining them on a laptop
later.

The computation which is relevant here takes a tropical polynomial f (such
that the Newton polytope N (f) is a dilated simplex) and a sign distribution ε
as input and computes the Z2-Betti numbers of the real part RTε(f) of the real
tropical hypersurface Tε(f). The individual steps are: (i) find the maximal cells
of T (f) via a dual convex hull computation; (ii) compute the Hasse diagram of
the entire face lattice of T (f); (iii) construct the chain complex (5) from that
Hasse diagram; (iv) compute ranks of the boundary matrices mod 2. Each step
is implemented as a separate rule, which makes the code highly modular and
reusable. In particular, the only nontrivial implementation which is really new
is step (iii).

We wish to give some details about the first two steps. Often the dual convex
hull computation is the most expensive part. For this polymake has interfaces to
several algorithms and implementations, the default being PPL [2] which is also
used here. In general, it is difficult to predict which algorithm performs best;
see [1] for extensive convex hull experiments. The computation of the Hasse
diagram uses a combinatorial procedure whose complexity is linear in the size
of the output, i.e., the total number of cells of the tropical hypersurface; cf. [5].

3.1 Running Times

To compare the running times of Viro.sage and polymake for computing the
Betti numbers of patchworked hypersurfaces we conducted two experiments, one
for Harnack curves and one for surfaces. All computations were carried out on
an AMD Phenom II X6 1090T (3.2 GHz, 38528 bmips).

For the Harnack curves, where we have just one curve per degree (the cubic
case is Example 2), we repeated the same computation ten times each. Figure 5
(left) shows the mean running time depending on the degree. The Viro.sage
code showed a rather wide variety, while the polymake computations gave almost
identical running times for each test.

The experiment for the surfaces is slightly different in that both the tropical
polynomials (and triangulations) and the sign distributions were varied. For
degrees 3, 4, 5, and 6 we took the first 2000, 1000, 100, and 75 triangulations (as
enumerated by mptopcom), respectively, and measured the running time for 10
random sign distributions each. Figure 5 (right) shows a box plot for each degree.
The boxes indicate the 2nd and 3rd quartiles, the whiskers mark the minimum
and maximum time measurements, excluding outliers (i.e., measurements whose
ratio to the median is either bigger than 4, or smaller than 0.25), which are
marked separately. Again Viro.sage exhibits a much greater variety of running
times than polymake.
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Fig. 5. Time taken to compute Betti numbers (in seconds). Left: Harnack curves,
average time by degree. Right: various surfaces, boxplots for each degree.

4 Conclusion

We have shown that our new implementation is capable of determining the Z2-
Betti numbers of a patchworked surface of moderate degree within a few seconds.
This allows for providing a rich census.

One major reason for polymake being faster than Viro.sage [18] is that
we avoid the explicit construction of a simplicial complex model of RTε(f).
Moreover, polymake computes Z2 Betti numbers directly, while Viro.sage goes
through a standard homology computation with integer coefficients. polymake
provides geometric realizations (and integral homology), too, but this is unnec-
essary here.
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