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Abstract. A symbolic Lie p-ring defines a family of Lie rings with pn

elements for infinitely many different primes p and a fixed positive integer
n. Symbolic Lie p-rings are used to describe the classification of isomor-
phism types of nilpotent Lie rings of order pn for all primes p and all
n ≤ 7. This classification is available as the LiePRing package of the
computer algebra system GAP. We give a brief description of this pack-
age, including an approach towards computing the automorphism group
of a symbolic Lie p-ring.
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1 Introduction

A Lie ring is an additive abelian group with a multiplication, denoted by [., .],
that is bilinear, alternating and satisfies the Jacobi identity. A Lie p-ring is a
nilpotent Lie ring with pn elements for some prime power pn. Such a Lie p-ring
of order pn can be described by a presentation P (A) on n generators b1, . . . , bn
with coefficients A = (aijk, aik | 1 ≤ i < j < k ≤ n), so that aijk and aik are
integers in the range {0, . . . , p − 1} and the following relations hold:

[bj , bi] =
n∑

k=j+1

aijkbk for 1 ≤ i < j ≤ n, and

pbi =
n∑

k=i+1

aikbk for 1 ≤ i ≤ n.

We generalize this type of presentation so that it defines a family of Lie p-
rings for various different primes. For this purpose let p be an indeterminate, let
R = Z[w, x1, . . . , xm] be a polynomial ring in m + 1 commuting variables and
let aijk and aik in R. In some (rare) cases it is convenient to allow some of the
coefficients aijk and aik to be rational functions over R; note that we use this
only for coefficients aijk or aik if pbk = 0 so that bk is an element of order p.

If a fixed prime P and integers X1, . . . , Xm are given, then we specify the a
polynomial a ∈ R at these values by choosing W to be the smallest primitive
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root mod P and evaluating a = a(W,X1, . . . , Xm) in Z. We specify a rational
function a/b with a, b ∈ R by specifying the polynomials a and b to a and b in
Z, and then we determine a c where c ∈ {1, . . . P − 1} satisfies cb ≡ 1 mod P .
Note that only choices of W,X1, . . . , Xm with P � b are valid.

Let P be an infinite set of primes, let m ∈ N0 and for P ∈ P let

ΣP ⊆ {(X1, . . . , Xm) ∈ Z
m | 0 ≤ Xi < P}.

Then the presentation P (A) defines a symbolic Lie p-ring with respect to P and
ΣP if for each P ∈ P and each (X1, . . . , Xm) ∈ ΣP the presentation P (A)
specified at these points is a finite Lie p-ring of order Pn.

A symbolic Lie p-ring describes a family of finite Lie p-rings: for each P ∈ P

this contains |ΣP | ≤ Pm members. Symbolic Lie p-rings are used to describe
the complete classification up to isomorphism of all Lie p-rings of order dividing
p7 for p > 3 as obtained by Newman, O’Brien and Vaughan-Lee [6,7]. This is
available in computational form in the LiePRing package [4] of the computer
algebra system GAP [9]. The following exhibits an example.

Example 1. We consider the symbolic Lie p-ring L with generators b1, . . . , b7 and
the (non-trivial) relations

[b2, b1] = b4, pb1 = b4 + b6 + x2b7,

[b3, b1] = b5, pb3 = x1b6.

[b3, b2] = b6,

[b5, b1] = b6,

[b5, b3] = b7,

Let P be the set of all primes and let

ΣP = {(X1,X2) | 0 < X1 < P, 0 ≤ X2 < P}.

Then L defines a family of P (P − 1) Lie p-rings of order P 7 for each P ∈ P.

The LiePRing package allows symbolic computations with symbolic Lie p-
rings L. “Symbolic computations” means that it computes with L as if computing
with all Lie p-rings L in the family defined by L simultaneously. For example, it
allows us

• to compute series of ideals such as the lower central series of L,
• to describe the automorphism group of L, and
• to determine the Schur multiplier of L, see [3].

Let P be a prime and let n ∈ N with n ≤ P . The Lazard correspondence
[5] associates to each Lie p-ring L of order Pn a group G(L) of order Pn. This
correspondence translates Lie ring isomorphisms to group isomorphisms and vice
versa. Cicalo, de Graaf and Vaughan-Lee [2] determined an effective version of
the Lazard correspondence and implemented this in the LieRing package [1] of
GAP.

The following sections give a brief overview of some of the algorithms in
the LiePRing package and they exhibit how the Lazard correspondence can be
evaluated in GAP in this setting.
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2 Elementary Computations

In this section we investigate computations with elements, subrings and ideals.
Throughout, let L be a symbolic Lie p-ring with respect to ΣP , let L be a
finite Lie p-ring in the family defined by L and let P be the prime of L. We
write P (A) for the defining presentation in the finite and in the symbolic case.
Thus depending on the context A is an integer matrix or a matrix over the ring
Quot(R) of rational functions over the polynomial ring R.

2.1 Ring Invariants

The definition of ΣP can often be used for computations with L. For example,
if ΣP = {(x1, x2, x3) ∈ Z

3
P | x1 �= 1, x3 = ±1}, then (x1 − 1) specifies to an

invertible element in L and (x3 − 1)(x3 + 1) = (x2
3 − 1) specifies to 0. Hence we

can treat (x1−1) as a unit and (x2
3−1) as zero. The following example illustrates

this for ΣP = {(x, y) | x �= 0, y ∈ {1, w}}.

gap> L := LiePRingsByLibrary(7)[3195];
<LiePRing of dimension 7 over prime p with parameters [ x, y ]>
gap> ViewPCPresentation(L);
p*l2 = x*l7, p*l3 = l5 + y*l7, p*l4 = l6,
[l2,l1] = l5, [l3,l1] = l6, [l4,l1] = l7
gap> RingInvariants(L);
rec( units := [ x, y ], zeros := [ w*y-y^2-w+y ] )

2.2 The Word Problem

Consider the case of a finite Lie p-ring L and let a be an arbitrary word in the
generators of P (A). Then the relations in P (A) readily allow us to rewrite a to
a unique equivalent normal form

c1b1 + . . . + cnbn with ci ∈ {0, . . . , P − 1} for 1 ≤ i ≤ n.

Now consider the case of a symbolic Lie p-ring L and let a be a word in the
generators of P (A). Then the relations and the zeros of L allow us to translate
this to an equivalent reduced form; that is, a linear combination of the form

c1b1 + . . . + cnbn with ci ∈ R for 1 ≤ i ≤ n,

where c1, . . . , cn ∈ R are reduced modulo the polynomials in zeros; that is, the
polynomial division algorithm dividing ci by the polynomials in zeros yields only
trivial quotients. If c1 = . . . = ck = 0 and ck+1 �= 0, then k + 1 is the depth
of this reduced form and ck+1 is its leading coefficient. We say that (c1, . . . , cn)
represents the element a.

Example 2. We continue Example 1.
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(1) Consider the element a = pb1 − [b2, b1] − [b3, b2] − [[b3, b1], b3]. Using the
relations of L this reduces to a = b4 + b6 + x2b7 − b4 − b6 − [b5, b3] =
x2b7 − b7 = (x2 − 1)b7. Note that a can be zero and non-zero in the Lie
p-rings in the family defined by L, depending on the choice of x2.

(2) Consider the element a = pb3. Then a = x1b6 and hence, since x1 �= 0 in
L, it follows that a is a non-zero element in each Lie p-ring in the family
defined by L.

2.3 Subrings, Ideals and Series

Let L be a symbolic Lie p-ring, let w1, . . . , wk be words in the generators
b1, . . . , bn of P (A) and let U be the subring of L generated by these words.
Our aim is to determine an echelon generating set for U ; that is, a generating
set v1, . . . , vl so that each vi is a reduced form in the generators with leading
coefficient 1, the depths satisfy d(v1) < . . . < d(vl) and each element in U is a
linear combination in v1, . . . , vl with coefficients in Quot(R). This may require
the distinction of finitely many cases, as the following example indicates.

Example 3. We continue Example 1.

(1) Let U = 〈[b3, b1], pb3〉. As [b3, b1] = b5 and pb3 = x1b6 with x1 �= 0, it follows
that U = 〈b5, b6〉 in each Lie ring in the family defined by L.

(2) Let U = 〈pb1 − b4 − b6, [b3, b2]〉. Then using the relations of L it follows that
U = 〈x2b7, b6〉. Hence U = 〈b6, b7〉 if x2 �= 0 and U = 〈b6〉 otherwise. Thus a
case distinction is necessary to determine an echelon generating set for U .

Ideals are subrings that are closed under multiplication and hence they can
also be described via echelon generating sets (subject to a case distinction). In
turn, this then allows us to determine series such as the lower central series and
the derived series of L. The following example illustrates the handling of case
distinctions in GAP.

gap> L := LiePRingsByLibrary(6)[267];
<LiePRing of dimension 6 over prime p with parameters [x,y,z,t]>
gap> ViewPCPresentation(L);
p*l1 = t*l5 + x*l6, p*l2 = y*l5 + z*l6,
[l2,l1] = l4, [l3,l1] = l6, [l4,l1] = l5,
[l3,l2] = w*l5, [l4,l2] = l6
gap> RingInvariants(L);
rec( units := [ -x*y+z*t ], zeros := [ ] )
gap> S := LiePRecSubring(L, [p*b[1]]);
[<LiePRing of dimension 1 over prime p with parameters [x,y,z,t]>,
<LiePRing of dimension 1 over prime p with parameters [x,y,z,t]>]

Here the LiePRing package returns two new symbolic Lie p-rings S[1] and
S[2]. These have different ring invariants and different bases:
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gap> RingInvariants(S[1]);
rec( units := [ y, x ], zeros := [ t ] )
gap> BasisOfLiePRing(S[1]);
[ l6 ]
gap> RingInvariants(S[2]);
rec( units := [ -x*y+z*t, t ], zeros := [ ] )
gap> BasisOfLiePRing(S[2]);
[ l5 + x/t*l6 ]

In particular, in S[2] the polynomial t is a unit and the rational function x/t
turns up as coefficient for the basis element l6.

3 Automorphism Groups

Given a symbolic Lie p-ring L, we show how to determine a generic description
for Aut(L) for each finite Lie p-ring L in the family defined by L. The following
gives a first illustration.

Example 4. We continue Example 1.
We note that L is generated by b1, b2, b3. This allows us to describe each

automorphism of L via its images of b1, b2, b3 and the same holds for each finite
Lie p-ring in the family defined by L. Write gr for the image of br. Then gr =
gr1b1 + . . . + gr7b7 for certain integers grs. We say that the automorphism is
represented by the 3×7 matrix (grs). Note that different matrices may represent
the same automorphism for a finite Lie p-ring L; for example, if P is the prime
of L, then b7 has order P and g37 and g37 + P give the same automorphism. We
expand on this below.

Our algorithm determines that each automorphism of L corresponds to a
matrix of the form

⎛

⎝
g11 g12 0 g14 g15 g16 g17
0 1 0 g24 0 g26 g27
0 g32 g11 g34 g35 g36 g37

⎞

⎠

with g11 = ±1 and grs arbitrary otherwise. If P is prime and L is a finite
Lie p-ring over P , then we can choose grs ∈ {0, . . . , P − 1} for (r, s) �= (1, 1) and
thus Aut(L) has order 2P 13.

Given a finite Lie p-ring L with prime P , we define its radical R(L) as the
ideal of L generated by {[bj , bi], P bk | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n}. The additive
group of L/R(L) is an elementary abelian group of order P d, say, and the Lie
ring multiplication of L/R(L) is trivial. Burnside’s Basis theorem (for example,
see [8, page 140]) for finite p-groups translates readily to the following.

Lemma 1. Let L be a finite Lie p-ring and let ϕ : L → L/R(L) the natural ring
homomorphism.

(a) R(L) is the intersection of all maximal Lie subrings of L.
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(b) Each minimal generating set of L has d elements and maps under ϕ onto a
minimal generating set of L/R(L).

(c) Each list of preimages under ϕ of a minimal generating set of L/R(L) is a
minimal generating set of L.

Next, let P (A) be the presentation for the finite Lie p-ring L with generators
b1, . . . , bn so that R(L) = 〈bd+1, . . . , bn〉. Then b1, . . . , bd is a minimal generating
set of L. Thus each automorphism α of L is defined by its images on b1, . . . , bd.
These have the general form

α(br) = gr1b1 + . . . + grnbn for 1 ≤ r ≤ d,

with integer coefficients grs. For k > d we note that bk ∈ R(L). This allows us
to write bk as a word in the ideal generators [bj , bi] and Pbi of R(L) and that,
in turn, allows us to determine the image α(bk) in the form

α(bk) = wk1b1 + . . . + wknbn,

where wkj is a word in {grs}.

Theorem 1. The matrix (grs)1≤r≤d,1≤s≤n defines an automorphism α of L if
and only if

(a) det(G) �≡ 0 mod P , where G = (grs)1≤r,s≤d, and
(b) the images α(b1), . . . , α(bn) satisfy the relations of L.

Proof. First recall that a map bi 
→ vi for 1 ≤ i ≤ n with v1, . . . , vn ∈ L extends
to a Lie ring homomorphism L → L if and only if v1, . . . , vn satisfy the defining
relations of L. This is von Dyck’s theorem (for example, see [8, page 51]) in
the case of finitely presented groups and it translates readily to other algebraic
objects such as Lie rings.

⇒: Suppose that the coefficients grs define an automorphism α. Then α
induces an automorphism β : L/R(L) → L/R(L). As L/R(L) ∼= Z

d
P with triv-

ial multiplication, it follows that Aut(L/R(L)) ∼= GL(d, ZP ). Hence det(G) �≡
0 mod P so (a) follows. (b) follows from von Dyck’s theorem.

⇐: Suppose that (a) and (b) hold. As (b) holds, von Dyck’s theorem asserts
that α is a Lie ring homomorphism. As P � det(G). it follows that the images
of b1, . . . , bd generate L as Lie ring. Hence α is surjective. Since L is finite, it
follows that α is also injective and hence an automorphism.

This allows us to determine a generic description for Aut(L). Suppose that
we have an automorphism given by indeterminates {grs | 1 ≤ r ≤ d, 1 ≤ s ≤ n}
and write gi = gi1b1 + . . . + ginbn for 1 ≤ i ≤ d. For k > d write bk as a word
wk in the generators b1, . . . , bd and use this to determine gk = wk(g1, . . . , gd).
Evaluate the defining relations R1, . . . , Rm of L in g1, . . . , gn. For each relation
Ri this leads to an expression

Ri = Ri(g1, . . . , gn) = wi d+1bd+1 + . . . + winbn,

with wij a polynomial in the indeterminates {grs | 1 ≤ r ≤ d, 1 ≤ s ≤ n}.
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Lemma 2. Let P be a prime and k minimal with P kbi = 0 for d < i ≤ n.
If wij ≡ 0 mod P k for all i, j and if det(G) �≡ 0 mod P , then the matrix
(grs)1≤r≤d,1≤s≤n defines an automorphism.

Proof. The generators that appear in the relations Ri = 0 all lie in the radical,
and so wij ≡ 0 mod P k ensures that wijbj = 0 for all i, j. Hence the conditions
of Theorem 1 are satisfied and the matrix (grs)1≤r≤d,1≤s≤n defines an automor-
phism.

The integer P k in Lemma 2 is called the characteristic of R(L). If k = 1, then
the conditions in Lemma 2 clearly determine all automorphisms of L. If k > 1,
then the conditions in Lemma 2 may miss some automorphisms and there are
examples where

Ri = wi d+1bd+1 + . . . + winbn = 0,

but some of the summands wijbj are non-zero. So it seems possible that
restricting our search to integer matrices (grs) which satisfy the equations
wij = 0 mod P k could miss some automorphisms in some cases. In practice,
we have not found a case where this happens.

Example 5. We continue Example 1 for a specific prime P .
Since the radical has characteristic P our method shows that the matrix

⎛

⎝
g11 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 g11 0 0 0 0

⎞

⎠

gives an automorphism if and only if g211 = 1 mod P . Let P = 5. Then

B =

⎛

⎝
4 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 4 0 0 0 0

⎞

⎠

gives an automorphism. There was no need in this case to look for solutions to
g211 = 1 mod P 2, but it is easy to “lift” B to a matrix C = (hrs) which gives
the same automorphism as B, but where h2

11 = 1 mod 25. The first row of the
matrix B represents the element 4b1. Now 5b1 = b4 + b6 +x2b7 and so the vector
(−1, 0, 0, 1, 0, 1, x2) also represents 4b1. Similarly the vector (0, 0,−1, 0, 0, x1, 0)
represents the same element of L as the third row of B. So

C =

⎛

⎝
−1 0 0 1 0 1 x2

0 1 0 0 0 0 0
0 0 −1 0 0 x1 0

⎞

⎠

gives the same automorphism as B, but the (1, 1) entry in C satisfies the equation
x2 = 1 mod 25. Note that B gives an automorphism, but does not have the form
specified in Example 4, whereas C gives the same automorphism as B, but does
have the form specified.
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More generally, in every case of Lie p-rings from our database that we have
examined, we can show that if B is an integer matrix which gives an automor-
phism of L for some prime P , and if k is any positive integer, then B can be
“lifted” to an integer matrix C = (hrs) which gives the same automorphism as B
but where the entries hrs satisfy all the equations wij = 0 mod P k. So in every
case that we have examined our method finds the full automorphism group.

We do not have a proof that our method always finds the full automorphism
group. But there are several general criteria (such as the radical having charac-
teristic P ) which imply that our method does not miss any automorphisms. So
in most cases our program is able to issue a “certificate of correctness”. In some
cases it may be necessary to examine the output from our program to prove that
it has found the full automorphism group.

Example 6. We consider the symbolic Lie p-ring L on 7 generators with the
non-trivial relations

[b2, b1] = b3, pb1 = b5 + xb7,

[b3, b1] = b4, pb2 = w2b6 + yb7,

[b3, b2] = b5, pb3 = w2b7.

[b4, b1] = b6,

[b5, b2] = −w2b7,

[b6, b1] = b7,

Then R(L) = 〈b3, . . . , b7〉 and each Lie p-ring L in the family of L is generated
by {b1, b2}. We define

g1 = g11b1 + . . . + g17b7 and g2 = g21b1 + . . . + g27b7.

Next, we write b3, . . . , b7 as words in {b1, b2}. It can be read off from the defining
relations that b3 = [b2, b1], b4 = [b3, b1], b5 = [b3, b2], b6 = [b4, b1], b7 = [b6, b1].
Using this, we expand the mapping defined by {grs} to the remaining generators
b3, . . . , b7. For example, for b3 this yields

g3 = [g2, g1]
= (g11g22 − g12g21)b3 + (g11g23 − g13g21)b4 + (g12g23 − g13g22)b5
+ (g11g24 − g14g21)b6 + (−g12g25w

2 + g15g22w
2 + g11g26 − g16g21)b7.

We now evaluate the defining relations of L in g1, . . . , gn. For example pb1 =
b5 + xb7 evaluates to

pg1 − g5 − xg7 = 0b1 + 0b2 + 0b3

+ (−g11g21g22 + g12g
2
21)b4

+ (−g11g
2
22 + g12g21g22 + g11)b5

+ (−g11g21g23 + g12w
2 + g13g

2
21)b6

+ (−g411g22x + g311g12g21x + g12g22g23w
2 − g13g

2
22w

2 − g11g21g24

+ g13w
2 + g14g

2
21 + g11x + g12y)b7
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Note that the coefficient of b3 in this relation is zero. More generally, if Ri is any
of the relations then

Ri = wi4b4 + . . . + wi7b7 = 0,

and b4, b5, b6, b7 all have order p. So we obtain an automorphism at the prime P
if and only if wij = 0 mod P (j = 4, 5, 6, 7) for all relations Ri.

Now let L be a finite Lie p-ring in the family defined by L and let P be its
prime. If the integer coefficients grs define an automorphism of L, then det(G)
is coprime to P . Hence, examining the coefficient of b4 in the relation above we
see that

−g11g21g22 + g12g
2
21 = −g21det(G) ≡ 0 mod P

is equivalent to g21 ≡ 0 mod P . In turn, this can now be used to simplify the
remaining coefficients. Using g21 ≡ 0 mod P now yields

−g11g
2
22 + g12g21g22 + g11 = −g11g

2
22 + g11 = −g11(g222 − 1)

As det(G) ≡ g11g22 mod P via g21 ≡ 0 mod P , it follows that g11 is coprime
to P and g222 = 1 mod P . We now iterate this approach. Introducing another
indeterminate D with Ddet(G) ≡ 1 mod P we finally obtain that

g21, g12, x(g22 − 1), g222 − 1, y(g11 − 1), y(D − g22),Dg22 − g211,

Dg11 − g22,D
2 − g11, x(g211 − D), g211g22 − D, g311 − 1

evaluate to 0 modulo P . We use this to eliminate indeterminates in the descrip-
tions of g1, g2; for example, we can replace g21 by 0. We obtain

g1 = (D2 0 g13 g14 g15 g16 g17)
g2 = (0 D3 g23 g24 g25 g26 g27)

,

subject to the additional condition that the polynomials

(D − 1)xy, (D2 − 1)y, (D3 − 1)x,D6 − 1

must evaluate to 0 mod P . This is the resulting description of the automor-
phism groups of the Lie p-rings L in the family defined by L. It implies that
|Aut(L)| = kP 10, where k ∈ {1, 2, 3, 6}. The precise value of k depends on the
two parameters x, y. When P ≡ 1 mod 3, if x = y = 0 then k = 6; if x = 0 and
y �= 0 then k = 2; if x �= 0 and y = 0 then k = 3; finally if x, y �= 0 then k = 1.
When P ≡ 2 mod 3 then k = 1 or 2.

4 The Lazard Correspondence

The final example of this abstract illustrates how the Lazard correspondent G(L)
to a finite Lie p-ring L can be determined using the LieRing package [1].
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gap> L := LiePRingsByLibrary(7)[300];
<LiePRing of dimension 7 over prime p with parameters [ x ]>
gap> NumberOfLiePRingsInFamily(L);
p
gap> LiePRingsInFamily(L, 7);
[ <LiePRing of dimension 7 over prime 7>,
...
gap> List(last, x -> PGroupByLiePRing(x));
[ <pc group of size 823543 with 7 generators>,
...
gap> List(last, x -> Size(AutomorphismGroup(x)));
[80707214,80707214,80707214,80707214,80707214,80707214,80707214]
gap> a := AutGroupDescription(L);
rec( auto := [ [ A11, A12, A13, A14, A15, A16, A17 ],

[ 0, 1, A23, 0, A25, A26, A27 ] ],
eqns := [ A11^2-1, A12*w*x-A11*A26 ] )

gap> 2*7^9;
80707214
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