Skip to main content

Abstract

Thiso chapter presents aircraft-based methods of measuring the flux densities of sensible and latent heat, carbon dioxide, ozone, nitrous oxide, methane, and other trace gases. The main techniques and sensors that are used to measure flux densities with an aircraft are briefly described. Factors that affect the accuracy of those flux density measurements are discussed, including analysis techniques, run lengths, sampling heights, surface and environmental conditions, and data quality assessment. The use of aircraft-based flux density measurements to evaluate the representativeness of tower-based flux measurements is examined. The versatility of aircraft to act as sensor platforms under a wide range of conditions is demonstrated using several interesting examples. Future potential research directions are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.R. Moninger, R.D. Mamrosh, P.M. Pauley: Automated meteorological reports form commercial aircraft, Bull. Am. Meteorol. Soc. 84, 203–216 (2003)

    Article  Google Scholar 

  • D.H. Lenschow: Airplane measurements of planetary boundary layer structure, J. Appl. Meteorol. 9, 874–884 (1970)

    Article  Google Scholar 

  • B.R. Bean, R. Gilmer, R.L. Grossman, R. McGavin: An analysis of airborne measurements of vertical water vapor flux during BOMEX, J. Atmos. Sci. 29, 860–869 (1972)

    Article  Google Scholar 

  • R.L. Grossman, B.R. Bean: An aircraft investigation of turbulence in the lower layers of a marine boundary layer. In: Tech. Rep. NOAA, Vol. TR ERP 291 NOAA (1973)

    Google Scholar 

  • G.A. McBean, R.D. Paterson: Variations of turbulence fluxes of momentum, heat and moisture above Lake Ontario, J. Phys. Oceanogr. 5, 523–531 (1975)

    Article  Google Scholar 

  • D.H. Lenschow, A.C. Delany, B.B. Stankov, D.H. Stedman: Airborne measurements of the vertical flux of ozone in the boundary layer, Bound.-Layer Meteorol. 19, 249–265 (1980)

    Article  Google Scholar 

  • P. Alvo, R.L. Desjardins, P.H. Schuepp, J.I. MacPherson: Aircraft measurements of CO2 exchange over various ecosystems, Bound.-Layer Meteorol. 29, 167–183 (1984)

    Article  Google Scholar 

  • R.L. Desjardins, E.J. Brach, P. Alvo, P.H. Schuepp: Aircraft monitoring of surface carbon dioxide exchange, Science 216, 733–735 (1982)

    Article  Google Scholar 

  • R.C. Harriss, S.C. Wofsy, D.S. Bartlett, M.C. Shipham, D.J. Jacob, J.M. Hoell Jr., R.J. Bendura, J.W. Drewry, R.J. McNeal, R.L. Navarro, R.N. Gidge, V.E. Rabine: The Arctic Boundary Layer Expedition (ABLE 3a): July–August 1988, J. Geophys. Res. Atmos. 97, 16383–16394 (1992)

    Article  Google Scholar 

  • W.A. Glooschenko, N.T. Roulet, L.A. Barrie, H.I. Schiff, H.G. McAdie: The Northern Wetlands Study (NOWES): An overview, J. Geophys. Res. 99, 1423–1428 (1994)

    Article  Google Scholar 

  • J.-C. André, J.-P. Goutorbe, A. Perrier: HAPEX-MOBILHY: a hydrologic atmospheric experiment for the study of water budget and evaporation at the climatic scale, Bull. Am. Meteorol. Soc. 67, 138–144 (1986)

    Google Scholar 

  • P.J. Sellers, F.G. Hall, G. Asrar, D.E. Strebel, R.E. Murphy: The first ISLSCP field experiment, Bull. Am. Meteorol. Soc. 69, 22–27 (1988)

    Article  Google Scholar 

  • P.J. Sellers, F.G. Hall, G. Asrar, D.E. Strebel, R.E. Murphy: An overview of the first International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), J. Geophys. Res. 97, 18345–18371 (1992)

    Article  Google Scholar 

  • A.K. Betts, R.L. Desjardins, J.I. MacPherson: Budget analysis of the boundary layer grid flights during FIFE 1987, J. Geophys. Res. 97(D17), 18533–18546 (1992)

    Article  Google Scholar 

  • A.K. Betts, R.L. Desjardins, J.I. MacPherson, R.D. Kelly: Boundary-layer heat and moisture budgets from FIFE, Bound.-Layer Meteorol. 50, 109–138 (1990)

    Article  Google Scholar 

  • P.J. Sellers, F.G. Hall, R.D. Kelly, A. Black, D.D. Baldocchi, J. Berry, M. Ryan, K.J. Ranson, P.M. Crill, D.P. Lettenmaier, H. Margolis, J. Cihlar, J. Newcomer, D.R. Fitzjarrald, P.G. Jarvis, S.T. Gower, D. Halliwell, D. Williams, B. Goodison, D.E. Wickland, F.E. Guertin: BOREAS in 1997: Experiment overview, scientific results, and future directions, J. Geophys. Res. 102, 28731–28769 (1997)

    Article  Google Scholar 

  • J.M. Chen, S.G. Leblanc, J. Cihlar, R.L. Desjardins, J.I. MacPherson: Extending aircraft- and tower-based CO2 flux measurements to a boreal region using a landsat thematic mapper land cover map, J. Geophys. Res. 104, 16859–16877 (1999)

    Article  Google Scholar 

  • T.J. Jackson, D.M. Le Vine, A.Y. Hsu, A. Oldak, P.J. Starks, C.T. Swift, J.D. Isham, M. Haken: Soil moisture mapping at regional scales using microwave radiometry: the southern great plains hydrology experiment, IEEE Trans. Geosci. Remote Sens. 37, 2136–2151 (1999)

    Article  Google Scholar 

  • M. Keller, A. Alencar, G.P. Asner, B. Braswell, M. Bustamante, E. Davidson, T. Feldapusch, E. Fernandes, M. Goulden, P. Kabat, B. Kruijt, F. Luizao, S. Miller, D. Markewitz, A.D. Nobre, C.A. Nobre, N.P. Filho, H. da Rocha, P.S. Dias, C. von Randow, G.L. Vourlitis: Ecological research in the large-scale biosphere-atmosphere experiment in Amazonia: Early results, Ecol. Appl. 14, 3–16 (2004)

    Article  Google Scholar 

  • R.J. Dobosy, T.L. Crawford, J.I. MacPherson, R.L. Desjardins, R.D. Kelly, S.P. Oncley, D.H. Lenschow: Intercomparison among four flux aircraft at BOREAS in 1994, J. Geophys. Res. 102, 29101–29111 (1997)

    Article  Google Scholar 

  • R.L. Desjardins, J.I. MacPherson, L. Mahrt, P.H. Schuepp, E. Pattey, H. Neumann, D. Baldocchi, S. Wofsy, D.R. Fitzjarrald, H. McCaugey, D.W. Joiner: Scaling up flux measurements for the boreal forest using aircraft-tower combinations, J. Geophys. Res. 102, 29125–29133 (1997)

    Article  Google Scholar 

  • T. Zhu, R.L. Desjardins, J.I. MacPherson, E. Pattey, G. St. Amour: Aircraft measurements of the concentration and flux of agrochemicals, Environ. Sci. Technol. 32, 1032–1038 (1998)

    Article  Google Scholar 

  • T. Zhu, D. Wang, R.L. Desjardins, J.I. MacPherson: Aircraft-based volatile organic compounds flux measurements with relaxed Eddy accumulation, Atmos. Environ. 33, 1969–1979 (1999)

    Article  Google Scholar 

  • T. Hiyama, M.A. Strunin, R. Suzuki, J. Asanuma, M.Y. Mezrin, N.A. Bezrukova, T. Ohata: Aircraft observations of the atmospheric boundary layer over a heterogeneous surface in Eastern Siberia, Hydrol. Process. 17, 2885–2911 (2003)

    Article  Google Scholar 

  • M. Mauder, R.L. Desjardins, J.I. MacPherson: Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem, J. Geophys. Res. 112, D13112 (2007)

    Google Scholar 

  • G.M. Wolfe, S.R. Kawa, T.F. Hanisco, R.A. Hannun, P.A. Newman, A. Swanson, S. Bailey, J. Barrick, K.L. Thornhill, G. Diskin, J. DiGangi, J.B. Nowak, C. Sorenson, G. Bland, J.K. Yungel, C.A. Swenson: The NASA carbon airborne flux experiment (CARAFE): instrumentation and methodology, Atmos. Meas. Tech. 11, 1757–1776 (2018)

    Article  Google Scholar 

  • R.L. Desjardins, E. Pattey, W.N. Smith, D. Worth, B.B. Grant, R. Srinivasan, J.I. MacPherson, M. Mauder: Multiscale estimates of N2O emissions from agricultural lands, Agric. For. Meteorol. 150, 817–824 (2010)

    Article  Google Scholar 

  • K. Kohnert, A. Serafimovich, S. Metzger, J. Hartmann, T. Sachs: Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie delta, Canada, Sci. Rep. 7, 5828 (2017)

    Article  Google Scholar 

  • R.L. Desjardins, D.E. Worth, R. Srinivasan, E. Pattey, A.C. VanderZaag, M. Mauder, S. Metzger, D. Worthy, C. Sweeney: The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements, Agric. For. Meteorol. 248, 48–59 (2018)

    Article  Google Scholar 

  • J.R. Pederson, W.J. Massman, L. Mahrt, A. Delany, S. Oncley, G.D. Hartog, H.H. Neumann, R.E. Mickle, R.H. Shaw, K.T. Paw U, D.A. Grantz, J.I. MacPherson, R. Desjardins: California ozone deposition experiment: Methods, results, and opportunities, Atmos. Environ. 29, 3115–3132 (1995)

    Article  Google Scholar 

  • R.E. Stewart, H.G. Leighton, P. Marsh, G.W.K. Moore, H. Ritchie, W.R. Rouse, E.D. Soulis, G.S. Strong, R.W. Crawford, B. Kochtubajda: The Mackenzie GEWEX study: The water and energy cycles of a major north American river basin, Bull. Am. Meteorol. Soc. 79, 2665–2683 (1998)

    Article  Google Scholar 

  • M.A. Strunin, T. Hiyama: Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over Eastern Siberia, Hydrol. Process. 18, 3081–3098 (2004)

    Article  Google Scholar 

  • T. Hiyama, M.A. Strunin, H. Tanaka, T. Ohta: The development of local circulations around the Lena river and their effect on tower-observed energy imbalance, Hydrol. Process. 21, 2038–2048 (2007)

    Article  Google Scholar 

  • K. Wilson, A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field: Energy balance closure at fluxnet sites, Agric. For. Meteorol. 113, 223–243 (2002)

    Article  Google Scholar 

  • W.P. Kustas, J.L. Hatfield, J.H. Prueger: The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): background, hydrometeorological conditions, and preliminary findings, J. Hydrometeorol. 6, 791–804 (2005)

    Article  Google Scholar 

  • B. Yuan, L. Kaser, T. Karl, M. Graus, J. Peischl, T.L. Campos, S. Shertz, E.C. Apel, R.S. Hornbrook, A. Hills, J.B. Gilman, B.M. Lerner, C. Warneke, F.M. Flocke, T.B. Ryerson, A.B. Guenther, J.A. de Gouw: Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions, J. Geophys. Res. Atmos. 120, 6271–6289 (2015)

    Article  Google Scholar 

  • J.A. Hacker, D. Chen, M. Bai, C. Ewenz, W. Junkermann, W. Lieff, B. McManus, B. Neininger, J. Sun, T. Coates, T. Denmead, T.K. Flesch, S.M. McGinn, J. Hill: Using airborne technology to quantify and apportion emissions of CH4 and NH3 from feedlots, Anim. Prod. Sci. 56, 190–203 (2016)

    Article  Google Scholar 

  • J.C. Kaimal, J.J. Finnigan: Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford Univ. Press, New York 1994)

    Book  Google Scholar 

  • R.L. Desjardins, P. Rochette, E. Pattey, J.I. MacPherson: Measurements of greenhouse gas fluxes using aircraft- and tower-based techniques. In: Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, ASA Special Publication, Vol. 55, ed. by L. Harper, J. Duxbury, A. Mosier (1993) pp. 45–62

    Google Scholar 

  • R.L. Desjardins, J.I. MacPherson, P.H. Schuepp, F. Karanja: An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat, Bound.-Layer Meteorol. 47, 55–69 (1989)

    Article  Google Scholar 

  • R.L. Desjardins: A Study of Carbon Dioxide and Sensible Heat Fluxes Using the Eddy Correlation Technique, Ph.D. Thesis (Cornell University, Ithaca 1972)

    Google Scholar 

  • D.J. Buckley, R.L. Desjardins, J.L.M. Lalonde, R. Brunke: A Linearized, fast response gas sampling apparatus for Eddy accumulation studies, Comput. Electron. Agric. 2, 243–250 (1988)

    Article  Google Scholar 

  • J.A. Businger, S.P. Oncley: Flux measurement with conditional sampling, J. Atmos. Ocean. Technol. 7, 349–352 (1990)

    Article  Google Scholar 

  • J.I. MacPherson, R.L. Desjardins: Airborne tests of flux measurement by the relaxed Eddy accumulation technique. In: Proc. 7th Symposium on Meteorological Observation and Instrumentation (American Meteorological Society, Boston 1991) pp. 6–11

    Google Scholar 

  • E. Pattey, R.L. Desjardins, P. Rochette: Accuracy of the relaxed Eddy-accumulation technique, evaluated using CO2 flux measurements, Bound.-Layer Meteorol. 66, 341–355 (1993)

    Article  Google Scholar 

  • A. Moravek, I. Trebs, T. Foken: Effect of imprecise lag time and high frequency attenuation on surface-atmosphere exchange determined with the relaxed Eddy accumulation method, J. Geophys. Res. Atmos. 118, 10,210–10,224 (2013)

    Article  Google Scholar 

  • C. Torrence, G.P. Compo: A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. 79, 61–78 (1998)

    Article  Google Scholar 

  • L. Mahrt, J.F. Howell: The influence of coherent structures and microfronts on scaling laws using global and local transforms, J. Fluid Mech. 260, 247–270 (1994)

    Article  Google Scholar 

  • J.-L. Attié, P. Durand: Conditional wavelet technique applied to aircraft data measured in the thermal internal boundary layer during sea-breeze events, Bound.-Layer Meteorol. 106, 359–382 (2003)

    Article  Google Scholar 

  • S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X.H. Zheng, H.P. Schmid, T. Foken: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences 10, 2193–2217 (2013)

    Article  Google Scholar 

  • L.E. Hudgins, M.E. Mayer, C.A. Friehe: Fourier and wavelet analysis of atmospheric turbulence. In: Progress in Wavelet Analysis and Applications, Editions Frontiers, ed. by E. Meyers, S. Roques (1993) pp. 491–498

    Google Scholar 

  • K.L. Mays, P.B. Shepson, B.H. Stirm, A. Karion, C. Sweeney, K. Gurney: Aircraft-based measurements of the carbon footprint of Indianapolis, Environ. Sci. Technol. 43, 7816–7823 (2009)

    Article  Google Scholar 

  • J. Turnbull, A. Karion, M.L. Fischer, I. Faloona, T. Guilderson, S.J. Lehman, B.R. Miller, J.B. Miller, S.A. Montzka, T. Sherwood, S. Saripalli, C. Sweeney, P. Tans: Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009, Atmos. Chem. Phys. 11, 705–721 (2011)

    Article  Google Scholar 

  • M.O. Cambaliza, P.B. Shepson, D. Caulton, B. Stirm, D. Samarov, K.R. Gurney, J. Turnbull, K.J. Davis, A. Possolo, A. Karion, C. Sweeney, B. Moser, A. Hendricks, T. Lauvaux, K. Mays, J. Whetstone, J. Huang, L. Razlivanov, N.L. Miles, S.J. Richardson: Assessment of uncertainties of an aircraft-based mass-balance approach for quantifying Urban greenhouse gas emissions, Environ. Sci. Technol. 49, 7904–7913 (2013)

    Google Scholar 

  • D.S. Wratt, N.R. Gimson, G.W. Brailsford, K.R. Lassey, A.M. Bromley, M.J. Bell: Estimating regional methane emissions from agriculture using aircraft measurements of concentration profiles, Atmos. Environ. 35, 497–508 (2001)

    Article  Google Scholar 

  • S. Metzger, W. Junkermann, M. Mauder, F. Beyrich, K. Butterbach-Bahl, H.P. Schmid, T. Foken: Eddy-covariance flux measurements with a weight-shift microlight aircraft, Atmos. Meas. Tech. 5, 1699–1717 (2012)

    Article  Google Scholar 

  • J.I. MacPherson, M. Wolde: NRC Twin Otter Operations in the Soil Moisture-Atmospheric Coupling Experiment, Tech. Rep., Vol. 46-7373-2 (National Research Council Canada, Ottawa 2002)

    Google Scholar 

  • P.R. Isaac, J. McAneney, R. Leuning, J.M. Hacker: Comparison of aircraft and ground-based flux measurements during OASIS95, Bound.-Layer Meteorol. 110, 39–67 (2004)

    Article  Google Scholar 

  • A. Williams, D. Marcotte: Wind measurements on a maneuvering twin-engine turbo-prop aircraft accounting for flow distortion, J. Atmos. Ocean. Technol. 17, 795–810 (2000)

    Article  Google Scholar 

  • A.C. van den Kroonenberg, T. Martin, M. Buschmann, J. Bange, P. Vörsmann: Measuring the wind vector using the autonomous mini aerial vehicle M2AV, J. Atmos. Ocean. Technol. 25, 1969–1982 (2008)

    Article  Google Scholar 

  • J. Bange: Airborne Measurement of Turbulent Energy Exchange between the Earth Surface and the Atmosphere (Sierke, Göttingen 2009)

    Google Scholar 

  • J. Bange, M. Esposito, D.H. Lenschow: Measurement of aircraft state, thermodynamic and dynamic variables. In: Airborne Measurements for Environmental Research – Methods and Instruments (Wiley-VCH, Weinheim 2013) p. 641

    Google Scholar 

  • E.R. Crosson: A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor, Appl. Phys. B 92, 403–408 (2008)

    Article  Google Scholar 

  • D.K. McDermitt, J.M. Welles, R.D. Eckles: Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO2, Tech. Rep. (LI-COR Inc., Lincoln 1993)

    Google Scholar 

  • J.I. MacPherson, R.L. Desjardins, P.H. Schuepp, R. Pearson: Aircraft-measured ozone deposition in the San Joaquin valley of California, Atmos. Environ. 29, 3133–3145 (1995)

    Article  Google Scholar 

  • R.V. Hiller, B. Neininger, D. Brunner, C. Gerbig, D. Bretscher, T. Künzle, N. Buchmann, W. Eugster: Aircraft-based CH4 flux estimates for validation of emissions from an agriculturally dominated area in Switzerland, J. Geophys. Res. Atmos. 119, 4874–4887 (2014)

    Article  Google Scholar 

  • R.C. Zulueta, W.C. Orchel, J.G. Vergaillie, S.J. Hastings: Aircraft regional-scale flux measurements over complex landscapes of mangroves, desert, and marine ecosystems of Magdalena Bay, Mexico, J. Atmos. Ocean. Technol. 30, 1266–1294 (2013)

    Article  Google Scholar 

  • E. Pattey, R.L. Desjardins, H. Westberg, B. Lamb, T. Zhu: Measurement of isoprene emissions over a black spruce stand using a tower-based relaxed Eddy-accumulation system, J. Appl. Meteorol. 38, 870–877 (1999)

    Article  Google Scholar 

  • E. Pattey, G.C. Edwards, R.L. Desjardins, D.J. Pennock, W. Smith, B. Grant, J.I. MacPherson: Tools for quantifying N2O emissions from agroecosystems, Agric. For. Meteorol. 142, 103–119 (2007)

    Article  Google Scholar 

  • J.I. MacPherson, M. Bastian: Archive of NRC Twin Otter Data from the 1991–2003 Flux Projects, Tech. Rep., Vol. LTR-FR-204 (National Research Council Canada Institute for Aerospace Research, Ottawa 2003)

    Google Scholar 

  • R. Srinivasan: Flight Evaluation of the FRL-Integrated Honeywell HG1700 Strapdown Inertial/Novatel GPS Navigation System in the NRC Twin Otter, Tech. Rep. (National Research Council Canada, Ottawa 2005)

    Google Scholar 

  • D. Vickers, L. Mahrt: Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Technol. 14, 512–526 (1997)

    Article  Google Scholar 

  • F. Chahuneau, R.L. Desjardins, E. Brach, R. Verdon: A micrometeorological facility for Eddy flux measurements of CO2 and H2O, J. Atmos. Ocean. Technol. 6, 193–200 (1989)

    Article  Google Scholar 

  • G. Fratini, M. Mauder: Towards a consistent Eddy-covariance processing: an Intercomparison of Eddypro and TK3, Atmos. Meas. Tech. 7, 2273–2281 (2014)

    Article  Google Scholar 

  • S. Metzger, D. Durden, C. Sturtevant, H. Luo, N. Pingintha-Durden, T. Sachs, A. Serafimovich, J. Hartmann, J. Li, K. Xu, A.R. Desai: Eddy4r 0.2.0: a DevOps model for community-extensible processing and analysis of Eddy-covariance data based on R, Git, Docker, and HDF5, Geosci. Model Dev. 10, 3189–3206 (2017)

    Article  Google Scholar 

  • J.I. MacPherson: NRC Twin Otter Operations in the 1991 California Ozone Deposition Experiment, Tech. Rep., Vol. LTR-FR-118 (National Research Council Canada Institute for Aerospace Research, Ottawa 1992)

    Google Scholar 

  • A. Zahn, J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kuhner, H. Franke: A fast and precise chemiluminescence ozone detector for Eddy flux and airborne application, Atmos. Meas. Tech. 5, 363–375 (2012)

    Article  Google Scholar 

  • R.L. Desjardins, R.L. Hart, J.I. MacPherson, P.H. Schuepp, S.B. Verma: Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat, J. Geophys. Res. 97, 18477–18485 (1992)

    Article  Google Scholar 

  • J.I. MacPherson, R. Dobosy, S. Verma, W.P. Kustas, J.H. Prueger, A.G. Williams: Intercomparisons between flux aircraft and towers in SGP97. In: Proc. 14th Conference on Hydrology (American Meteorological Society, Boston 1999) pp. 125–128

    Google Scholar 

  • R.L. Desjardins, P.H. Schuepp, J.I. MacPherson, D.J. Buckley: Spatial and temporal variations of the fluxes of carbon dioxide and sensible and latent heat over the FIFE site, J. Geophys. Res. 97(D17), 18467–18475 (1992)

    Article  Google Scholar 

  • L. Mahrt: Surface heterogeneity and vertical structure of the boundary layer, Bound.-Layer Meteorol. 96, 33–62 (2000)

    Article  Google Scholar 

  • L. Mahrt: Flux sampling errors for aircraft and towers, J. Atmos. Ocean. Technol. 15, 416–429 (1998)

    Article  Google Scholar 

  • R.L. Desjardins, J.I. MacPherson, P.H. Schuepp, N.H. Hayhoe: Airborne flux measurements of CO2, sensible and latent heat over the Hudson Bay lowland, J. Geophys. Res. Atmos. 99, 1551–1561 (1994)

    Article  Google Scholar 

  • E. Pattey, I.B. Strachan, R.L. Desjardins, J. Massheder: Measuring nighttime CO2 flux over terrestrial ecosystems using Eddy covariance and nocturnal boundary layer methods, Agric. For. Meteorol. 113, 145–158 (2002)

    Article  Google Scholar 

  • J. Sun, R.L. Desjardins, L. Mahrt, J.I. MacPherson: Transport of carbon dioxide, water vapor, and ozone by turbulence and local circulations, J. Geophys. Res. 103, 25873–25885 (1998)

    Article  Google Scholar 

  • J. Sun, D.H. Lenschow, L. Mahrt, T.L. Crawford, K.J. Davis, S.P. Oncley, J.I. MacPherson, Q. Wang, R.J. Dobosy, R.L. Desjardins: Lake-induced atmospheric circulations during BOREAS, J. Geophys. Res. 102, 29155–129166 (1997)

    Article  Google Scholar 

  • J.J. Hutchinson, B.B. Grant, W.N. Smith, R.L. Desjardins, C.A. Campbell, D. Worth, X.P.C. Vergé: Estimates of direct nitrous emissions from Canadian agroecosystems and their uncertainties, Can. J. Soil Sci. 87, 141–152 (2007)

    Article  Google Scholar 

  • Y. Karimi-Zindashty, J.D. Macdonald, R.L. Desjardins, D.E. Worth, J.J. Hutchinson, X.P.C. Vergé: Sources of uncertainty in the IPCC tier 2 Canadian livestock model, J. Agric. Sci. 150, 556–569 (2012)

    Article  Google Scholar 

  • P. Smith, D. Martino, C. Zucong, D. Gwary, H.H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O’Mara, C. Rice, B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S. Towprayoon, M. Wattenbach, J. Smith: Greenhouse gas mitigation in agriculture, Philos. Trans. R. Soc. 363, 789–813 (2008)

    Article  Google Scholar 

  • K.J. Wecht, D.J. Jacob, C. Frankenberg, Z. Jiang, D.R. Blake: Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data, J. Geophys. Res. Atmos. 119, 7741–7756 (2014)

    Article  Google Scholar 

  • A. Karion, C. Sweeney, G. Pétron, G. Frost, M. Hardesty, J. Kofler, B.R. Miller, T. Newberger, S. Wolter, R. Banta, A. Brewer, E.J. Dlugokencky, P. Lang, S.A. Montzka, R. Schnell, P. Tans, M. Trainer, R. Zamora, S. Conley: Methane emissions estimate from airborne measurements over a western United States natural gas field, Geophys. Res. Lett. 40, 1–5 (2013)

    Article  Google Scholar 

  • M.R. Johnson, D.R. Tyner, S. Conley, S. Schwietzke, D. Zavala-Araiza: Comparison of airborne measurements and inventory estimates of methane emissions in the Alberta upstream oil and gas sector, Environ. Sci. Technol. 51, 13008–13017 (2017)

    Article  Google Scholar 

  • R.L. Desjardins, D.E. Worth, J.I. MacPherson, M. Bastian, R. Srinivasan: Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987–2011, Adv. Sci. Res. 13, 43–49 (2016)

    Article  Google Scholar 

  • F. Eder, M. Schmidt, T. Damian, K. Träumner, M. Mauder: Mesoscale Eddies affect near-surface turbulent exchange: Evidence from lidar and tower measurements, J. Appl. Meteorol. Climatol. 54, 189–206 (2015)

    Article  Google Scholar 

  • A.J. Turner, D.J. Jacob, K.J. Wecht, J.D. Maasakkers, E. Lundgren, A.E. Andrews, S.C. Biraud, H. Boesch, K.W. Bowman, N.M. Deutscher, M.K. Dubey, D.W.T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V.H. Payne, R. Sussmann, C. Sweeney, V.A. Velazco, T. Warneke, P.O. Wennberg, D. Wunch: Estimating global and north American methane emissions with high spatial resolution using GOSAT satellite data, Atmos. Chem. Phys. 15, 7049–7069 (2015)

    Article  Google Scholar 

  • A.C. VanderZaag, J.D. MacDonald, L. Evans, X.P.C. Vergé, R.L. Desjardins: Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms, Environ. Res. Lett. 8, 035008 (2013)

    Article  Google Scholar 

  • J.P. Veefkind, I. Aben, K. McMullan, H. Forster, J. de Vries, G. Otter, J. Claas, H.J. Eskes, J.F. de Haan, Q. Kleipool, M. Van Weele, O. Hasekamp, R. Hoogeveen, J. Landgraf, R. Snel, P. Tol, P. Ingmann, R. Voors, B. Bruizinga, R. Vink, H. Visser, P.F. Levelt: TROPOMI on the ESA sentinel-5 precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ. 120, 70–83 (2012)

    Article  Google Scholar 

  • J.-L. Boiffier: The Dynamics of Flight – the Equations (John Wiley & Sons, Chichester 1998)

    Google Scholar 

  • D.H. Lenschow: Aircraft measurements in the boundary layer. In: Probing the Atmospheric Boundary Layer, ed. by D.H. Lenschow (American Meteorological Society, Boston 1986) pp. 39–53

    Chapter  Google Scholar 

  • J.A. Leise, J.M. Masters: Wind Measurements from Aircraft, Tech. Rep. (US Department of Commerce, National Oceanic and Atmospheric Administration, Aircraft Operation Centre, Miami 1993)

    Google Scholar 

  • E.A. Haering: Airdata Measurement and Calibration, Tech. Mem., Vol. 104316 (National Aeronautics and Space Administration (NASA), Washington 1995)

    Google Scholar 

  • E.A. Haering: Airdata Calibration of a High-Performance Aircraft for Measuring Atmospheric Wind Profiles, Tech. Mem., Vol. 101714 (National Aeronautics and Space Administration (NASA), Washington 1990)

    Google Scholar 

  • J.D.W. Barrick, J.A. Ritter, C.E. Watson, M.W. Wynkoop, J.K. Quinn, D.R. Norfolk: Calibration of NASA Turbulent Air Motion Measurement System, Technical Paper, Vol. 3610 (National Aeronautics and Space Administration (NASA), Washington 1996)

    Google Scholar 

  • T.L. Crawford, R.J. Dobosy: A sensitive fast-response probe to measure turbulence and heat flux from any airplane, Bound.-Layer Meteorol. 59, 257–278 (1992)

    Article  Google Scholar 

  • A. Muschinski, R. Frehlich, M. Jensen, R. Hugo, A. Hoff, F. Eaton, B. Balsley: Fine-scale measurements of turbulence in the lower troposphere: An intercomparison between a kite- and balloon-borne, and a helicopter-borne measurement system, Bound.-Layer Meteorol. 98, 219–250 (2001)

    Article  Google Scholar 

  • G. Lemonis, M. Schmücker, H. Struck: A fast response probe system for in-flight measurements of atmospheric turbulence, Aerosp. Sci. Technol. 6, 233–243 (2002)

    Article  Google Scholar 

  • D. Sumner: Calibration methods for a seven-hold pressure probe. In: Proc. Sixth Triennial International Symposium on Flow Control, Measurement and Visualization (FLUCOME 2000), ed. by A. Laneville (2000) p. 6

    Google Scholar 

  • A. Pfau, J. Schlienger, A.I. Kalfas, R.S. Abhari: Virtual four sensor Fast Response Aerodynamic Probe (FRAP). In: Proc. 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines (2002)

    Google Scholar 

  • J. Schlienger, A. Pfau, A.I. Kalfas, R.S. Abhari: Single pressure transducer probe for 3D flow measurements. In: Proc. 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines (2002)

    Google Scholar 

  • S. Weiß: Comparing three algorithms for modeling flush air data systems. In: Proc. AIAA Aerospace Sciences Meeting and Exhibition, 40th (2002) p. AIAA-2002-2535

    Google Scholar 

  • D.H. Lenschow: Vanes for sensing incidence angles of the air from an aircraft, J. Appl. Meteorol. 10, 1339–1343 (1971)

    Article  Google Scholar 

  • C.A. Friehe, S.P. Burns, D. Khelif, X. Song: Meteorological and flux measurements from the NOAA WP3D aircraft in toga coare. In: Proc. 8th Conference on Air-Sea Interaction, AMS (1996) pp. J42–J45

    Google Scholar 

  • D. Khelif, S.P. Burns, C.A. Friehe: Improved wind measurements on research aircraft, J. Atmos. Ocean. Technol. 16, 860–875 (1999)

    Article  Google Scholar 

  • N. Wildmann, S. Ravi, J. Bange: Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA), Atmos. Meas. Tech. 7, 1027–1041 (2014)

    Article  Google Scholar 

  • Rosemount: Model 858 Flow Angle Sensors, Bulletin, Vol. 1014 (Rosemount Inc., Shakopee 1982), Tech. Rep.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Desjardins .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 True Airspeed by the Flight Mechanical Angles α and β

To obtain a proper solution of (48.7), we start in the aerodynamic coordinate system ADONS (index a) of the flight. The ADONS is defined as the system in which the airspeed vector has the components

$$\boldsymbol{v}_{\mathrm{tas,a}}=\left(-\left|\boldsymbol{v}_{\mathrm{tas}}\right|,0,0\right),$$

and is therefore called the airspeed-fixed coordinate system. A rotation of the ADONS about the vertical (lift) axis za by the angle −β

$$\mathbf{T}_{\mathrm{ea}}(-\beta)=\begin{pmatrix}\cos\beta&-\sin\beta&0\\ \sin\beta&\cos\beta&0\\ 0&0&1\end{pmatrix}$$
(48.B9)

and then about the transverse axis (cross-force) axis ya by the angle α

$$\mathbf{T}_{\boldsymbol{fe}}(\alpha)=\begin{pmatrix}\cos\alpha&0&-\sin\alpha\\ 0&1&0\\ \sin\alpha&0&\cos\alpha\end{pmatrix}$$
(48.B10)

yields the description of the airspeed vector in the ACONS [48.98],

$$\begin{aligned}\displaystyle\boldsymbol{v}_{\mathrm{tas}}&\displaystyle=\begin{pmatrix}u_{\mathrm{tas}}\\ v_{\mathrm{tas}}\\ w_{\mathrm{tas}}\end{pmatrix}=\mathbf{T}_{\mathrm{fe}}(\alpha)\mathbf{T}_{\mathrm{ea}}(-\beta)\boldsymbol{v}_{\mathrm{tas,a}}\\ \displaystyle&\displaystyle=-\left|\boldsymbol{v}_{\mathrm{tas}}\right|\begin{pmatrix}\cos\alpha\cos\beta\\ \sin\beta\\ \sin\alpha\cos\beta\end{pmatrix}\;.\end{aligned}$$
(48.B11)

The angle α is positive for nose-lifting rotations, while β is positive for rotations to the port side. Both the angles and the order of rotation have their origins in wind-tunnel experiments. The first rotation Tea leads to the experimental coordinate system (index e) that is cross-axis fixed. The components of the true airspeed vector vtas in the ACONS are:

  • utas, which is oriented along the roll axis of the aircraft and positive in the flight direction

  • vtas, which is oriented along the pitch axis of the aircraft and positive in the starboard direction

  • wtas, which is oriented along the normal (or yaw) axis and positive downwards.

1.1.1 True Airspeed by the FHP Angles \(\tilde{\alpha}\) and \(\tilde{\beta}\)

The outputs of the FHP (Fig. 48.2) are pressure differences that are used to calculate vtas in spherical coordinates in the ACONS:

  • \(\tilde{\alpha}\) (air flow from below gives a positive \(\tilde{\alpha}\))

  • \(\tilde{\beta}\) (air flow from starboard gives a positive \(\tilde{\beta}\))

  • |vtas| (the norm of the true airspeed vector).

Fig. 48.B7
figure 7figure 7

(a) Aircraft attitude angles Θ and Ψ in the MONS and air-flow angles α, \(\tilde{{\beta}}\) in the ACONS: (b) top view, (c) side view, (d) front view (after [48.99] © American Meteorological Society, used with permission)

The flow angles \(\tilde{\alpha}\) and \(\tilde{\beta}\) should not be confused with the rotation angles α and β that are commonly used in flight mechanics and wind-tunnel experiments [48.98].

There is a well-defined relationship between the two sets of angles,

$$\cos\tilde{\alpha}=\frac{u_{\mathrm{tas}}}{\sqrt{u_{\mathrm{tas}}^{2}+w_{\mathrm{tas}}^{2}}}=\cos\alpha$$
(48.B12)

and [48.61]

$$\tan\tilde{\beta}=\frac{v_{\mathrm{tas}}}{u_{\mathrm{tas}}}=\frac{\tan\beta}{\cos\alpha}\;.$$
(48.B13)

Using only the measurable angles \(\tilde{\alpha}\) and \(\tilde{\beta}\) (where \(\tilde{\alpha}\equiv\alpha\)), the expression for the true airspeed vector equals the well-known definition in [48.99],

$$\boldsymbol{v}_{\mathrm{tas}}=-\frac{\left|\boldsymbol{v_{\mathrm{tas}}}\right|}{D}\begin{pmatrix}1\\ \tan\tilde{\beta}\\ \tan\alpha\end{pmatrix}\;,$$
(48.B14)

where the normalization factor

$$D=\sqrt{1+\tan^{2}\alpha+\tan^{2}\tilde{\beta}}$$
(48.B15)

(see also [48.100, 48.59, 48.61]).

1.1.2 Rotation into the MONS

The attitude of the aircraft can be described by the Eulerian angles Θ (pitch), Φ (bank or roll), and Ψ (yaw, heading, or azimuth; see Fig. 48.B7). Transformation from the ACONS to the MONS is performed via three sequential rotations [48.100, 48.98],

$$\mathbf{T}_{1}(\Phi)=\begin{pmatrix}1&0&0\\ 0&\cos\Phi&-\sin\Phi\\ 0&\sin\Phi&\cos\Phi\end{pmatrix}$$
(48.B16)

(i. e., about the xf axis),

$$\mathbf{T}_{2}(\Theta)=\begin{pmatrix}\cos\Theta&0&\sin\Theta\\ 0&1&0\\ -\sin\Theta&0&\cos\Theta\end{pmatrix}$$
(48.B17)

(pitching about the yf axis), and

$$\mathbf{T}_{3}(\Psi)=\begin{pmatrix}\cos\Psi&-\sin\Psi&0\\ \sin\Psi&\cos\Psi&0\\ 0&0&1\end{pmatrix}$$
(48.B18)

(yawing about the zf axis). The permutation

$$\mathbf{T}_{4}=\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&-1\end{pmatrix}$$
(48.B19)

is necessary to transform into the MONS, which is defined by the following meteorological wind vector components:

  • u, which is positive eastwards

  • v, which is positive northwards

  • w, which is positive upwards.

Finally, \(\mathbf{M}_{\mathrm{mf}}=\mathbf{T}_{4}\cdot\mathbf{T}_{3}\cdot\mathbf{T}_{2}\cdot\mathbf{T}_{1}\) is inserted into (48.7), and the components of the meteorological wind v can then be calculated.

1.2 True Airspeed, Temperature, and Pressure

The true airspeed |vtas| of the aircraft in relation to the stagnant air causes a significant discrepancy between the total temperature Ttot and the total air pressure ptot (both located at the tip of the FHP) on the one hand and the intrinsic properties T and p (the static temperature and pressure) of the undisturbed atmosphere on the other. The total pressure at the tip of the FHP is

$$p_{\mathrm{tot}}=p+\Updelta p_{\mathrm{q}}\;,$$
(48.B20)

where Δpq is the dynamic pressure increment due to the airspeed. This can be determined from (48.B20) by measuring p in a hole in the aircraft fuselage at a location where the flow is parallel to the aircraft skin, similar to a Prandtl (Pitot static) tube.

Energy conservation in a compressible flow,

$$\frac{u_{1}^{2}}{2}+c_{p}T_{1}=\frac{u_{2}^{2}}{2}+c_{p}T_{2}$$
(48.B21)

(where cp is the specific heat capacity of air, u1 = |vtas|, u2 = 0, T1 = T, and T2 = Ttot), leads to the true airspeed as a function of the temperature difference,

$$\left|\boldsymbol{v_{\mathrm{tas}}}\right|^{2}=2c_{p}\left(T_{\mathrm{tot}}-T\right)$$
(48.B22)

(see also [48.100]). Since the intrinsic air temperature T is not measured, T is replaced using the equation for an ideal fluid undergoing an adiabatic process,

$$\frac{T}{T_{\mathrm{tot}}}=\left(\frac{p}{p_{\mathrm{tot}}}\right)^{\kappa}\;,$$
(48.B23)

where the Poisson number

$$\kappa=\frac{R_{\mathrm{L}}}{c_{p}}=\frac{\gamma-1}{\gamma}\;.$$
(48.B24)

Here, \(R_{\mathrm{L}}=c_{p}-c_{V}={\mathrm{287}}\,{\mathrm{J{\,}(kg{\,}K)^{-1}}}\) and γ = cp ∕ cV, where cV = 718 J (kg K)−1 is the specific heat at constant volume. Finally, the true airspeed can be obtained without the intrinsic temperature via

$$\left|\boldsymbol{v_{\mathrm{tas}}}\right|^{2}=2c_{p}T_{\mathrm{tot}}\left[1-\left(\frac{p}{p_{\mathrm{tot}}}\right)^{\kappa}\right].$$
(48.B25)

Remaining measurement uncertainties are treated by including calibration and installation coefficients that can only be determined through comparison with a pressure sensor that is not influenced by the flow field around the aircraft, for instance with a trailing cone on a calibration flight [48.101].

1.2.1 Using the Mach Number

Applying the definition of the Mach number (the ratio of the true airspeed to the speed of sound) [48.102, 48.103],

$$\mathrm{Ma}^{2}=\frac{2}{\gamma-1}\left[\left(\frac{p_{\mathrm{tot}}}{p}\right)^{\kappa}-1\right],$$
(48.B26)

to (48.B25) transforms it into

$$\left|\boldsymbol{v_{\mathrm{tas}}}\right|^{2}=\gamma R_{\mathrm{L}}T\mathrm{Ma}^{2}\;,$$
(48.B27)

and applying (48.B26) to (48.B23) transforms it into

$$\frac{T_{\mathrm{tot}}}{T}=1+\frac{\gamma-1}{2}\mathrm{Ma}^{2}\;.$$
(48.B28)

1.2.2 Recovery Factor

In practice, the temperature cannot be measured at the same location as the true airspeed vector vtas (located at the stagnation point at the tip of the FHP). Also, the heat produced by the dynamic pressure increment immediately starts to diffuse into the surrounding air. The temperature Tm measured somewhere in the vicinity of the FHP is smaller than Ttot but still larger than the intrinsic temperature T. The ratio [48.103, 48.104, 48.99]

$$r_{\mathrm{c}}=\frac{T_{\mathrm{m}}-T}{T_{\mathrm{tot}}-T}\leq 1$$
(48.B29)

is referred to as the recovery factor. It depends on the sensor and is usually a function of the true airspeed (but not the air moisture). Inserting (48.B29) into (48.B23) gives the static (intrinsic) temperature of the air,

$$T=\frac{T_{\mathrm{m}}}{r_{\mathrm{c}}\left[\left(\frac{p_{\mathrm{tot}}}{p_{\mathrm{s}}}\right)^{\kappa}-1\right]+1}$$
(48.B30)

(in contrast to [48.99, equation 15]). It is also advisable to apply the recovery factor to the true airspeed calculation in (48.B27), yielding

$$\left|\boldsymbol{v_{\mathrm{tas}}}\right|^{2}=\frac{2c_{p}T_{\mathrm{m}}}{r_{\mathrm{c}}+\frac{2}{\mathrm{Ma}^{2}(\gamma-1)}}$$
(48.B31)

(unlike [48.99, equation 16]).

If the recovery factor rc is not known (i. e., not provided by the manufacturer of the sensor), the pressure pT at the location of the temperature probe has to be measured using an additional pressure probe. The static temperature is then calculated using (48.B23)

$$T=T_{\mathrm{m}}\left(\frac{p_{\mathrm{s}}}{p_{T}}\right)^{\kappa}\;.$$
(48.B32)

This method was applied in the fast temperature probe of the Helipod [48.105]. The true airspeed is then calculated by inserting (48.B32) into (48.B27).

1.3 Flow Angles

The following description addresses the application of typical FHPs, which (in addition to the static pressure) only measure differential pressures [48.106]. Air flow systems involving more or less than five holes [48.104, 48.107, 48.108] or a single turning sensor [48.109] for differential pressure measurement are treated in a very similar way. In larger probes (e. g., pressure holes in the aircraft fuselage, as used in the Space Shuttle and the F-18 High Angle of Attack Research Vehicle), it is possible to measure individual absolute pressures and determine flow angles even more accurately [48.110]. The description of outdated systems such as vanes [48.102, 48.103, 48.111, 48.2] exceeds the limits of this analysis.

The local wind vector in the ACONS is determined from the dynamic pressure increment Δpq and the pressure differences between opposite pressure holes in the FHP (i. e., the pressure differences in the horizontal plane Δpβ = P2 − P4 and the vertical plane Δpα = P1 − P3, where pj denotes the individual holes of the FHP and the central hole is denoted P0; see Fig. 48.2). The pressure differences Δpα and Δpβ increase as the flow angles α and \(\tilde{\beta}\) increase, but they also depend on the airspeed (and therefore on the dynamic pressure increment Δpq and the Mach number) and the air density ρ (and therefore the altitude z). In general, this can be expressed via

$$\varphi=F\left(\Updelta p_{\varphi},\Updelta p_{\mathrm{q}},z\right)\quad\text{where }\varphi=\alpha,\tilde{\beta}\;.$$
(48.B33)

Here, F denotes a functional relationship.

Usually, the influences of the airspeed and the altitude can be considered by weighting the pressure difference by the dynamic pressure increment. The simplest assumption is therefore

$$\varphi=\frac{1}{K_{\mathrm{FHP}}}\ \frac{\Updelta p_{\varphi}}{\Updelta p_{\mathrm{q}}}\;,$$
(48.B34)

where the calibration coefficient κFHP considers any disturbance of the airstream by the FHP (and also by the entire aircraft fuselage) and local stream effects directly at the pressure hole.

It is difficult to determine the dynamic pressure increment Δpφ and the total pressure ptot (48.B20) since the stagnation point is usually located somewhere between the holes of the FHP, so it cannot be measured directly. Approximating the total pressure by the pressure p5 measured at the central hole of the FHP would lead to a wind vector measurement that is very sensitive to the aircraft attitude, wind speed, and wind direction (see also [48.109]).

It is understood that any offset angles α0 or β0 due to either bias in the pressure transducers or asymmetry of the FHP must be quantified in a laboratory, a wind tunnel, or in flight tests beforehand. Calibration routines for both wind-tunnel experiments and flight maneuvers can be found in the literature [48.101, 48.102, 48.103, 48.110, 48.112, 48.113, 48.114, 48.59, 48.60].

The well-known FHP made by Goodrich Sensor Systems (formerly Rosemount) provides an additional pressure difference

$$\Updelta p_{\mathrm{ref}}=\mathrm{P0}-\mathrm{P2}$$
(48.B35)

between one of the horizontal holes and the central hole. The dynamic pressure increment is then estimated using

$$\Updelta p_{\mathrm{q}}\approx\Updelta p_{\mathrm{ref}}+\frac{1}{2}\Updelta p_{\beta}\;,$$
(48.B36)

and the flow angles are determined via (48.B34) with KFHP set to 0.088 for airspeeds below 0.6 Ma [48.115].

It should be noted that Δpref refers only to the horizontal plane (i. e., the stagnation point is assumed to be located somewhere along the line connecting the two opposite holes #2 and #4).

An improvement on the Rosemount method requires an additional differential pressure measurement between the central hole and one of the holes in the vertical plane (#1 or #3), resulting in two disjunct equations of the same type as (48.B34),

$$\begin{aligned}\alpha & =\frac{1}{K_{\mathrm{FHP},\alpha}}\frac{\Updelta p_{\alpha}}{\Updelta p_{\mathrm{ref},\alpha}+\frac{1}{2}\Updelta p_{\alpha}}\end{aligned}$$
(48.B37)
$$\begin{aligned}\tilde{\beta} & =\frac{1}{K_{\mathrm{FHP},\beta}}\frac{\Updelta p_{\beta}}{\Updelta p_{\mathrm{ref},\beta}+\frac{1}{2}\Updelta p_{\beta}}\;.\end{aligned}$$
(48.B38)

It is obvious that this method represents only a slight rather than a fundamental improvement on the usual Rosemount method, since no consistent dynamic pressure increment can be determined. This is mainly due to the general strategy of using a Cartesian approach to solve a rotationally symmetric problem. More sophisticated and complex methods have also been published [48.60, 48.61, 48.62].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Desjardins, R.L., Worth, D.E., MacPherson, I., Mauder, M., Bange, J. (2021). Aircraft-Based Flux Density Measurements. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_48

Download citation

Publish with us

Policies and ethics