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Abstract. An approach for classification of linear codes with given
parameters starting from their proper residual codes or subcodes is pre-
sented. The base of the algorithm is the concept of canonical augmenta-
tion which is important for parallel implementations. The algorithms are
implemented in the programs LENGTHEXTENSION and DIMEXTENSION
of the package QEXTNEWEDITION. As an application, the nonexistence
of binary [41, 14, 14] codes is proved.
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1 Introduction

The paper is a contribution to the problem of classifying linear codes with given
parameters over finite fields with ¢ elements. Many authors have considered this
problem before [2,3,5,10], and it is known to be very hard. The structure of the
codes for classification is very important in the generation process. We discuss
an algorithm that solves the following problem: Find all inequivalent codes with
given parameters if the set of all residual codes with respect to a codeword with
a given weight is given. The extension of the generator matrix of a given residual
code can be done row by row or column by column. We consider in more details
the problem how to generate only inequivalent codes and obtain all of needed
codes. To do this, we use the concept of canonical augmentation [10,12]. This
concept is very important for parallel implementations. We also mention the
dual problem namely the classification of linear codes by extending their proper
subcodes.

The algorithms presented in this paper are implemented in the programs
LENGTHEXTENSION and DIMEXTENSION of the package QEXTNEWEDITION.
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Restrictions on the dual distance, minimum distance, etc. can be applied. The
program will be available on the webpage
http://www.moi.math.bas.bg/moiuser/~data/Software/QextNewEdition

2 Preliminaries

Let ¢ be a prime power and F; the finite field with ¢ elements, F; = T, \ {0}.
A linear code of length n, dimension k, and minimum distance d over Fy is
called an [n, k, d]4 code. Two linear codes of the same length and dimension are
equivalent if one can be obtained from the other by a sequence of the following
transformations: (1) a permutation of the coordinate positions of all codewords;
(2) a multiplication of a coordinate of all codewords with a nonzero element
from Fy; (3) a field automorphism. A sequence of the transformations given
above that maps a code C to itself is called an automorphism of C. The set of
all automorphisms of C' forms a group, called the automophism group of the
code and denoted by Aut(C). The action of Aut(C) on the code partitions the
set of its codewords into orbits.

The defined equivalence relation in the set of all linear [n, k,d], codes par-
titions this set into equivalence classes. We choose a canonical representative
of each equivalence class. If C' is a linear [n, k,d], code, we call the canonical
representative of its equivalence class the canonical form of C' and denote it by
p(C). If two codes C; and Cy are equivalent they have the same canonical form,
or p(C1) = p(C2).

Let C be an [n,k,d], code and let ¢ be a codeword of weight w. Then the
residual code of C with respect to ¢, denoted Res(C';c¢), is the code of length
n — w punctured on the set of coordinates on which ¢ is nonzero. If only the
weight w of ¢ is of importance, we will denote it by Res(C;w). The next result
gives a lower bound for the minimum distance of residual codes.

Theorem 1. [8] Let C be an [n,k,d] code over F, and let ¢ be a codeword
of weight w < qd/(q — 1). Then Res(C;c) is an [n —w,k — 1,d'] code, where
d>d—w+ [w/q].

We need also the following theorem

Theorem 2. Let C be an [n,k,d] code over F, and x,y € C be codewords of the
same weight w < qd/(q—1) such thaty = ¢(x) for an automorphism ¢ € Aut(C).
Then the residual codes Res(C;x) and Res(C;y) are equivalent.

*

2> ™ € Sp. Then for any v =

Proof. Let ¢ = diag(vy1,...,7n)7w, where v; € F
(v1,v2,...,v,) € C we have

(ZS(U) = ('71'01, cee 7’)/»”’()")71' = (717\'*11}17r*17 s 77n7r*1rUn7T*1) eC.

Without loss of generality we can take 2 = (00---011---1). Then the sup-
—_—

w

port of y = ¢(x) will be {(n —w + )7~ L, ... ,nr~1}. If v is a codeword in C
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then (vi,...,vp—w) € Res(Ciz) and (Yiz—1V17-1,-+, Yn—w)r—1V(n-w)r—1) €
Res(C;y). Hence the restriction of ¢ on the first n — w coordinates maps
Res(C;x) to Res(C;y).

To see the connection to the dual code, we use a theorem that gives the
relation between a punctured of a code C and a shortened of its dual code
C*. A code C can be punctured on a coordinate set T of size t. We denote the
resulting code by CT. Consider the set C(T') of codewords whose i-th coordinate
is0ifi € T. C(T) is a subcode of C. Shortening C(T") on T gives a code of length
n — t called shortened code of C on T and denoted by Cr. If we take T to be
the support of the codeword ¢ € C of weight w, then C7 is the residual code of
Res(C'; ¢) with respect to c.

Theorem 3 ([9, Theorem 1.5.7]). Let C be an [n,k,d]| code and T be a set
of t coordinates. Then:

(i) (CH)r = (CT)- and ()T = (Cr)*;
(ii) ift < d, then CT and (C+)r have dimensions k and n—t —k, respectively;
(iii) if t = d and T is the set of coordinates where a minimum weight codeword
is nonzero, then CT and (C*)r have dimensions k —1 andn —d —k+1,
respectively.

As a corollary we obtain

Corollary 1. Let C be an [n, k,d] code over F, with dual distance d* and let c be
a codeword of weight w < qd/(q—1). If T is the support of ¢ then Res(C;c) = CT
is a linear [n —w,k —1,d'] code and Res(C;c)*t = (C*)r is a linear [n —w,n —
w—k+1,>d*] code.

Since Res(C;c)t is a shortened code of C*, its minimum distance is at least
d*. Therefore we consider all [n —w,k—1,d’ > d—w+ [w/q]], codes with dual
distance > d* as residual codes and then extend them to the linear [n,k,d],
codes with dual distance > d*.

We developed a second algorithm which extends all possible [n—w, k—w+1, >
d] shortened codes to the [n, k,d] codes provided that their dual codes contain
codewords of weight w, w < qd*/(q — 1). The theoretical base of this algorithm
is the following corollary.

Corollary 2. If C is a linear [n,k,d], code whose dual code C+ contains a
codeword of weight w, w < qd*/(q — 1), then C has a shortened code with
parameters [n —w, k —w + 1,> d], and dual distance d' > d*+ —w + [w/q].

Proof. Let x € C* be a vector of weight w. According to Theorem 2, its residual
code Res(C*;z) has parameters [n—w,n—k—1,d'] where d’ > d*+ —w+[w/q].
Then Res(C+; )" is a shortened code of C' with parameters [n—w, k—w+1, > d]
(see Theorem 3 and Corollary 1).

Corollary 3. Let C be a linear [n, k,d], code with dual distance d*. If no linear
[n—i,k—i+4+1,>d], codes exist for 1 <i<w-—1 then d+ > w.



176 S. Bouyuklieva and I. Bouyukliev

Proof. Suppose that d* =i < w and € C* is a vector of weight d*. Then
Res(C+;x)t is a shortened code of C with parameters [n — i,k — i+ 1,> dJ,
which is not possible. Hence d+ > w.

3 The Construction

We are looking for all inequivalent linear codes with length n, dimension &k, min-
imum distance d and dual distance at least d+ > 2. We propose two algorithms
depending on the input codes.

The input in the first algorithm is a set of all inequivalent linear [n—w, k—1, >
d'], codes with dual distance > d*+ where d’ > d — w + [w/q]. These codes are
all possible residual codes of [n, k, d], linear codes with dual distance at least d*
with respect to a codeword of weight w.

Without loss of generality, we can consider the generator matrices in the form

(00...0 11...1)

Gres Gl

where G5 is a (k—1) X (n—w) matrix that generates the residual code Res(C; ),
x=(00---0,11---1) € C, wt(x) = w. We construct the matrix Gy row by row
in the same way as it is in the program QEXT_L of the package Q-EXTENSION
[3]. The main question is which of the constructed in this way codes to take in
our set of representatives of the equivalence classes. To do this, we use canonical
augmentation [10,12]. The presentation that follows differs from the original
McKay’s paper [12] but the idea is the same.

First, we find the canonical form and the automorphism group of the con-
structed [n, k, d] code C. The orbits are ordered in the way described in [1] and
this ordering depends on the canonical form p(C) and the automorphism group
Aut(C). Then we check if the vector z is in the first orbit in the set of all
codewords of weight w in C. If not, we reject it (it can be obtained by another
residual code), if yes we say that this code passes the parent test. Finally, we

check for equivalence the codes obtained from the same residual code that have
passed the parent test. A pseudocode is presented in Algorithm 1.

Theorem 4. The set M, obtained by Algorithm 1, consists of all inequivalent
[n, k,d], codes with dual distance > d* that have codewords of weight w.

Proof. We have to prove that (1) any [n, k, d], code with the needed dual distance
is equivalent to a code in the set M, and (2) the codes in M are not equivalent.

(1) Let C be an [n, k,d], code with dual distance > d-. The set of all codewords
of weight w is partitioned into orbits under the action of Aut(C). These
orbits are ordered depending on the canonical form p(C') (see [1] for details).
Take a codeword z in the first orbit and the residual code Res(C;x). There
is a code B 2 Res(C;z) in the set R. If ¢ maps Res(C;z) into B, we

can extend the map ¢ to ¢ : C — C', C' = ¢(C). If ' = ¢(z), then
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B = Res(C’,2') and the code C’ passes the parent test (the codeword
2’ € C" belongs to the first orbit in the partition of the set of all codewords of
weight w in C” since p(C) = p(C")). Hence there is a code that is equivalent
to C, has a residual code in the set R and passes the parent test.

(2) If Cy = Cy are two codes with the needed parameters, x; € C;, i = 1,2 are
vectors of weight w, and both codes pass the parent test, then their residuals
Res(C1, 1) and Res(Co, x2) are also equivalent (see Theorem 2).

Algorithm 1: Extension of a residual code.

Input: The set R of all inequivalent linear [n —w, k — 1, > d'], codes with dual
distance at least d*
Output: A set M of all inequivalent linear [n,k,d], codes with dual distance

> d*
begin M = ()
for all codes B € R do
Mp = @;

|
|
|  for all constructed codes C with a residual code B do:
| Obtain p(C) and Aut(C);

| if x € O7 then Mg = Mg uUC

| end for;

|  Remove equivalent codes from the set Mp

| M=MUMsp;

| end for;

end.

The second algorithm extends all [n—w, k—w+1, > d] codes to the [n, k, > d]
codes with dual distance d*+ whose dual codes contain codewords of weight w.
The generator matrices of the considered codes have the form

where I,,_1 is the identity matrix, O is the (kK —w + 1) X w zero matrix, A and
Go are (w—1) x (n—w) and (k—w+1) x (n — w) matrices, respectively. We fill
out the matrix A row by row in a similar way as it is done in [4]. The dual code
11---1]00---0
G1 Go
code of Ot with respect to the codewords (11---100---0) of weight w and it is
the dual code of Cy. To take only inequivalent codes, we apply Algorithm 1 to
the dual codes.

C* has a generation matrix ( > where G5 generates the residual
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4 Examples

We use the presented algorithms implemented in the programs LENGTHEXTEN-
SION and DIMEXTENSION to obtain a systematic classification of linear codes
with specific properties and parameters over fields with 2, 3 and 4 elements.
Besides specifying the parameters such as length (n), dimension (k) and mini-
mum distance (d), many other constraints can be considered. We give two exam-
ples, both over the filed Fy, but the first one uses the program LENGTHEXTEN-
SION and the second one DIMEXTENSION. All calculations have been done on
2 x INTEL XEON E5-2620 V4, 32 thread computer.

Ezample 1. We construct all inequivalent [45,8,20]2 codes from their residual
[25,7,10]2 codes with respect to a codeword of minimum weight 20. Since no
[44,8,20]5 code exists, the dual distance d+ must be at least 2. Using the pro-
gram GENERATION, we obtain 188572 inequivalent [25, 7, 10]2 codes. Six of these
codes have dual distance 1 (these codes have a zero coordinate) and therefore
we cannot use them as residual codes. The other 188566 have dual distances 2
(30522 codes), 3 (158036 codes), and 4 (only 8 codes). Considering these codes
as residual codes, the program LENGTHEXTENSION constructs 424208 inequiva-
lent [45,8,20]2 codes. The calculations took 459 min. All doubly-even [45, 8, 20]2
codes are classified in [11] and their number is 424207. There is only one code
(up to equivalence) with these parameters which is not doubly-even. This code
has a generator matrix

111111111111111111110000000000000000000000000
000000000001111111100001111111111111111000000
000000011110011111101110000000001111110100000
000111100010100011100110000111110001110010000
011001100100101100100110011001110110010001000
100110101101000101100010101110011010010000100
101011010010110101000101100010110110100000010
101010101011010110001001010110101000110000001

and weight enumerator W (y) = 1 + 99320 + 90y?? + 15y%* + 45928 + 6y, Its
automorphism group is isomorphic to (Cy5 : Cy) x S3, where Cy5 : Cy is the semi-
direct product of the cyclic groups of orders 15 and 4, and S3 is the symmetric
group (calculated by GAP COMPUTER ALGEBRA SYSTEM [6]). The group acts
transitively on the coordinates and has order 360. The code is not self-orthogonal.

The following proposition allows one to reduce the number of cases that need
to be considered for an exhaustive search for a certain class of codes.

Proposition 1. If binary linear [n, k,2d] codes exist then at least one of these
codes is even.

Proof. Let C be a binary linear [n, k,2d] code. Suppose that C contains code-
words of odd weight. If C* is the punctured code of C' on the right-most coordi-
nate then C* is an [n — 1, k,d*] code where d* = 2d — 1 or 2d. Then we extend
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C* with one coordinate by adding an overall parity check. The resulting code
C* is even and its parameters are [n, k, 2d].

Proposition 2. Binary linear [41,14,14] codes do not exist.

Proof. According to Proposition 1, it is enough to prove the nonexistence of even
codes with these parameters. Feulner proved in [5] that binary [35, 10, 13] code
does not exist. We prove that binary [36,11,13] and [37,12,13] codes do not
exist. The nonexistence of codes with these parameters proves that binary linear
[36,10,14], [37,11,14] and [38,12,14] codes do not exist. This gives us that no
linear [41 — 1,15 — 4, 14]5 codes exist for 1 <14 < 5. According to Corollary 3, the
dual distance of a binary [41,14,14] must be at least 6. Since no [41,27,> 7]s
codes exist [7], d+ = 6. Therefore we are looking for binary even [41, 14, 14] codes
with dual distance 6 and we try to construct them by extending all possible
even [35,9, 14]2 codes with dual distance > 3. The program GENERATION shows
that there are exactly 209 inequivalent even [35,9, 14]s codes with needed dual
distance. Then we try to extend them using the program DIMEXTENSION. The
result is ‘RES 0, Elapsed time: 432m’ which means that these codes cannot
be extended to [41, 14, 14] codes and this result is obtained in 432 min.

Remark 1. The table of optimal codes [7] indicates that the existence of
[40,13, 14] binary codes is also unknown. If a code with these parameters exists,
its dual distance can be 5 or 6. If C' is a [40, 13, 14] binary even code with dual dis-
tance 5, it contains an even [35, 9, 14] shortened code with dual distance > 3. By
the program DIMEXTENSION, we obtain that these codes cannot be extended to
[40, 13, 14] binary codes. This means that if a [40, 13, 14] binary even code exists,
its dual distance is 6. Then this code contains a shortened code with parameters
[34,8,14] and dual distance > 3. There are 10 607 917 inequivalent [34, 8, 14]
codes with needed dual distance. We were not able to extend all these codes for
a reasonable time and therefore we have no result for the codes with parameters
40,13, 14].
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