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Abstract. A convex polyhedron is the convex hull of a finite set of
points in R

3. A triangulation of a convex polyhedron is a decomposition
into a finite number of 3-simplices such that any two intersect in a com-
mon face or are disjoint. A simplicial dissection is a decomposition into
a finite number of 3-simplices such that no two share an interior point.
We present an algorithm to classify the simplicial dissections of a regular
polyhedron under the symmetry group of the prolyhedron.
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1 Introduction

A convex polyhedron is the convex hull of a finite set of points in R
3. A tri-

angulation of a convex polyhedron is a decomposition into a finite number of
3-simplices such that any two intersect in a common face or are disjoint. A sim-
plicial dissection is a decomposition into a finite number of 3-simplices such that
no two share an interior point. A simplicial dissection is a triangulation but not
conversely. The problem is that the intersection of two simplices in a dissection
may not be face.

Standard implementations for enumerating triangulations include TOPCOM
and mptopcom [10] (neither one can enumerate dissections, though). A parallel
algorithm to classify regular triangulations with applications in tropical geome-
try is described in [6]. Regarding the enumeration of all triangulations, see [4].
For minimal dissections, see [1].

The goal of this paper is to present an efficient algorithm to classify the
simplicial dissections of a regular polyhedron under the symmetry group (or
automorphism group) G of the polyhedron P. Two dissections of P are equiva-
lent is there is a symmetry g ∈ G which maps one to the other. The classification
algorithm utilizes the concept of a partially ordered set under a group action,
using the theory developed by Plesken [9] as a framework. The partially ordered
set is the search space, which is to be partitioned into orbits. The ranking of the
poset introduces level sets, and the orbits partition these level sets. The efficiency
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of the orbit algorithm is based on an effective use of isomorph rejection. This is
the problem of deciding when two objects belong to the same G-orbit. Isomorph
rejection is necessary to avoid duplicates, and it helps reduce the number of
objects in the search space that have to be examined. The ultimate goal of the
classification algorithm is to establish the poset of orbits of G. Isomorphism test-
ing is expensive, and the algorithm that we propose avoids backtracking at the
cost of memory. Such trade-off between time complexity and space complexity
is common in algorithm design, and it has proved to be useful for other clas-
sification problems before. The first author has previously used this technique
to classify objects like cubic surfaces, packings in projective space and other
objects.

In this note, we will develop an efficient algorithm to classify the simplicial
dissections of a polyhedra. As an application, we compute and classify the sim-
plicial dissections of the cube. We use the binary representation of the integers
from 0 to 7 to denote the vertices of the cube (cf. Figure 1), with two vertices
adjacent if their Hamming distance is one.

Fig. 1. The cube with labels

The Hamming distance is the number of components which differ in the
binary expansion. The automorphism group of the cube has order 48 and is
generated by the three permutations

(0, 1, 3, 2)(4, 5, 7, 6), (0, 1, 5, 4)(2, 3, 7, 6), (0, 1)(2, 3)(4, 5)(6, 7).

The tetrahedra are encoded using the lexicographic rank of their vertex set
among the set of 4-subsets of {0, . . . , 7}:

0 = {0, 1, 2, 3}
1 = {0, 1, 2, 4}
2 = {0, 1, 2, 5}
3 = {0, 1, 2, 6}
4 = {0, 1, 2, 7}
5 = {0, 1, 3, 4}

6 = {0, 1, 3, 5}
7 = {0, 1, 3, 6}
8 = {0, 1, 3, 7}
9 = {0, 1, 4, 5}
10 = {0, 1, 4, 6}
11 = {0, 1, 4, 7}

12 = {0, 1, 5, 6}
13 = {0, 1, 5, 7}
14 = {0, 1, 6, 7}
15 = {0, 2, 3, 4}
16 = {0, 2, 3, 5}
17 = {0, 2, 3, 6}

18 = {0, 2, 3, 7}
19 = {0, 2, 4, 5}
20 = {0, 2, 4, 6}
21 = {0, 2, 4, 7}
22 = {0, 2, 5, 6}
23 = {0, 2, 5, 7}
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24 = {0, 2, 6, 7}
25 = {0, 3, 4, 5}
26 = {0, 3, 4, 6}
27 = {0, 3, 4, 7}
28 = {0, 3, 5, 6}
29 = {0, 3, 5, 7}
30 = {0, 3, 6, 7}
31 = {0, 4, 5, 6}
32 = {0, 4, 5, 7}
33 = {0, 4, 6, 7}
34 = {0, 5, 6, 7}
35 = {1, 2, 3, 4}

36 = {1, 2, 3, 5}
37 = {1, 2, 3, 6}
38 = {1, 2, 3, 7}
39 = {1, 2, 4, 5}
40 = {1, 2, 4, 6}
41 = {1, 2, 4, 7}
42 = {1, 2, 5, 6}
43 = {1, 2, 5, 7}
44 = {1, 2, 6, 7}
45 = {1, 3, 4, 5}
46 = {1, 3, 4, 6}
47 = {1, 3, 4, 7}

48 = {1, 3, 5, 6}
49 = {1, 3, 5, 7}
50 = {1, 3, 6, 7}
51 = {1, 4, 5, 6}
52 = {1, 4, 5, 7}
53 = {1, 4, 6, 7}
54 = {1, 5, 6, 7}
55 = {2, 3, 4, 5}
56 = {2, 3, 4, 6}
57 = {2, 3, 4, 7}
58 = {2, 3, 5, 6}
59 = {2, 3, 5, 7}

60 = {2, 3, 6, 7}
61 = {2, 4, 5, 6}
62 = {2, 4, 5, 7}
63 = {2, 4, 6, 7}
64 = {2, 5, 6, 7}
65 = {3, 4, 5, 6}
66 = {3, 4, 5, 7}
67 = {3, 4, 6, 7}
68 = {3, 5, 6, 7}
69 = {4, 5, 6, 7}

Theorem 1. The number of equivalence classes of simplicial dissections of the
cube under its automorphism group of order 48 is exactly 10. Six of these are
triangulations as described in [5]. A system of representatives is given in Table 1,
together with the order of the automorphism group. A more detailed drawing of
the representatives is shown in Table 2.

Table 1. The simplicial dissections of the cube

i Ri |Aut(Ri)|
1 {1,38,41,52,63} 24

2 {1,35,45,56,65,68} 4

3 {1,35,45,56,66,67} 2

4 {1,35,45,57,63,66} 2

5 {1,35,45,58,61,68} 2

6 {1,35,45,59,61,64} 1

7 {1,35,45,59,62,63} 2

8 {1,35,47,52,57,63} 6

9 {2,19,36,56,66,67} 4

10 {2,19,36,59,61,64} 12

A tretrahedron is spatial if it has positive volume. Out of the list of 70 tetra-
hedra, 12 are flat. The remaining 58 are spatial and can be used for triangulating
the cube. Following Takeuchi and Imai [12], triangulations can be identified using
large cliques in a certain graph Γ , which we call the disjointness graph. This ter-
minology is somewhat abusive, since the graph measures if the interior point sets
of the tetrahedra are disjoint: Boundary points may or may not intersect. The
vertices of Γ are the spatial tetrahedra. Two vertices are adjacent if the asso-
ciated tetrahedra are non-overlapping, i.e. they do not share an interior point.
The adjacency matrix of Γ is shown in Table 2.
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Fig. 2. The simplicial dissections R1, . . . , R10 of the cube up to equivalence
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Table 2. The adjacency matrix of the disjointness graph

2 The Types

As pointed out by De Loera et al. [5], there are four types of tetrahedra under
the action of the group. The four types are listed in Table 3.

The table lists the volume of each tetrahedron, based on a cube of side length
one. The type vector of a triangulation is the vector (a, b, c, d) where a is the num-
ber of Cores, b is the number of Corners, c is the number of Staircases, and d is
the number of Slanted pieces. The Corner, Staircase and Slanted pieces each have
volume 1

6 , whereas the Core piece has volume 1
3 . From this it follows that a trian-

gulation or dissection either has 5 tetrahedra and includes a Core piece, or it has
6 tetrahedra, none of which are Core. This means that the type vector satisfies

2a + b + c + d = 6, a ≤ 1.
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Table 3. The types of tetrahedra

Name Representative Numeric # Ago Volume

Corner = {0, 1, 2, 4} 1 8 6
1
6

Staircase = {0, 1, 2, 5} 2 24 2
1
6

Slanted = {1, 3, 4, 7} 47 24 2
1
6

Core = {1, 2, 4, 7} 41 2 24
1
3

Table 4. The dissections and triangulations of the cube with tetrahedra sorted by type

i Core Corner Staircase Slanted Type |Aut(Ri)| DL

1 41 1, 38, 52, 63 (1, 4, 0, 0) 24 1

2 1, 68 45, 56 35, 65 (0, 2, 2, 2) 4 4

3 1 45, 56, 66, 67 35 (0, 1, 4, 1) 2 5

4 1, 63 45, 66 35, 57 (0, 2, 2, 2) 2 3

5 1, 68 45, 61 35, 58 (0, 2, 2, 2) 2 dissection

6 1 45, 59, 61, 64 35 (0, 1, 4, 1) 1 dissection

7 1, 63 45, 59 35, 62 (0, 2, 2, 2) 2 dissection

8 1, 52, 63 35, 47, 57 (0, 3, 0, 3) 6 2

9 2, 19, 36, 56, 66, 67 (0, 0, 6, 0) 4 dissection

10 2, 19, 36, 59, 61, 64 (0, 0, 6, 0) 12 6

In Table 4, the list of dissections from Theorem 1 is listed, with tetrahedra
separated out by type. The type vector is listed in the column headed type.
For triangulations, the De Loera number is in the column headed DL. This will
be discussed in Sect. 4.
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3 Poset Classification

Poset classification is a technique to classify combinatorial objects. Canonical
augmentation due to McKay [7] is a very popular technique. McKay intro-
duces the idea of a canonical predecessor to achieve the isomorph classification.
McKay’s work relies on the notion of a canonical form. His computer package
Nauty [8] can compute canonical forms for graphs efficiently. This has led many
authors to reduce the classification of different types of combinatorial structures
to that of graphs. The original combinatorial objects are equivalent if and only if
the associated graphs are isomorphic. By using Nauty to solve the isomorphism
problem for the associated graphs, the combinatorial objects at hand are classi-
fied as well. For many combinatorial objects, this reduction is efficient and works
very well. However, there are combinatorial objects for which this reduction is
inefficient. Also, there is an interest in solving the isomorphism problem for the
original combinatorial objects at hand directly, and avoiding the reduction to
graphs altogether.

A second approach to classify combinatorial objects is losely based on ideas
of Schmalz [11] for the enumeration of double cosets in groups. This has been
adapted to the problem of classifying the orbits of groups on various posets. The
critical operation in any poset orbit classification algorithm is the isomorphism
testing. Using the ideas of Schmalz, backtracking can be avoided at the expense
of higher memory complexity. The poset is examined breadth-first, using the
rank of the combinatorial objects at hand. For most combinatorial objects, such
rank functions are implicit. For instance, for orbits on sets, the size of the set is
the rank of the set. In order to do isomorphism test in linear time, previously
computed data in lower levels of the poset is utilized when constructing the next
level in the poset. For a recent description of this technique, including some
comparisons with canonical augmentation, see [3].

Let (P,≺) be a partially ordered set with rank function. Assume that G is
a group that acts on P (with the action written on the right). This means that
for all g ∈ G and all a, b ∈ P we have

a ≺ b ⇐⇒ ag ≺ bg.

Let Pi be the set of objects at level i in P. The poset of orbits for the action of
G on P has as elements the orbits of G. Two orbits O1 and O2 are related with
there exists a ∈ O1 and b ∈ O2 with a ≺ b.

For computing dissections of a polyhedron P with automorphism group G,
let P be the set of partial dissections. A partial dissection is a set of spacial
tetrahedra (simplices) which do not intersect in an interior point. The poset
P is ordered with respect to inclusion. The group G of the polyhedron acts
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on this poset. The rank of a dissection is the number of simpices in it. The
level set Pi contains all partial dissection size i. The dissections of the cube can
be recognized using the volume function from Table 3. Dissections containing a
Core tetrahedra have rank 5. All other dissections have rank 6. As all partial
dissections correspond to cliques in the disjointness graph Γ of Table 2, the
problem of finding dissections is reduced to that of finding suitable cliques in
the graph Γ.

Let us present some results from the classification, computed using
Orbiter [2]. The number of orbits of G on each of the levels Pi for i = 0, . . . , 6 is
shown in Table 5.

Table 5. The number of orbits on the poset by level

Level # Aut distribution

0 1 (48)

1 4 (24, 6, 22)

2 24 (12, 6, 44, 29, 19)

3 59 (64, 4, 215, 139)

4 72 (24, 8, 6, 46, 3, 219, 143)

5 32 (24, 6, 211, 119)

6 9 (12, 6, 42, 24, 1)

The poset of orbits for the action of the group of the cube on the partial
dissections is shown in Fig. 3.

The labeling of the representatives of the dissections is as in Table 1.

4 Comparison with the Types of de Loera et al.

De Loera, Rambau and Santos [5] list six types of triangulations of the cube.
In Table 6, the De Loera triangulations are listed and identified with orbits in
Table 4. An isomorphism from the representative picked by De Loera to the
representative in Table 4 is given.
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Fig. 3. The poset of orbits on partial dissections

Table 6. The triangulations listed by De Loera et al.

i Representative Type Table 4 Isomorphism

1 {1, 38, 41, 52, 63} (1, 4, 0, 0) 1 id

2 {4, 11, 21, 38, 52, 63} (0, 3, 0, 3) 8 (0, 3, 5)(2, 7, 4)

3 {6, 17, 29, 30, 32, 33} (0, 2, 2, 2) 4 (0, 4, 5, 1)(2, 6, 7, 3)

4 {6, 18, 21, 29, 32, 63} (0, 2, 2, 2) 2 (0, 4, 5, 1)(2, 6, 7, 3)

5 {6, 18, 24, 29, 32, 33} (0, 1, 4, 1) 3 (0, 4, 6, 7, 3, 1)(2, 5)

6 {8, 13, 18, 24, 32, 33} (0, 0, 6, 0) 10 (0, 2, 3, 1)(4, 6, 7, 5)
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