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Abstract. This paper is devoted to the program Generation which
is a self-containing console application for classification of linear codes.
It can be used for codes over fields with q < 8 elements and with wide-
range parameters. The base of the implemented algorithm is the concept
of canonical augmentation.
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1 Introduction

The classification problem of linear codes is important and difficult. Com-
puter algorithms have been used to find the best linear codes for given length
and dimension. There are many computational results for classification of lin-
ear codes over finite fields (see for example [3,12,13]), but there is not much
related software available (for example Magma [4], GUAVA [1], Orbiter [2],
Q-Extension [5]). Our paper is a contribution to this research.

The system QextNewEdition is a software package consisting of several
user interface programs for classification of linear codes over finite fields, along
with the necessary supporting functions. Here we describe the program Gener-
ation for classification of linear codes over fields with q < 8 elements and with
wide-range parameters. Despite its simple interface, it allows a lot of restrictions
on the considered codes. It gives the possibility to classify not only codes with
fixed parameters but also all codes with a given length n and dimensions from
k0 to k for given integers 1 ≤ k0 ≤ k. To use the program, a knowledge of a
programming language is not needed. This program is supported by many differ-
ent basic functions which implement complicated (in some cases) algorithms and
has specific data organizations. The most important of these functions give the
minimum distance, a list of codewords with weights smaller than a given inte-
ger (for large dimensions Brouwer-Zimmerman algorithm is applied), canonical
form, automorphism group.
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This paper tries to give answers to the following questions:

– What type of algorithms are implemented and why they allow parallel imple-
mentation?

– What is the data organization?
– What is the difference with the previous version?
– How can the interface be used to enter parameters and what type of restric-

tions are possible and suitable for different cases?
– What can be expected from the program?

The remaining part of the paper is organized as follows. Section 2 contains
the needed definitions. In Sects. 3 and 4 we describe the main algorithms in the
program Generation and its basic functions and data organization, respec-
tively. Sections 5 and 6 answer the questions how we can use Generation for
code classification and what can be expected from the program. Finally, we draw
a brief conclusion in Sect. 7.

2 Basic Definitions

In this section we present some definitions following [11]. Let F
n
q denote the

vector space of n-tuples over the q-element field Fq. A q-ary linear code C of
length n and dimension k, or an [n, k]q code, is a k-dimensional subspace of Fn

q .
A k × n matrix G whose rows form a basis of C is called a generator matrix of
C. The number of nonzero coordinates of a vector x ∈ F

n
q is called its Hamming

weight wt(x). The Hamming distance d(x,y) between two vectors x,y ∈ F
n
q is

defined by d(x,y) = wt(x − y). The minimum distance of a linear code C is

d(C) = min{d(x,y) | x,y ∈ C,x �= y} = min{wt(c) | c ∈ C, c �= 0}.

A q-ary linear code of length n, dimension k and minimum distance d is said to
be an [n, k, d]q code. Let Ai denote the number of codewords in C of weight i.
Then the n + 1-tuple (A0, . . . , An) is called the weight spectrum of the code C.

An inner product (x,y) of vectors x,y ∈ F
n
q defines orthogonality: Two

vectors are said to be orthogonal if their inner product is 0. The set of all vectors
of Fn

q orthogonal to all codewords in C is called the orthogonal code C⊥ to C:

C⊥ = {x ∈ F
n
q | (x,y) = 0 for any y ∈ C}.

It is well-known that the code C⊥ is a linear [n, n−k]q code. If C ⊆ C⊥, the code
C is called self-orthogonal. Self-orthogonal codes with n = 2k are of particular
interest, then C = C⊥ and these codes are called self-dual.

The program Generation has an option for classification of self-orthogonal
codes over fields with 2, 3 and 4 elements. In the binary and ternary cases, we
consider Euclidean inner product defined by u ·v = u1v1+u2v2+ · · ·+unvn ∈ Fq

for u = (u1, u2, . . . , un), and v = (v1, v2, . . . , vn). For q = 4 the considered inner
product is the Hermitian inner product defined by u · v = u1v

2
1 + u2v

2
2 + · · · +

unv2
n ∈ F4 where u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) ∈ F

n
4 .

Two linear q-ary codes C1 and C2 are said to be equivalent if the codewords of
C2 can be obtained from the codewords of C1 via a sequence of transformations
of the following types:
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1. permutation of coordinates;
2. multiplication of the elements in a given coordinate by a nonzero element of

Fq;
3. application of a field automorphism to the elements in all coordinates simul-

taneously.

This equivalence may not preserve self-orthogonality over fields with q ≥ 5
elements, for that reason we exclude the classification of self-orthogonal codes
over fields with 5 and 7 elements.

An automorphism of a linear code C is a sequence of such transformations
that maps each codeword of C onto a codeword of C. The automorphisms of a
code C form a group, called the automorphism group of the code and denoted
by Aut(C).

Practically, we will identify a linear code with its generator matrix. We
consider the code classification problem as follows. Given a set of parameters
q, n, k, d find generator matrices of all inequivalent [n, k, d] q-ary codes. In geo-
metrical aspect, we can define an [n, k, d]q code C as a multiset of n points in
PG(k − 1, q) such that (a) each hyperplane of PG(k − 1, q) meets C in at most
n − d points and (b) there is a hyperplane meeting C in exactly n − d points.
This definition is equivalent to the one given in [9].

Codes which are equivalent belong to the same equivalence class. Every code
can serve as a representative for its equivalence class. We use the concept for a
canonical representative, selected on the base of some specific conditions.

Let G be a group that acts on a set Ω. This action defines an equivalence
relation in Ω as two elements X,Y ∈ Ω are equivalent, X ∼= Y , if they belong
to the same orbit. A canonical representative map for this action is a function
ρ : Ω → Ω that satisfies the following two properties: (1) for all X ∈ Ω it holds
that ρ(X) ∼= X; (2) for all X,Y ∈ Ω it holds that X ∼= Y implies ρ(X) = ρ(Y ).
We take Ω to be the set of all linear [n, k]q codes. For a code C ∈ Ω, the code
ρ(C) is the canonical form of C with respect to ρ. Analogously, C is in canonical
form if ρ(C) = C. The code ρ(C) is the canonical representative of its equivalence
class with respect to ρ. Let γC : C → ρ(C) maps the code C to its canonical
form, or γC(C) = ρ(C). According to the definition given above, γC induces a
permutation of the coordinates which we denote by πC . The permutation πC

defines an ordering of the coordinates and the orbits of C with respect to the
action of Aut(C).

To find the canonical form and the automorphism group of C, we need a
sufficiently large set M(C) of codewords of the code C (we will call it sufficient
set) with the following properties:

– M(C) generates the code C;
– M(C) is stable with respect to Aut(C);
– if C ′ ∼= C ′′ and ψ(C ′) = C ′′ then ψ(M(C ′)) ≡ M(C ′′), ψ ∈ G.

This set is not uniquely determined. Usually, we can accept as a sufficient set
the set of all codewords with minimum weight. If the rank of this set is smaller
than the dimension of the code, a larger set of codewords is used.
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3 Main Algorithms in the Program Generation

In the program Generation any linear code is represented by its generator
matrix. The program has two main parts. The first one implements a construc-
tion method for generator matrices. This method is based on row by row back-
tracking with k×k identity matrix as a fixed part. In the m-th step the considered
matrices have the following form

G = (Ik A′) =
(

Im O Am

O Ik−m X

)

where the columns of the matrix Am are lexicographically ordered, and X is the
unknown part of G. In that case any vector vm of length n− k which fits for the
m-th row of Am strictly depends on one of the vectors put on the previous rows.
Consider, for example, the binary case. If m = 1 there are only two options for
columns of matrix A1, namely 0 and 1, four options for m = 2, namely (00)T ,
(01)T , (10)T and (11)T , and so on. Let the matrix Am−2 already be constructed.
We define a set Tm−1 of all suitable vectors for the last row in the next matrix
Am−1. Taking vm−1 ∈ Tm−1, we obtain the matrix Am−1. The vector vm−1

defines an ordered partition Πvm−1 of the set S = {k + 1, k + 2, . . . , n}. The
possibilities for the next m-th row correspond to the refinement partitions of
Πvm−1 induced by the vectors in Tm−1.

Example 1. Let us try to construct all [11, 3, 6] binary even codes taking their
generator matrices in a systematic form: G = (I3|X). Any row in the unknown
matrix X must have 5 or 7 nonzero coordinates. For the set T1 we have T1 =
{(00011111), (01111111)}. The current possible matrices G are

⎛
⎝100 00011111

010 X
001

⎞
⎠ , and

⎛
⎝100 01111111

010 X
001

⎞
⎠ .

Take v1 = (00011111). The vector v1 induces the partition Πv1 = {{1, 2, 3}, {4,
5, 6, 7, 8}} and the set T2 = {t1 = (01100111), t2 = (11100011), t3 = (1110
1111)}. Let fix v2 = t1,

A2 =
(
0 00 11 111
0 11 00 111

)
and G =

⎛
⎝100 00011111

010 01100111
001 X

⎞
⎠ .

Then Πv1,v2 = {{1}, {2, 3}, {4, 5}, {6, 7, 8}}. Now we have to find the solutions
for the last row. The first vector t1 ∈ T2 and Πv1 give the information that
we have to put two 1’s in the first three coordinate positions, and three 1’s in
the last 5 positions. We obtain the following possibilities (taking in mind also
the lexicographical ordering and the partition Πv1,v2) (01100111), (01101011),
(01111001), (10100111), (10101011), (10111001). Only the last two vectors give
[11, 3, 6] even codes (the other four codes have minimum distance ≤ 4). In the
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same way we consider the second and the third vectors in T2. By exhausting all
possibilities in this way, we get all inequivalent codes we are looking for.

As a result, we obtain only one (up to equivalence) binary even [11, 3, 6] code.
This example explains the construction part given above.

There are several advantages of this approach:

– the number of equivalent candidates in the search tree becomes smaller,
– the construction of generator matrices is very effective,
– it allows us to consider codes with relatively large length - more than a hun-

dred in the binary case.

Moreover, this construction is also appropriate to the other part of the program
that determines inequivalent objects. In fact, this has been a key idea in the pack-
age Q-Extension (more detail for this approach and the implementation can
be found in [8]). To the rest of construction part we add functions for minimum
and dual distances, orthogonality check and restrictions on weights.

The second part of the program is related to the identification of non-
equivalent objects in the whole generation process. The general method which
we apply is known as canonical augmentation [13,14]. Description for this spe-
cific case is given in [6]. The basic idea is to accept only non-equivalent objects
without an equivalence test (in some cases with a small number of tests) at every
step of the generation process. Instead of an equivalence test, a canonical form
of the objects and a canonical ordering of orbits are used. So for every vector
vm in the construction that fits as a m-th row (we call these vectors possible
solutions), the algorithm decides acceptance (possible solution becomes real) or
rejection. In this model, the different branches of the search tree are independent
and therefore it is easy for parallel implementation.

The main algorithms are developed by the basic functions of the package.
Some of them are presented in the next section.

4 Basic Functions and Data Organization

To present the basic functions used in the program Generation, we have to give
some information for the whole package QextNewEdition. It contains several
hierarchically ordered modules with functions written in C/C++. Each module
depends on the previous one and makes it possible to realize the functions of the
next one. The interface programs (like Generation) stays on the top of this
hierarchy.

The first module deals with the safe allocation of dynamic memory for the
whole package. The main structures of the package are matrices (two dimensional
arrays) of different types. These structures are used to store generator matrices,
check matrices, sets of generator matrices with non-intersecting information sets,
sets of all or some of the codewords of considered linear codes, sufficient sets,
their corresponding binary matrices, the canonical forms and so on. The concept
of the package is to investigate linear codes one by one (in consecutive execution).
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Therefore, it is convenient to use some global variables. The size of the dynamic
variables for different types of data related to linear codes changes when the main
function considers the next object. In the beginning, the first module allocates
memory for the first object. If this memory is not enough for some of the following
objects, it allocates more memory by default.

The second module consists of functions related to the rank of a system of
codewords, information set, orthogonal code, construction of different generator
matrices (with non-intersecting information sets), etc.

The following module is related to functions for generating some or all code-
words. They give minimum distance, weight spectrum, sufficient set of code-
words, coset leaders, etc. We use two general approaches for calculating the
weight characteristics of linear codes. One of them is exhaustive search (for
small dimensions only) and the other is based on Brouwer-Zimmerman algo-
rithm. Many of the functions check if the minimum distance, weight spectrum
and other distance parameters are suitable.

A very important part of the package is the module for canonical form and
automorphism group. The central object here is the (0,1)-matrix or bipartite
graph. The main function in this module obtains canonical form, generators of
the automorphism group and orbits of rows and columns (and their ordering)
of a given binary matrix. For a linear code C, we use sufficient set M(C) of
codewords and invertible mapping of this set to a binary matrix T (C) (see [7]).
If two codes C1 and C2 are equivalent their corresponding binary matrices T (C1)
and T (C2) are isomorphic. Moreover, the automorphism groups of C and T (C)
are isomorphic, too.

5 How Can We Use the Program for Code Classification?

In this section, we show how the program Generation can be used with exam-
ples. Let us consider the binary codes with parameters [24, 7, 10]. It is known
that there are 6 inequivalent codes with these parameters [12].

After starting, Generation gives us the following by default:

Generating Linear Codes (Generation v1.1 QextNewEdition first module)
Generate [24,12,8;2] Linear codes
With weights:

wt1= 8, wt2= 12, wt3= 16, wt4= 20, wt5= 24,
Proportional columns:

d2->800, d3->800, d4->800, d5->800, d6->800, d7->800, d8->800,
d9->800, d10->800, d11->800, d12->800,

1. Start
2. Change input parameters
3. Restriction on weights
4. Restriction on proportional coordinates
5. Dual distance 1
6. Brute generation
7. About QextNewEdition
8. Exit
Choose:
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To obtain the generator matrices of all 6 inequivalent binary [24,7,10] codes
in the file with name 24_7_10.2 we just have to choose point 2, enter the param-
eters and start the calculations choosing 1. The generator matrices of all inequiv-
alent codes obtained in the generation process (157 in our case) will be written in
a file with name 24_7_10.2h. They correspond to all real solutions for k �= 1, 7.
The table of optimal codes [10] indicates that binary linear codes with param-
eters [22, 6, 10] do not exist. Therefore binary [24, 7, 10] codes do not have two
proportional coordinates and can be obtained from [23,6,10] codes. That is why
we can use restrictions for proportional coordinates (point 4) as follows: up to 4
proportional coordinates in dimension five, 2 in dimension six and no (enter 1)
in dimension 7. In this case, the calculation time is 25% less.

If we are interested only in codes with dual distance 4, we can use point 5.
The program looks for the codes with dual distance 2 in dimension five and 3 in
dimension six. The number of inequivalent codes in the file 24_7_10.2h becomes
smaller - 146.

The program has two options for restrictions on possible weights of the codes
under investigation. With point 2 we can set an integer w which divides all the
weights. After that with point 3 we can choose only some of the weights between
d and n, divisible by w. The restriction for self orthogonality works only for
codes over fields with 2, 3 and 4 elements.

In the general case, when the program have to generate [n, k, d] codes, the
codes with parameters [n− t, k − i, d] are in the search tree, where 1 ≤ i ≤ k −1,
i ≤ t ≤ n − k + i.

For optimal search of all codes with fixed n and d, and dimensions from
kmin to kmax, we use point 6. In that case the results will be written in files
with extensions “2b” and “2bh”. For example, the search trees for constructing
[25, 6, 10], [25, 5, 10] and [25, 4, 10] self-orthogonal binary codes have 226, 289
and 99 nodes, respectively (614 summary). If we look for the self-orthogonal
codes with the same parameters simultaneously by point 6, the nodes of the
corresponding search tree are only 430.

6 Computational Results

In this section we present some examples. To obtain the results, we use one thread
of Intel Xeon E5-2620 V4 processor. For natural reasons, the calculational
time in the case of relatively small parameters depends on the size of the search
tree. For given n, k and q the search tree strictly depends on the restrictions
for minimum distance, self-orthogonality, possible weights, dual distance and
proportional columns.

In the case of codes with large length, the number of objects that need to be
checked for acceptability increases exponentially. That is why, even with a small
search tree, the computational time grows.



188 I. Bouyukliev

The following table contains classification results for linear codes with differ-
ent parameters and restrictions. The first and second columns show the param-
eters and the used restrictions, respectively. Column 3 contains the execution
times in seconds, and the number of equivalent codes in each case is given in the
fourth column.

Parameters Restrictions Time #

[109, 5, 56]2 Weights: 56 64 72 1145.38 s 1
[34, 12, 12]2 Weights:12 16 20 24 28 32 19404.67 s 11
[18, 6, 4]2 Even 2337.91 s 434906
[19, 7, 9]3 72.01 s 61
[22, 6, 12]3 114.52 s 701
[24, 12, 9]3 Self-orthogonal 148.73 s 2
[28, 8, 15]3 47.17 s 1
[24, 5, 16]4 Weights: 16 18 20 22 24 472.49 s 1

7 Conclusion

In this paper, we present the first interface program Generation of the software
package QextNewEdition. There are freely available versions for Windows
and Linux on the webpage
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
The package contains two more programs, namely LengthExtension and
DimExtension which will be available on the same webpage.

The package QextNewEdition is a successor of Q-Extension [5]. The
aim of both systems is classification of linear codes with different properties and
restrictions. They share some ideas in the development of algorithms and have
similar interface. The package Q-Extension is written in Pascal (Delphi)
with static variables depending on the size of the field. QextNewEdition is a
new software system, written in C/C++, designed to be widely portable and
suitable for parallelization. All basic functions are rewritten, looking for optimal
implementation. The main concept and used methods for classification are dif-
ferent. The classification here is based on canonical augmentation as opposed to
Q-Extension where the used method is isomorph-free generation via recorded
objects [13].

There are many differences between QextNewEdition and Q-Extension.
We list some new points:

– Programming language is C/C++ which make program portable and proper
for MPI parallelization.

– Dynamically allocated variables are used. This means that the size of the
input data depends only on the hardware and the range of the program can
easily be extended to larger fields.

http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition
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– The implementation of the generating part presented in Sect. 3 is different. In
the beginning, it was by nested loops and now it is based on specific integer
partitions [8].

– The algorithm for canonical form is optimized by additional invariants for the
partitioning process.

– The representation of the sufficient set as a binary matrix now is much more
flexible [7].

With these features, the program Generation is a powerful tool for classi-
fying linear codes.
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