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Abstract. A hyperoval of a point-line geometry is a nonempty set of
points meeting each line in either 0 or 2 points. We discuss a combination
of theoretical and practical techniques that are helpful for classifying
hyperovals of generalized quadrangles. These techniques are based on
the connection between hyperovals, even sets and pseudo-embeddings of
point-line geometries.
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1 Introduction

A (point-line) geometry is a triple S = (P,L, I) consisting of a nonempty point
set P, a line set L and an incidence relation I ⊆ P × L between these sets.
One of the most important classes of geometries are the so-called (axiomatic)
projective planes [17]. A finite projective plane π contains n2 + n + 1 points and
n2 + n + 1 lines for some n ∈ N, called the order of π. The standard exam-
ples are the Desarguesian projective planes PG(2, q) with q some prime power.
Axiomatic projective planes have been intensively investigated, in particular sev-
eral construction and classification results have been obtained about them. Some
of these results have been obtained by means of computer computations, like the
classifications of all projective planes of order 8, 9 and 10 [15,18,19].

Besides classification results and constructions, also special sets of points in
projective planes have been investigated. Certain of these sets have relationships
with other mathematical areas, like coding theory, or certain geometries can
be constructed from them, like partial geometries and generalized quadrangles.
One of the substructures of finite projective planes that have been thoroughly
investigated are the hyperovals. These are nonempty sets of points meeting each
line in either 0 or 2 points, in which case it can be shown that the hyperoval
has size n + 2 with n the (necessarily even) order of the plane. The classical
examples of hyperovals here are those in PG(2, q), q even, by adding to an irre-
ducible conic C its nucleus, that is the point that lies in all tangent lines of C.
The construction and classification problem of hyperovals in arbitrarily not nec-
essarily Desarguesian projective planes has been intensively studied. Hyperovals
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also play a crucial role in the nonexistence proof for the projective plane of order
10 [19]. Indeed this proof essentially relies on the fact that a plane of order 10
cannot have hyperovals [20].

The concept of a hyperoval, namely a nonempty set of points meeting each
line in either 0 or 2 points, can be defined for general point-line geometries.
Two families of point-line geometries that have attracted attention here are the
generalized quadrangles (GQ’s) [25] and the polar spaces [2]. The standard exam-
ples of polar spaces are related to symplectic polarities, quadrics and Hermitian
varieties in projective spaces [16], but also every generalized quadrangle is an
example of a polar space. A generalized quadrangle of order (s, t), or shortly a
GQ(s, t), is defined as a geometry that satisfies the following three properties:

1. Every two distinct points are incident with at most one line.
2. Every line is incident with exactly s + 1 points and every point is incident

with precisely t + 1 lines.
3. For every non-incident point-line pair (x,L), there exists a unique point y on

L collinear with x (i.e. y is in some line together with x).

Hyperovals of polar spaces, in particular of GQ’s, are not only interesting point
sets. They are also related to other combinatorial structures in finite geometry.
Hyperovals (or local subspaces) of polar spaces were first considered in [1] because
of their connection with so-called locally polar spaces. Hyperovals of GQ’s have a
number of additional applications. They naturally arise in the study of extended
generalized quadrangles and play a fundamental role in their study, see [3,21–
23]. Lower and upper bounds for the size of a hyperoval H in a GQ(s, t) were
obtained in [3, Lemmas 3.9 and 3.11] and [14, Theorems 2.1 and 2.2]. The size
|H| is even and satisfies max(2(t + 1), (t − s + 2)(s + 1)) ≤ |H| ≤ 2(st + 1).

In recent years, many construction and classification results for hyperovals in
GQ’s have been obtained. These regard theoretical constructions of infinite fam-
ilies [4–9,14,24], or computer backtrack searches as in [22,23]. We will emphasise
here on a number of techniques that can help in studying and classifying hyper-
ovals, both from a theoretical as a computational point of view. Hyperovals are
special cases of even sets, these are sets of points that meet each line in an
even number of points. The intention is to discuss some tools for classifying
hyperovals inside the family of all even sets. The complements of the even sets
were coined pseudo-hyperplanes in [11]. There exist close relationships between
pseudo-hyperplanes and certain representations of the geometry in projective
spaces, called pseudo-embeddings. Some of these relationships will be mentioned
in Sect. 2. Via the connection with pseudo-embeddings, we show in Sect. 3 that
the family of hyperovals is related to certain ideals in polynomial rings and that
Gröbner bases can sometimes help in their study and/or classification.
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2 Pseudo-embeddings, Pseudo-hyperplanes and Even
Sets

Suppose S = (P,L, I) is a geometry for which the number of points on each line
is finite and at least 3. A pseudo-embedding of S is a map ε from P to the point
set of a projective space PG(V ) defined over the field F2 of order 2 such that:

– the image of ε generates the whole projective space PG(V );
– ε maps every line L ∈ L to a frame of a subspace of PG(V ), i.e. ε(L) is a set

of the form {〈v̄1〉, 〈v̄2〉, . . . , 〈v̄k〉}, where k is the size of L, v̄1, v̄2, . . . , v̄k−1 are
k − 1 linearly independent vectors of V and v̄k = v̄1 + v̄2 + . . . + v̄k−1.

We denote such a pseudo-embedding also by ε : S → PG(V ). A pseudo-
embedding thus maps the lines of a geometry S to frames of subspaces of a
projective space PG(V ). This is different from the notion of an (ordinary) embed-
ding of S which maps the lines of S to lines of PG(V ).

Two pseudo-embeddings ε1 : S → PG(V1) and ε2 : S → PG(V2) of the same
point-line geometry S are called isomorphic if there exist a linear isomorphism
θ between the vector spaces V1 and V2 such that ε2 = θ ◦ ε1.

If ε : S → PG(V ) is a pseudo-embedding, then projecting the image of ε from
a (suitable) subspace on a complementary subspace can give rise to another
pseudo-embedding ε′, which is called a projection of ε. If ε1 and ε2 are two
pseudo-embeddings of the same point-line geometry S, then we write ε1 ≥ ε2
if ε2 is isomorphic to a projection of ε1. If ε̃ is a pseudo-embedding of S such
that ε̃ ≥ ε for any other pseudo-embedding ε of S, then ε̃ is called universal. If
S has pseudo-embeddings, then it also has a universal pseudo-embedding which
is moreover unique, up to isomorphism. The vector dimension of the universal
pseudo-embedding is called the pseudo-embedding rank, and (in case |P| < ∞)
is equal to |P| − dim(C), where C is the binary code of length |P| generated by
the characteristic vectors of the lines of S. Note that dim(C) equals the F2-rank
of an incidence matrix of S. We thus see that there exist connections between
pseudo-embeddings and coding theory. There also exist connections between
pseudo-embeddings and modular representation theory of groups.

Pseudo-hyperplanes and hence also even sets are closely related to pseudo-
embeddings as the following theorem shows.

Theorem 1 ([11]). If ε : S → PG(V ) is a pseudo-embedding, then for every
hyperplane Π of PG(V ), the set ε−1(ε(P)∩Π) is a pseudo-hyperplane of S. Every
pseudo-hyperplane of S arises in this way from the universal pseudo-embedding
of S.

More background information about pseudo-embeddings, pseudo-hyperplanes
and the above facts can be found in [10–13]. In [11] it was also shown that all GQ’s
have pseudo-embeddings and hence also universal pseudo-embeddings.

Hyperovals of GQ’s can often be computationally classified without imple-
menting a backtrack algorithm. One way to achieve this goal is to determine all
(isomorphism classes of) even sets, and subsequently to verify which even sets
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are also hyperplanes. The number of even sets can be determined in advance:
it equals 2k, with k the pseudo-embedding rank. As soon as a computer model
of the geometry has been implemented along with its automorphism group (e.g.
with GAP [27]), it is easy to generate even sets, the size of the orbit to which
a given even set belongs can readily be computed, and it can easily be veri-
fied whether two hyperovals are isomorphic. Based on these three principles, it
is often easy to compute all isomorphism classes of even sets. This has been
illustrated in the papers [12,13]. We mention two reasons why it is so easy to
generate even sets with a computer:

1. An even set can be found as a set whose characteristic vector is F2-orthogonal
with all characteristic vectors of the lines.

2. The symmetric difference of any two even sets is again an even set.

The above method (as well as a backtrack search) has the disadvantage that
it does not provide unified and explicit descriptions for the hyperovals. The
method which we will discuss in the following section does have this potential.
It is still based on the connection with even sets but it also takes into account a
description of the universal pseudo-embedding.

3 Related Ideals in Polynomial Rings

The material discussed in this section is new with exception of Theorem 4,
which is taken from [13, Corollary 1.3]. We continue with the notation in Sect. 2.
We suppose that S has pseudo-embeddings and we denote by ε̃ : S → PG(˜V )
the universal pseudo-embedding of S. If k := dim(˜V ), then there exist k maps
fi : P → F2 (i ∈ {1, 2, . . . , k}) such that ε̃ maps a point p of S to the point
(f1(p), f2(p), . . . , fk(p)) of PG(˜V ). Using these fi’s, Theorem 1 can now be
rephrased as follows.

Theorem 2. The even sets of S are precisely the subsets of P satisfying an
equation of the form

∑k
i=1 aifi(p) = 1 with a1, a2, . . . , ak ∈ F2.

We denote by E(ā) the even set corresponding to a tuple ā = (a1, a2, . . . , ak).
Suppose α = {p1, p2, . . . , pl} is a line of S. The condition that the point pi of α
belongs to E(ā) implies by Theorem 2 that a certain linear combination Li(ā)
of the ai’s is equal to 1. If E(ā) is a hyperoval of S, then the number of i’s for
which Li(ā) is equal to 1 is therefore either 0 to 2.

Theorem 3. There exists a gα(a1, a2, . . . , ak) ∈ F2[a1, a2, . . . , ak] such that the
following two conditions are equivalent for any ā = (a1, a2, . . . , ak) ∈ F

k
2 :

– the number of i’s for which Li(ā) is equal to 1 is either 0 to 2;
– gα(a1, a2, . . . , ak) = 0.
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Proof. We define h(a1, a2, . . . , ak) := (L1(ā) + 1)(L2(ā) + 1) · · · (Ll(ā) + 1) + 1
and huv(a1, a2, . . . , ak) := 1 + Lu(ā) · Lv(ā) · ∏

w �∈{u,v}(Lw(ā) + 1) for all u, v ∈
{1, 2, . . . , l} with u < v. Then the following hold:

– h(a1, a2, . . . , ak) = 0 if and only if there are no i’s for which Li(ā) = 1;
– huv(a1, a2, . . . , ak) = 0 if and only if u, v are the only i’s for which Li(ā) = 1.

We can then put gα(a1, a2, . . . , ak) equal to the product of h and all huv’s with
1 ≤ u < v ≤ l.

There exists such a polynomial gα(a1, a2, . . . , ak) ∈ F2[a1, a2, . . . , ak] for each
line α of S. Such a polynomial is not unique. If I is the ideal generated by the
polynomials a2

i +ai, i ∈ {1, 2, . . . , k}, then any polynomial in gα(a1, a2, . . . , ak)+I
also satisfies the required property. By the above discussion, we know:

Corollary 1. The even set E(ā) with ā ∈ F
k
2 \ {ō} is a hyperoval if and only if

gα(a1, a2, . . . , ak) = 0 for all α ∈ L.
If we know all gα’s, we can directly determine all ā ∈ F

k
2 for which E(ā) is a

hyperoval. From a computational point of view, this can go faster (see example
later) than verifying which of the sets E(ā) with ā ∈ F

k
2 intersects each line of the

geometry in either 0 or 2 points. In the latter approach we first need to determine
the set E(ā) by solving the equation mentioned in Theorem 2 (with respect to
p) before verifying that E(ā) intersects each of the lines in 0 or 2 points. The
method of working with the polynomials gα has two additional benefits.

1. If φ is an automorphism of S, then the fact that ε̃ is so-called homogeneous
(see e.g. [12]) implies that there exists a linear automorphism φ′ of Fk

2 such
that φ maps the even set E(ā) to the even set E(āφ′

). If α and β are lines of S
such that α = βφ, then we have gβ(ā) = gα(āφ′

). Information about automor-
phisms of S and their corresponding actions on F

k
2 thus implies that certain

of the gα’s can be derived from others. In particular, if we have such informa-
tion for a set of automorphisms that generate a line-transitive automorphism
group, then one of the gα’s determines all the others.

2. If we take the ideal G generated by I and all gα’s, then any polynomial in G
determines a necessary condition for a set E(ā) to be a hyperoval. In partic-
ular, we can look for polynomials that have a simple form. Such polynomials
can often be found with the aid of Gröbner bases (implemented in computer
algebra systems), and can be useful for theoretical and computational pur-
poses.

Both benefits are illustrated by the following example. Consider in the projec-
tive space PG(3, 4) the Hermitian variety H with equation X1X

2
2 + X2X

2
1 +

X3X
2
4 + X4X

2
3 = 0. The points and lines contained in H then define a general-

ized quadrangle H(3, 4) of order (4, 2) [25]. The universal pseudo-embedding of
H(3, 4) was described in [13, Section 1] and has vector dimension 24. From this
description, we easily deduce the following (see also [13, Corollary 1.3]).
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Theorem 4. The even sets of H(3, 4) are precisely the subsets of H satisfying
an equation of the form

∑
1(aiX

3
i ) + a5(ωX3X2

4 + ω2X4X2
3 ) + a6

(
(X3

1 + X3
2 + X3

1X3
2 )(X

3
3 + X3

4 + X3
3X3

4 ) + 1
)

+
∑

2(b
′
ijXiX

2
j + (b′

ij)
2XjX

2
i ) +

∑
3

(
b′
ijkXiXjXk + (b′

ijk)
2X2

i X2
j X2

k

)
= 1,

with the ai’s belonging to F2 and the b′
ij’s and b′

ijk’s belonging to F4.

In Theorem 4, F4 = {0, 1, ω, ω2} is the finite field of order 4, Σ1 denotes
the summation over all i ∈ {1, 2, 3, 4}, Σ2 denotes the summation over all i, j ∈
{1, 2, 3, 4} with i < j and (i, j) �= (3, 4), and Σ3 denotes the summation over
all i, j, k ∈ {1, 2, 3, 4} with i < j < k. We can now put b′

ij = bij + ωcij and
b′
ijk = bijk + ωcijk, where all bij ’s, cij ’s, bijk’s and cijk’s belong to F2. Using

the terminology of Theorem 2, the maps fi(p) with i ∈ {1, 2, . . . , 24} and p =
(X1,X2,X3,X4) can then be taken as follows:

f1(p) = X3
1 , f2(p) = X3

2 , f3(p) = X3
3 , f4(p) = X3

4 , f5(p) = ωX3X
2
4 + ω2X2

3X4,

f6(p) = (X3
1 + X3

2 + X3
1X3

2 )(X3
3 + X3

4 + X3
3X3

4 ) + 1, f7(p) = X1X
2
2 + X2X

2
1 ,

f8(p) = ωX1X
2
2 + ω2X2X

2
1 , . . . , f24(p) = ωX2X3X4 + ω2X2

2X2
3X2

4 .

We now determine one of the gα’s.

Theorem 5. If α is the line of H(3, 4) with equation X2 = X4 = 0, then gα is
equal to a1 + a3 + (b13 + c13 + b13c13)(a1 + a3 + a6 + a1a3 + a1a6 + a3a6).

Proof. The even set determined by the tuple (a1, a2, . . . , c234) ∈ F
24
2 intersects α

in either 0 or 2 points if the equation a1X
3
1 +a3X

3
3 +a6(X3

1X3
3 +1)+b′

13X1X
2
3 +

(b′
13)

2X3X
2
1 = 0 has 0 or 2 solutions for (X1,X3) ∈ {(0, 1), (1, x) |x ∈ F4}.

This means that precisely two of the equations a3 + a6 = 1, a1 + a6 = 1,
a1+a3+b′

13+(b′
13)

2 = 1, a1+a3+b′
13ω

2+(b′
13)

2ω = 1, a1+a3+b′
13ω+(b′

13)
2ω2 = 1

are satisfied. We denote these equations respectively by (1), (2), (3), (4) and (5).
Suppose b′

13 = 0. If a1 + a3 = 1, then (3), (4) and (5) imply that at least
three of the equations are satisfied which is impossible. So, a1 +a3 = 0, but then
(3), (4) and (5) are never satisfied. As a1 + a3 = 0, either (1), (2) are satisfied
or none of them is satisfied. So, if b′

13 = 0, then necessarily a1 + a3 = 0.
Suppose b′

13 �= 0 and a1 + a3 = 1. Then precisely one of (1), (2) is satisfied.
As precisely one of b′

13, b′
13ω

2, b′
13ω belongs to F2, we also see that precisely one

of (3), (4), (5) is satisfied. So, this case is always OK.
Suppose b′

13 �= 0 and a1 +a3 = 0. As precisely one of b′
13, b′

13ω
2, b′

13ω belongs
to F2, precisely two of the equations (3), (4), (5) are satisfied. So, none of (1),
(2) can be satisfied. This implies that a3 + a6 = 0.

The overall condition is thus ((b′
13)

3 + 1)(a1 + a3) + (b′
13)

3((a1 + a3 + 1)(a3 +
a6)) = 0 which simplifies to a1 +a3 +(b′

13)
3(a1 +a3 +a6 +a1a3 +a1a6 +a3a6) =

a1 + a3 + (b13 + c13 + b13c13)(a1 + a3 + a6 + a1a3 + a1a6 + a3a6).
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In Section 5 of [13], we described a list of 6 generators φ1, φ2, . . . , φ6 for the
(line-transitive) automorphism group of H(3, 4), along with their corresponding
actions on the even sets E(ā), see [13, Tables 1 and 2]. From this information, the
corresponding actions of φ′

1, φ
′
2, . . . , φ

′
6 on F

24
2 (see above) can easily be derived:

• āφ′
1 = (a3, a4, a1, a2, c12, a6, b12, a5, b13+c13, c13, b23+c23, c23, b14+c14,

c14, b24+c24, c24, b134, c134, b234, c234, b123, c123, b124, c124);
• āφ′

2 = (a1, a2, a3, a4, a5, a6, b12, c12, c13, b13+c13, c14, b14+c14, c23,
b23+c23, c24, b24+c24, b123+c123, b123, b124+c124, b124, c134, b134+c134,
c234, b234+c234);

• āφ′
3 = (a1+a3+a6+c13, a2, a3, a4+a2+a6+c24, a5+c23+c234, a6, b12+b123+

c123+b234, c12+c123+c23, b13+a3+a6, c13, b14+b12+b23+c23+b123+c123+
b124+b134+c134+b234, c14+a5+c12+c23+c123+c124+c134+c234, b23, c23,
b24+a2+a6, c24, b123, c123, b124+a6+b234, c124+c234, b134+a6+b123,
c134+c123, b234, c234);

• āφ′
4 = (a1, a2, a3, a4+a3+a5, a5, a6, b12+a3, c12, b13, c13, b14+b13+b134,

c14+c13+c134, b23, c23, b24+b23+b234, c24+c23+c234, b123, c123, b124+b123,
c124+c123, b134, c134, b234, c234);

• āφ′
5 = (a1, a2, a3+a4+a5, a4, a5, a6, b12+a4, c12, b13+b14+b134, c13+c14

+c134, b14, c14, b23+b24+b234, c23+c24+c234, b24, c24, b123+b124, c123+c124,
b124, c124, b134, c134, b234, c234);

• āφ′
6 = (a1, a2, a3, a4, a5, a6, b12+c12+a5, c12, b13+c13, c13, b14+c14, c14,

b23+c23, c23, b24+c24, c24, b123+c123, c123, b124+c124, c124, b134+c134, c134,
b234+c234, c234).

Based on this information, we have computed with the aid of SageMath [26] all
gα’s. The ideal G generated by I and the gα’s contains polynomials that have
fewer terms than the gα’s themselves. These have been found by computing
Gröbner bases of ideals generated by some of these gα’s. Specifically, G contains
the eight polynomials that are obtained from a1a3b13 +a1a6b13 +a3a6b13 +a6b13
and a1a3c13 + a1a6c13 + a3a6c13 + a6c13 by applying one of the permutations
(), (12), (34), (12)(34) on the subindices. G also contains the eight polynomials
that are obtained from a1b13c13 +a6b13c13 +a1a3 +a1a6 +a3a6 +a1b13 +a6b13 +
a1c13 +a6c13 +a1 by applying one of the permutations (), (12), (13), (34), (132),
(143), (12)(34), (14)(23) on the subindices.

4 Summary

We have discussed here three methods by which hyperovals can be computed:

(1) via the connection with even sets discussed at the end of Sect. 2;
(2) by finding all ā ∈ F

k
2 for which E(ā) is a hyperoval (via Theorem 2);

(3) by finding all ā ∈ F
k
2 for which gα(ā) = 0 holds for all lines α ∈ L.

For the example of hyperovals of H(3, 4), our implementation of the methods
(1) and (2) had similar performances (± 1h40min, iMac, 2.7 GHz Intel Core
i5-4570R processor). Methods (1) and (2) were already used in [13] to show that
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H(3, 4) has 23 nonisomorphic hyperovals. The third method was almost three
times faster. Note also that the three polynomials of G mentioned at the end
of Sect. 3 give the conditions (a1 + a6)(a3 + a6)b13 = (a1 + a6)(a3 + a6)c13 =
(a1 + a6)(b13c13 + b13 + c13 + a1 + a3) = 0, and that the remaining polynomials
give similar equations. This means that certain of the entries of ā are 0 or can
be expressed in terms of the others, a fact that would allow to speed up further
the computations for the third method. Some of the code (in SageMath [26] and
GAP [27]) used in our computations can be found on https://cage.ugent.be/
geometry/preprints.php.

Our main intention here was to discuss theoretical and computational tech-
niques that are useful for classifying hyperovals of generalized quadrangles. These
techniques suffice so far for classifying all hyperovals of all finite generalized
quadrangles of order (s, t) with s ≤ 4. These GQ’s comprise the 3 × 3, 4 × 4 and
5 × 5-grids as well as the GQ’s W (2), Q(5, 2), W (3), Q(4, 3), GQ(3, 5), Q(5, 3),
H(3, 4), W (4), GQ(4, 6), H(4, 4) and GQ(5, 4) (see [25] for definitions). With
exception of the GQ’s W (4), GQ(4, 6), H(4, 4) and Q(5, 4), these classifications
have already appeared in the literature (below).

Our work on classifying hyperovals of generalized quadrangles is work in
progress where on the one hand we try to obtain additional classification results
(for larger GQ’s) and on the other hand we try to obtain computer free uniform
descriptions for all the hyperovals of a given GQ. As in [13], the latter problem
can involve that algebraic descriptions of the universal pseudo-embeddings need
to be found.
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