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The key observation behind the techniques described in this chapter is that most
if not all error correction techniques and codes assume that all words stored in
the memory are equally likely and important. This obviously is not true due to
architectural or application context. This chapter devises new coding and correction
mechanisms which leverage software or architecture “side information” to dramat-
ically reduce the cost of error correction (Fig. 1). The methodology proposed in
Sect. 1 is for recovering from detected-but-uncorrectable (DUE) errors in main
memories while Sects. 2 and 3 focus on lightweight correction in on-chip caches
or embedded memories.

1 Software-Defined Error Correcting Codes (SDECC)

This section focuses on the concept of Software-Defined Error Correcting Codes
(SDECC), a general class of techniques spanning hardware, software, and coding
theory that improves the overall resilience of systems by enabling heuristic best-
effort recovery from detected-but-uncorrectable errors (DUE). The key idea is to
add software support to the hardware error correcting code (ECC) so that most
memory DUEs can be heuristically recovered based on available side information
(SI) from the corresponding un-corrupted cache line contents. SDECC does not
degrade memory performance or energy in the common cases when either no
errors or purely hardware-correctable errors occur. Yet it can significantly improve
resilience in the critical case when DUEs actually do occur.
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Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions
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Details of the concepts discussed in this section can be found in the works by
Gottscho et al. [11, 12].

1.1 SDECC Theory

Important terms and notation introduced here are summarized in Table 1.
A (t)SC(t + 1)SD code corrects up to t symbol errors and/or detects up to (t+1)

symbol errors. SDECC is based on the fundamental observation that when a (t +1)-
symbol DUE occurs in a (t)SC(t +1)SD code, there remains significant information
in the received string x. This information can be used to recover the original message
m with reasonable certainty.

It is not the case that the original message was completely lost, i.e., one need not
naïvely choose from all qk possible messages. If there is a (t + 1) DUE, there are
exactly

N =
(

n

t + 1

)
(q − 1)(t+1) (1)

ways that the (t + 1) DUE could have corrupted the original codeword, which is
less than qk . Though a (t)SC(t + 1)SD code can often detect more than (t + 1)
errors, a (t +1)error is usually much more likely than higher bit errors. But guessing
correctly out of N possibilities is still difficult. In practice, there are just a handful
of possibilities: they are referred to as (t + 1)DUE corrupted candidate codewords
(or candidate messages).

Consider Fig. 2, which depicts the relationships between codewords, correctable
errors (CEs), DUEs, and candidate codewords for individual DUEs for a Single-bit
Error Correcting, Double-bit Error Detecting (SECDED) code. If the hardware ECC
decoder registers a DUE, there can be several equidistant candidate codewords at the
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Table 1 Important SDECC-specific notation

Term Description

n Codeword length in symbols

k Message length in symbols

r Parity length in symbols

b Bits per symbol

q Symbol alphabet size

t Max. guaranteed correctable symbols in codeword

(t)SC(t + 1)SD (t)-symbol-correcting, (t + 1)-symbol-detecting

N Number of ways to have a DUE

μ Mean no. of candidate codewords ∀ possible DUEs

PG Prob. of choosing correct codeword for a given DUE

PG Avg. prob. of choosing correct codeword ∀ possible DUEs

dmin Minimum symbol distance of code

linesz Total cache line size in symbols (message content)

symbol Logical group of bits

SECDED Single-bit-error-correcting, double-bit-error-detecting

DECTED Double-bit-error-correcting, triple-bit-error-detecting

SSCDSD Single-symbol-error-correcting, double-symbol-error-detecting

ChipKill-correct ECC construction and mem. organization that either corrects up to 1 DRAM
chip failure or detects 2 chip failures

Fig. 2 Illustration of
candidate codewords for 2-bit
DUEs in the imaginary
2D-represented Hamming
space of a binary SECDED
code
(t = 1, q = 2, dmin = 4). The
actual Hamming space has n

dimensions

q-ary Hamming distance of exactly (t + 1) from the received string x. Without any
side information (SI) about message probabilities, under conventional principles,
each candidate codeword is assumed to be equally likely. However, in the specific
case of DUEs, not all messages are equally likely to occur: this allows to leverage
SI about memory contents to help choose the right candidate codeword in the event
of a given DUE.
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1.1.1 Computing the List of Candidates

The number of candidate codewords for any given (t + 1) DUE e has a linear
upper bound that makes DUE recovery tractable to implement in practice [12].
The candidate codewords for any (t + 1)-symbol DUE received string x is simply
the set of equidistant codewords that are exactly (t + 1) symbols away from x.
This list depends on the error e and original codeword c, but only the received
string x is known. Fortunately, there is a simple and intuitive algorithm to find
the list of candidate codewords with runtime complexity O(nq/t). The detailed
algorithm can be found in [12]. The essential idea is to try every possible single
symbol perturbation p on the received string. Each perturbed string y = x + p
is run through a simple software implementation of the ECC decoder, which only
requires knowledge of the parity-check matrix H (O(rnlogq) bits of storage). Any
y characterized as a CE produces a candidate codeword from the decoder output and
added to the list (if not already present in the list).

1.1.2 SDECC Analysis of Existing ECCs

Code constructions exhibit structural properties that affect the number of candi-
date codewords. In fact, distinct code constructions with the same [n, k, dmin]q
parameters can have different values of μ and distributions of the number of

candidate codewords. μ depends on the total number of minimum weight non-
−→
0

codewords [12].
The SDECC theory is applied to seven code constructions of interest: SECDED,

DECTED, and SSCDSD (ChipKill-Correct) constructions with typical message
lengths of 64, and 128 bits. Table 2 lists properties that have been derived for each of
them. Most importantly, the final column lists PG—the average (random baseline)
probability of choosing correct codeword without SI for all possible DUEs. These
probabilities are far higher than the naïve approaches of guessing randomly from qk

possible messages or from the N possible ways to have a DUE. Thus, SDECC can
handle DUEs in a more optimistic way than conventional ECC approaches.

Table 2 Summary of code properties—PG is most important for SDECC

Code params. Class of DUE Avg. # Cand. Prob. Rcov.
Class of code [n, k, dmin]q Type of code (t + 1) μ PG

32-bit SECDED [39, 32, 4]2 Hsiao [16] 2-bit 12.04 8.50%

32-bit SECDED [39, 32, 4]2 Davydov [7] 2-bit 9.67 11.70%

64-bit SECDED [72, 64, 4]2 Hsiao [16] 2-bit 20.73 4.97%

64-bit SECDED [72, 64, 4]2 Davydov [7] 2-bit 16.62 6.85%

32-bit DECTED [45, 32, 6]2 – 3-bit 4.12 28.20%

64-bit DECTED [79, 64, 6]2 – 3-bit 5.40 20.53%

128-bit SSCDSD [36, 32, 4]16 Kaneda [17] 2-sym. 3.38 39.88%
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1.2 SDECC Architecture

SDECC consists of both hardware and software components to enable recovery
from DUEs in main memory DRAM. A simple hardware/software architecture
whose block diagram is depicted in Fig. 3 can be used. Although the software flow
includes an instruction recovery policy, it is not presented in this chapter because
DUEs on instruction fetches are likely to affect clean pages that can be remedied
using a page fault (as shown in the figure).

The key addition to hardware is the Penalty Box: a small buffer in the memory
controller that can store each codeword from a cache line (shown on the left-hand
side of Fig. 3). When a memory DUE occurs, hardware stores information about the
error in the Penalty Box and raises an error-reporting interrupt to system software.
System software then reads the Penalty Box, derives additional context about the
error—and using basic coding theory and knowledge of the ECC implementation—
quickly computes a list of all possible candidate messages, one of which is
guaranteed to match the original information that was corrupted by the DUE. A
software-defined data recovery policy heuristically recovers the DUE in a best-
effort manner by choosing the most likely remaining candidate based on available
side information (SI) from the corresponding un-corrupted cache line contents;
if confidence is low, the policy instead forces a panic to minimize the risk of
accidentally induced mis-corrected errors (MCEs) that result in intolerable non-
silent data corruption (NSDC). Finally, system software writes back the recovery
target message to the Penalty Box, which allows hardware to complete the afflicted
memory read operation.

Fig. 3 Block diagram of a general hardware and software implementation of SDECC. The figure
depicts a typical DDRx-based main memory subsystem with 64-byte cache lines, x8 DRAM chips,
and a [72, 64, 4]2 SECDED ECC code. Hardware support necessary to enable SDECC is shaded
in gray. The instruction recovery policy is outside the scope of this work [12]
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Overheads The area and power overhead of the essential SDECC hardware
support is negligible. The area required per Penalty Box is approximately 736µm2

when synthesized with 15 nm Nangate technology—this is approximately one
millionth of the total die area for a 14 nm Intel Broadwell-EP server processor [9].
The SDECC design incurs no latency or bandwidth overheads for the vast majority
of memory accesses where no DUEs occur. This is because the Penalty Box and
error-reporting interrupt are not on the critical path of memory accesses. When a
DUE occurs, the latency of the handler and recovery policy is negligible compared
to the expected mean time between DUEs or typical checkpoint interval of several
hours.

1.3 Data Recovery Policy

In this section, recovery of DUEs in data (i.e., memory reads due to processor
loads) is discussed because they are more vulnerable than DUEs in instructions
as mentioned before. Possible recovery policies for instruction memory have been
discussed in [11]. There are potentially many sources of SI for recovering DUEs
in data. Based on the notion of data similarity, a simple but effective data recovery
policy called Entropy-Z is discussed here that chooses the candidate that minimizes
overall cache line Shannon entropy.

1.3.1 Observations on Data Similarity

Entropy is one of the most powerful metrics to measure data similarity. Two general
observations can be made about the prevalence of low data entropy in memory.

• Observation 1. There are only a few primitive data types supported by hardware
(e.g., integers, floating-point, and addresses), which typically come in multiple
widths (e.g., byte, halfword, word, or quadword) and are often laid out in regular
fashion (e.g., arrays and structs).

• Observation 2. In addition to spatial and temporal locality in their memory
access patterns, applications have inherent value locality in their data, regardless
of their hardware representation. For example, an image-processing program is
likely to work on regions of pixels that exhibit similar color and brightness, while
a natural language processing application will see certain characters and words
more often than others.

Similar observations have been made to compress memory [2, 18, 24, 26, 28, 35]
and to predict [20] or approximate processor load values [22, 23, 36]. Low
byte-granularity intra-cache line entropy is observed throughout the integer and
floating-point benchmarks in the SPEC CPU2006 suite. Let P(X) be the normalized
relative frequency distribution of a linesz×b-bit cache line that has been carved
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into equal-sized Z-bit symbols, where each symbol χi can take 2Z possible values.1

Then the Z-bit-granularity entropy is computed as follows:

entropy = −
linesz×b/Z∑

i=1

P(χi)log2P(χi). (2)

The average intra-cacheline byte-level entropy of the SPEC CPU2006 suite was
found to be 2.98 bits (roughly half of maximum).

These observations can be leveraged using the data recovery policy Entropy-Z
Policy. With this policy, SDECC first computes the list of candidate messages using
the algorithm described in Sect. 1.1.1 and extracts the cache line side information.
Each candidate message is then inserted into appropriate position in the affected
cache line and the entropy is computed using Eq. 2. The policy then chooses the
candidate message that minimizes overall cache line entropy. The chance that the
policy chooses the wrong candidate message is significantly reduced by deliberately
forcing a panic whenever there is a tie for minimum entropy or if the mean cache
line entropy is above a specified threshold PanicThreshold. The downside to
this approach is that some forced panics will be false positives, i.e., they would have
otherwise recovered correctly.

In the rest of the chapter, unless otherwise specified, Z = 8 bits, linesz×b =
512 bits and PanicThreshold = 4.5 bits (75% of maximum entropy) are used,
which were determine to work well across a range of applications. Additionally, the
Entropy-8 policy performs very well compared to several alternatives.

1.4 Reliability Evaluation

The impact of SDECC is evaluated on system-level reliability through a compre-
hensive error injection study on memory access traces. The objective is to estimate
the fraction of DUEs in memory that can be recovered correctly using the SDECC
architecture and policies while ensuring a minimal risk of MCEs.

1.4.1 Methodology

The SPEC CPU2006 benchmarks are compiled against GNU/Linux for the open-
source 64-bit RISC-V (RV64G) instruction set v2.0 [34] using the official tools
[25]. Each benchmark is executed on top of the RISC-V proxy kernel [32] using the
Spike simulator [33] that was modified to produce representative memory access

1Entropy symbols are not to be confused with the codeword symbols, which can also be a different
size.
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traces. Each trace consists of randomly sampled 64-byte demand read cache lines,
with an average interval between samples of one million accesses.

Each trace is analyzed offline using a MATLAB model of SDECC. For each
benchmark and ECC code, 1000 q-ary messages from the trace were chosen
randomly and encoded, and were injected with min(1000, N) randomly sampled
(t + 1)-symbol DUEs. N here is the number of ways to have a DUE. For each
codeword/error pattern combination, the list of candidate codewords was computed
and the data recovery policy was applied. A successful recovery occurs when the
policy selects a candidate message that matches the original; otherwise, the policy
either causes a forced panic or recovery fails by accidentally inducing an MCE.
Variability in the reported results is negligible over many millions of individual
experiments.

Note that the absolute error magnitudes for DUEs and SDECC’s impact on
overall reliability should not be compared directly between codes with distinct
[n, k, dmin]q (e.g., a double-bit error for SECDED is very different from a double-
chip DUE for ChipKill). Rather, what matters most is the relative fraction of DUEs
that can be saved using SDECC for a given ECC code.

Entropy-8 is exclusively used as the data recovery policy in all the evaluations.
This is because when the raw successful recovery rates of six different policies
for three ECCs without including any forced panics were compared, Entropy-8
performed the best [12]. Few examples of alternate policies include Entropy-Z
policy variants with Z = 4 and Z = 16 and Hamming which chooses the candidate
that minimizes the average binary Hamming distance to the neighboring words in
the cacheline. The 8-bit entropy symbol size performs best because its alphabet
size (28 = 256 values) matches well with the number of entropy symbols per
cacheline (64) and with the byte-addressable memory organization. For instance,
both Entropy-4 and Entropy-16 do worse than Entropy-8 because the entropy
symbol size results in too many aliases at the cacheline level and because the larger
symbol size is less efficient, respectively.

1.4.2 Recovery Breakdown

SDECC is evaluated next for each ECC using its conventional form, to understand
the impact of the recovery policy’s (Entropy-8) forced panics on the successful
recovery rate and the MCE rate. The overall results with forced panics taken (main
results, gray cell shading) and not taken are shown in Table 3.

There are two baseline DUE recovery policies: conventional (always panic for
every DUE) and random (choose a candidate randomly, i.e., PG). It is observed
that when panics are taken the MCE rate drops significantly by a factor of up
to 7.3× without significantly reducing the success rate. This indicates that the
PanicThreshold mechanism appropriately judges when SDECC is unlikely to
correctly recover the original information.

These results also show the impact of code construction on successes, panics, and
MCEs. When there are fewer average candidates μ then the chances of successfully
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Table 3 Percent Breakdown of SDECC Entropy-8 Policy (M = MCE, P = forced panic, S =
success) [12]

Panics taken Panics not taken Random baseline

M P S M P S M P S

Conv. baseline – 100 –

[39, 32, 4]2 Hsiao 5.3 25.6 69.1 27.3 – 72.7 91.5 – 8.5

[39, 32, 4]2 Davydov 4.5 25.2 70.3 24.0 – 76.0 88.3 – 11.7

[72, 64, 4]2 Hsiao 4.7 23.7 71.6 24.7 – 75.3 95.0 – 5.0

[72, 64, 4]2 Davydov 4.1 21.9 74.0 22.3 – 77.7 93.2 – 6.9

[45, 32, 6]2 DECTED 2.2 20.3 77.5 14.5 – 85.5 71.8 – 28.2

[79, 64, 6]2 DECTED 1.5 14.5 84.0 11.0 – 89.0 79.5 – 20.5

[36, 32, 4]16 SSCDSD 1.5 12.8 85.7 8.5 – 91.5 60.1 – 39.9

recovering are much higher than that of inducing MCEs. The [72, 64, 4]2 SECDED
constructions perform similarly to their [39, 32, 4]2 variants even though the former
have lower baseline PG. This is a consequence of the Entropy-8 policy: larger n

combined with lower μ provides the greatest opportunity to differentiate candidates
with respect to overall intra-cacheline entropy. For the same n, however, the effect of
SECDED construction is more apparent. The Davydov codes recover about 3–4%
more frequently than their Hsiao counterparts when panics are not taken (similar to
the baseline improvement in PG). When panics are taken, however, the differences
in construction are less apparent because the policy PanicThreshold does not
take into account Davydov’s typically lower number of candidates.

The breakdown between successes, panics, and MCEs is examined in more
detail. Figure 4 depicts the DUE recovery breakdowns for each ECC construction
and SPEC CPU2006 benchmark when forced panics are taken. Figure 4a shows the
fraction of DUEs that result in success (black), panics (gray), and MCEs (white).
Figure 4b further breaks down the forced panics (gray from Fig. 4a) into a fraction
that are false positive (light purple, and would have otherwise been correct) and
others that are true positive (dark blue, and managed to avoid an MCE). Each cluster
of seven stacked bars corresponds to the seven ECC constructions.

It can be seen that much lower MCE rates are achieved than the random baseline
yet also panic much less often than the conventional baseline for all benchmarks, as
shown in Fig. 4a. This policy performs best on integer benchmarks due to their lower
average intra-cacheline entropy. For certain floating-point benchmarks, however,
there are many forced panics because they frequently have high data entropy above
PanicThreshold. A PanicThreshold of 4.5 bits for these cases errs on the
side of caution as indicated by the false positive panic rate, which can be up to 50%.
Without more side information, for high-entropy benchmarks, it would be difficult
for any alternative policy to frequently recover the original information with a low
MCE rate and few false positive panics.

With almost no hardware overheads, SDECC used with SSCDSD ChipKill can
recover correctly from up to 85.7% of double-chip DUEs while eliminating 87.2%
of would-be panics; this could improve system availability considerably. However,
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Fig. 4 Detailed breakdown of DUE recovery results when forced panics are taken. Results are
shown for all seven ECC constructions, listed left to right within each cluster: [39, 32, 4]2 Hsiao
SECDED—[39, 32, 4]2 Davydov SECDED—[72, 64, 4]2 Hsiao SECDED—[72, 64, 4]2 Davy-
dov SECDED—[45, 32, 6]2 DECTED—[79, 64, 6]2 DECTED—[36, 32, 4]16 SSCDSD ChipKill-
Correct. (a) Recovery breakdown for the Entropy-8 policy, where each DUE can result in an
unsuccessful recovery causing an MCE (white), forced panic (gray), or successful recovery (black).
(b) Breakdown of forced panics (gray bars in (a)). A true positive panic (dark blue) successfully
mitigated a MCE, while a false positive panic (light purple) was too conservative and thwarted an
otherwise-successful recovery [12]

SDECC with ChipKill introduces a 1% risk of converting a DUE to an MCE.
Without further action taken to mitigate MCEs, this small risk may be unacceptable
when application correctness is of paramount importance.

2 Software-Defined Error-Localizing Codes (SDELC):
Lightweight Recovery from Soft Faults at Runtime

For embedded memories, it is always challenging to address reliability concerns
as additional area, power, and latency overheads of reliability techniques need
to be minimized as much as possible. Software-Defined Error-Localizing Codes
(SDELC) is a hybrid hardware/software technique that deals with single-bit soft
faults at runtime using novel Ultra-Lightweight Error-Localizing Codes (UL-ELC)
with a software-defined error handler that knows about the UL-ELC construction
and implements a heuristic recovery policy. UL-ELC codes are stronger than basic
single-error detecting (SED) parity, yet they have lower storage overheads than
a single-error-correcting (SEC) Hamming code. Like SED, UL-ELC codes can
detect single-bit errors, yet they can additionally localize them to a chunk of the
erroneous codeword. UL-ELC codes can be explicitly designed such that chunks
align with meaningful message context, such as the fields of an encoded instruction.
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SDELC then relies on side information (SI) about application memory contents to
heuristically recover from the single-bit fault. Unlike the general-purpose Software-
Defined ECC (SDECC), SDELC focuses on heuristic error recovery that is suitable
for microcontroller-class IoT devices.

Details of the concepts discussed in this section can be found in the work by
Gottscho et al. [13].

2.1 Ultra-Lightweight Error-Localizing Codes (UL-ELC)

In today’s systems, either basic SED parity is used to detect random single-bit errors
or a Hamming SEC code is used to correct them. Unfortunately, Hamming codes are
expensive for small embedded memories: they require six bits of parity per memory
word size of 32 bits (an 18.75% storage overhead). On the other hand, basic parity
only adds one bit per word (3.125% storage overhead), but without assistance by
other techniques it cannot correct any errors.

Localizing an error is more useful than simply detecting it. If the error is localized
to a chunk of length � bits, there are only � candidate codewords for which a single-
bit error could have produced the received (corrupted) codeword. A naïve way of
localizing a single-bit error to a particular chunk is to use a trivial segmented parity
code, i.e., assign a dedicated parity bit to each chunk. However, this method is very
inefficient because to create C chunks C parity bits are needed: essentially, split up
the memory words into smaller pieces.

Instead Ultra-Lightweight ELCs (UL-ELCs) is simple and customizable—given
r redundant parity bits—it can localize any single-bit error to one of C = 2r − 1
possible chunks. This is because there are 2r − 1 distinct non-zero columns that can
be used to form the parity-check matrix H for the UL-ELC (for single-bit errors,
the error syndrome is simply one of the columns of H). To create a UL-ELC code,
a distinct non-zero binary column vector of length r bits is assigned to each chunk.
Then each column of H is simply filled in with the corresponding chunk vector. Note
that r of the chunks will also contain the associated parity bit within the chunk itself
and are called shared chunks, and they are precisely the chunks whose columns in
H have a Hamming weight of 1. Since there are r shared chunks, there must be
2r − r −1 unshared chunks, which each consist of only data bits. Shared chunks are
unavoidable because the parity bits must also be protected against faults, just like
the message bits.

An UL-ELC code has a minimum distance of two bits by construction to support
detection and localization of single-bit errors. Thus, the set of candidate codewords
must also be separated from each other by a Hamming distance of exactly two bits.
(A minimum codeword distance of two bits is required for SED, while three bits are
needed for SEC, etc.)
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For an example of an UL-ELC construction, consider the following Hexample
parity-check matrix with nine message bits and r = 3 parity bits:

Hexample =

S1 S2 S3 S4 S4 S5 S6 S6 S7 S5 S6 S7
d1 d2 d3 d4 d5 d6 d7 d8 d9 p1 p2 p3[ ]

c1 1 1 1 0 0 1 0 0 0 1 0 0
c2 1 1 0 1 1 0 1 1 0 0 1 0
c3 1 0 1 1 1 0 0 0 1 0 0 1

,

where di represents the ith data bit, pj is the j th redundant parity bit, ck is the kth
parity-check equation, and Sl enumerates the distinct error-localizing chunk that a
given bit belongs to. Because r = 3, there are N = 7 chunks. Bits d1, d2, and d3
each have the SEC property because no other bits are in their respective chunks.
Bits d4 and d5 make up an unshared chunk S4 because no parity bits are included
in S4. The remaining data bits belong to shared chunks because each of them also
includes at least one parity bit. Notice that any data or parity bits that belong to the
same chunk Sl have identical columns of H, e.g., d7, d8, and p2 all belong to S6 and
have the column [0; 1; 0].

The two key properties of UL-ELC (that do not apply to generalized ELC codes)
are: (1) the length of the data message is independent of r and (2) each chunk can
be an arbitrary length. The freedom to choose the length of the code and chunk sizes
allows the UL-ELC design to be highly adaptable. Additionally, UL-ELC codes can
offer SEC protection on up to 2r−r−1 selected message bits by having the unshared
chunks each correspond to a single data bit.

2.2 Recovering SEUs in Instruction Memory

This section focuses on an UL-ELC construction and recovery policy for dealing
with single-bit soft faults in instruction memory. The code and policy are jointly
crafted to exploit SI about the ISA itself. This SDELC implementation example
targets the open-source and free 64-bit RISC-V (RV64G) ISA [34], but the approach
is general and could apply to any other fixed-length or variable-length RISC or CISC
ISA. Note that although RISC-V is actually a little-endian architecture, for sake of
clarity big-endian is used in this example.

The UL-ELC construction for instruction memory has seven chunks that align
to the finest-grain boundaries of the different fields in the RISC-V codecs. These
codecs, the chunk assignments, and the complete parity-check matrix H are shown
in Table 4. The opcode, rd, funct3, and rs1 fields are the most commonly
used—and potentially the most critical—among the possible instruction encodings,
so each of them is assigned a dedicated chunk that is unshared with the parity bits.
The fields which vary more among encodings are assigned to the remaining three
shared chunks, as shown in the figure. The recovery policy can thus distinguish
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the impact of an error in different parts of the instruction. For example, when a fault
affects shared chunk C1, the fault is either in one of the five MSBs of the instruction,
or in the last parity bit. Conversely, when a fault is localized to unshared chunk C7
in Table 4, the UL-ELC decoder can be certain that the opcode field has been
corrupted.

The instruction recovery policy consists of three steps.

• Step 1. A software-implemented instruction decoder is applied to filter out any
candidate messages that are illegal instructions. Most bit patterns decode to
illegal instructions in three RISC ISAs that were characterized: 92.33% for RISC-
V, 72.44% for MIPS, and 66.87% for Alpha. This can be used to dramatically
improve the chances of a successful SDELC recovery.

• Step 2. Next, the probability of each valid message is estimated using a small pre-
computed lookup table that contains the relative frequency that each instruction
appears. The relative frequencies of legal instructions in most applications follow
power-law distribution [13]. This is used to favor more common instructions.

• Step 3. The instruction that is most common according to the SI lookup table
is chosen. In the event of a tie, the instruction with the longest leading-pad of
0s or 1s is chosen. This is because in many instructions, the MSBs represent
immediate values (as shown in Table 4). These MSBs are usually low-magnitude
signed integers or they represent 0-dominant function codes.

If the SI is strong, then there is normally a higher chance of correcting the error by
choosing the right candidate.

2.3 Recovering SEUs in Data Memory

In general-purpose embedded applications, data may come in many different types
and structures. Because there is no single common data type and layout in memory,
evenly spaced UL-ELC constructions can be used and the software trap handler can
be granted additional control about how to recover from errors, similar to the general
idea from SuperGlue [31].

The SDELC recovery support can be built into the embedded application as a
small C library. The application can push and pop custom SDELC error handler
functions onto a registration stack. The handlers are defined within the scope of
a subroutine and optionally any of its callees and can define specific recovery
behaviors depending on the context at the time of error. Applications can also enable
and disable recovery at will.

When the application does not disable recovery nor specify a custom behavior,
all data memory errors are recovered using a default error handler implemented
by the library. The default handler computes the average Hamming distance to
nearby data in the same 64-byte chunk of memory (similar to taking the intra-cache
line distance in cache-based systems). The candidate with the minimum average
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Hamming distance is selected. This policy is based on the observation that spatially
local and/or temporally local data tends to also be correlated, i.e., it exhibits value
locality [20].

The application-defined error handler can specify recovery rules for individual
variables within the scope of the registered subroutine. They include globals,
heap, and stack-allocated data. This is implemented by taking the runtime address
of each variable requiring special handling. For instance, an application may
wish critical data structures to never be recovered heuristically; for these, the
application can choose to force a crash whenever a soft error impacts their memory
addresses. The SDELC library support can increase system reliability, but the
programmer is required to spend effort annotating source code for error recovery.
This is similar to annotation-based approaches taken by others for various purposes
[4, 5, 10, 21, 29, 37].

2.4 SDELC Architecture

The SDELC architecture is illustrated in Fig. 5 for a system with split on-chip
instruction and data scratchpad memories (SPMs) (each with its own UL-ELC code)
and a single-issue core that has an in-order pipeline.

Fig. 5 Architectural support for SDELC on an microcontroller-class embedded system
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When a codeword containing a single-bit soft fault is read, the UL-ELC decoder
detects and localizes the error to a specific chunk of the codeword and places error
information in a Penalty Box register (shaded in gray in the figure). A precise
exception is then generated, and software traps to a handler that implements the
appropriate SDELC recovery policy for instructions or data.

Once the trap handler has decided on a candidate codeword for recovery, it must
correctly commit the state in the system such that it appears as if there was no
memory control flow disruption. For instruction errors, because the error occurred
during a fetch, the program counter (pc) has not yet advanced. To complete the
trap handler, the candidate codeword is written back to instruction memory. If it is
not accessible by the load/store unit, one could use hardware debug support such as
JTAG. The previously trapped instruction is re-executed after returning from the trap
handler, which will then cause the pc to advance and re-fetch the instruction that had
been corrupted by the soft error. On the other hand, data errors are triggered from
the memory pipeline stage by executing a load instruction. The chosen candidate
codeword is written back to data memory to scrub the error, the register file is
updated appropriately, and pc is manually advanced before returning from the trap
handler.

2.5 Soft Fault Recovery Using SDELC

To evaluate SDELC, Spike was modified to produce representative memory access
traces of 11 benchmarks as they run to completion. Five benchmarks are blowfish
and sha from the MiBench suite [14] as well as dhrystone, matmulti,
and whetstone. The remaining six benchmarks were added from the AxBench
approximate computing C/C++ suite [37]: blackscholes, fft, inversek2j,
jmeint, jpeg, and sobel. Each trace was analyzed offline using a MATLAB
model of SDELC. For each workload, 1000 instruction fetches and 1000 data reads
were randomly selected from the trace and exhaustively all possible single-bit faults
were applied to each of them.

SDELC recovery of the random soft faults was evaluated using three different
UL-ELC codes (r = 1, 2, 3). Recall that the r = 1 code is simply a single parity
bit, resulting in 33 candidate codewords. (For basic parity, there are 32 message bits
and one parity bit, so there are 33 ways to have had a single-bit error.) For the data
memory, the UL-ELC codes were designed with the chunks being equally sized:
for r = 2, there are either 11 or 12 candidates depending on the fault position (34
bits divided into three chunks), while for r = 3 there are always five candidates
(35 bits divided into seven chunks). For the instruction memory, chunks are aligned
to important field divisions in the RV64G ISA. Chunks for the r = 2 UL-ELC
construction match the fields of the Type-U instruction codecs (the opcode being
the unshared chunk). Chunks for the r = 3 UL-ELC code align with fields in the
Type-R4 codec (as presented in Table 4). A successful recovery for SDELC occurs
when the policy corrects the error; otherwise, it fails by accidentally mis-correcting.
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Fig. 6 Average rate of recovery using SDELC from single-bit soft faults in instruction and data
memory. r is the number of parity bits in the UL-ELC construction

2.5.1 Overall Results

The overall SDELC results are presented in Fig. 6. The recovery rates are relatively
consistent over each benchmark, especially for instruction memory faults, providing
evidence of the general efficacy of SDELC. One important distinction between the
memory types is the sensitivity to the number r of redundant parity bits per message.
For the data memory, the simple r = 1 parity yielded surprisingly high rates of
recovery using our policy (an average of 68.2%). Setting r to three parity bits
increases the average recovery rate to 79.2% thanks to fewer and more localized
candidates to choose from. On the other hand, for the instruction memory, the
average rate of recovery increased from 31.3% with a single parity bit to 69.0%
with three bits.

These results are a significant improvement over a guaranteed system crash as
is traditionally done upon error detection using single-bit parity. Moreover, these
results are achieved using no more than half the overhead of a Hamming SEC code,
which can be a significant cost savings for small IoT devices. Based on these results,
using r = 1 parity for data seems reasonable, while r = 3 UL-ELC constructions
can be used to achieve 70% recovery for both memories with minimal overhead.

3 Parity++ : Lightweight Error Correction for Last Level
Caches and Embedded Memories

This section focuses on another novel lightweight error correcting code—Parity++:
a novel lightweight unequal message protection scheme for last level caches or
embedded memories that preferentially provides stronger error protection to certain
“special messages.” As the name suggests, this coding scheme requires one extra bit
above a simple parity Single-bit Error Detection (SED) code while providing SED
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for all messages and Single-bit Error Correction (SEC) for a subset of messages.
Thus, it is stronger than just basic SED parity and has much lower parity storage
overhead (3.5× and 4× lower for 32-bit and 64-bit memories, respectively) than
a traditional Single-bit Error Correcting, Double-bit Error Detecting (SECDED)
code. Error detection circuitry often lies on the critical path and is generally more
critical than error correction circuitry as error occurrences are rare even with an
increasing soft error rate. This coding scheme has a much simpler error detection
circuitry that incurs lower energy and latency costs than the traditional SECDED
code. Thus, Parity++ is a lightweight ECC code that is ideal for large capacity last
level caches or lightweight embedded memories. Parity++ is also evaluated with
a memory speculation procedure [8] that can be generally applied to any ECC
protected cache to hide the decoding latency while reading messages when there
are no errors.

Details of the concepts discussed in this section can be found in the work by
Alam et al. [1] and Schoeny et al. [30].

3.1 Application Characteristics

As mentioned in Sects. 1.3 and 2.2, data in applications is generally very structured
and instructions mostly follow power-law distribution. This means most instructions
in the memory would have the same opcode. Similarly, the data in the memory is
usually low-magnitude signed data of a certain data type. However, these values get
represented inefficiently, for e.g., 4-byte integer type used to represent values that
usually need only 1-byte. Thus, in most cases, the MSBs would be a leading-pad of
0s or 1s. The approach of utilizing these characteristics in applications complements
recent research on data compression in cache and main memory systems such as
frequent value/pattern compression [3, 35], base-delta-immediate compression [27],
and bit-plane compression [19]. However, the main goal here is to provide stronger
error protection to these special messages that are chosen based on the knowledge
of data patterns in context.

3.2 Parity++ Theory

Parity++ is a type of unequal message protection code, in that specific messages are
designated a priori to have extra protection against errors as shown in Fig. 7. As in
[30], there are two classes of messages, normal and special, and they are mapped
to normal and special codewords, respectively. When dealing with the importance
or frequency of the underlying data, it is referred to as messages; when discussing
error detection/correction capabilities it is referred to as codewords.

Codewords in Parity++ have the following error protection guarantees: normal
codewords have single-error detection; special codewords have single-error cor-



Lightweight Software-Defined Error Correction for Memories 225

Fig. 7 Conceptual
illustration of Parity++ for
1-bit error (CE = Correctable
Error, DUE = Detected but
Uncorrectable Error)

rection. Let us partition the codewords in the code C into two sets, N and S,
representing the normal and special codewords, respectively. The minimum distance
properties necessary for the aforementioned error protection guarantees of Parity++
are as follows:

min
u,v∈N,u �=v

dH (u, v) ≥ 2, (3)

min
u∈N,v∈S dH (u, v) ≥ 3, (4)

min
u,v∈S,u �=v

dH (u, v) ≥ 3. (5)

A second defining characteristic of the Parity++ code is that the length of a
codeword is only two bits longer than a message, i.e., n = k + 2. Thus, Parity++
requires only two bits of redundancy.

For the context of this work, let us assume that Parity++ always has message
length k as a power of 2. The overall approach to constructing the code is to create
a Hamming subcode of a SED code [15]; when an error is detected, it is decoded
to the neighboring special codeword. The overall code has dmin = 2, but a block in
G, corresponding to the special messages, has dmin ≥ 3. For the sake of notational
convenience, let us go through the steps of constructing the (34, 32) Parity++ code
(as opposed to the generic (k + 2, k) Parity++ code).

The first step is to create the generating matrix for the Hamming code whose
message length is at least as large as the message length in the desired Parity++
code; in this case, the (63, 57) Hamming code is used. Let α be a primitive element
of GF(26) such that 1+x+x6 = 0, then the generator polynomial is simply gS(x) =
1 + x + x6 (and the generator matrix is constructed using the usual polynomial
coding methods). The next step is to shorten this code to (32, 26) by expurgating
and puncturing (i.e., deleting) the right and bottom 31 columns and rows. Then add
a column of 1s to the end, resulting in a generator matrix, which is denoted as GS ,
for a (33, 26) code with dmin = 4.
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For the next step in the construction of the generating matrix of the (34, 32)

Parity++ code, GN is added on top of GS , where GN is the first 6 rows of the
generator matrix using the generator polynomial gN(x) = 1 + x, with an appended
row of 0s at the end. Note that GN is the generator polynomial of a simple parity-
check code. By using this polynomial subcode construction, a generator matrix is
built with overall dmin = 2, with the submatrix GS having dmin = 4. At this point,
notice that messages that begin with 6 0s only interact with GS ; these messages
will be the special messages. Note that Conditions 3 and 5 are satisfied; however,
Condition 4 is not satisfied. To meet the requirement, a single non-linear parity bit
is added that is a NOR of the bits corresponding to GN, in this case, the first 6 bits.

The final step is to convert GS to systematic form via elementary row operations.
Note that these row operations preserve all 3 of the required minimum distance
properties of Parity++. As a result, the special codewords (with the exception of the
known prefix) are in systematic form. For example, in the (34, 32) Parity++ code,
the first 26 bits of a special codeword are simply the 26 bits in the message (not
including the leading run of 6 0s).

At the encoding stage of the process, when the message is multiplied by G,
the messages denoted as special must begin with a leading run of log2(k) + 1 0’s.
However, the original messages that are deemed to be special do not have to follow
this pattern as one can simply apply a pre-mapping before the encoding step, and a
post-mapping after the decoding step.

In the (34, 32) Parity++ code, observe that there are 226 special messages.
Generalizing, it is easy to see that for a (k + 2, k) Parity++ code, there are
2k−log2(k)−1 special messages.

Similar unequal message protection scheme can be used for providing DECTED
protection to special messages, while non-special messages get SECDED protec-
tion. The code construction has been explained in detail in [30].

3.3 Error Detection and Correction

The received—possibly erroneous—vector y is divided into two parts, c̄ and η, with
c̄ being the first k+1 bits of the codeword and η the additional non-linear redundancy
bit (η = 0 for special messages and η = 1 for normal messages). There are three
possible scenarios at the decoder: no (detectable) error, correctable error, or detected
but uncorrectable error.

First, due to the Parity++ construction, every valid codeword has even weight.
Thus, if c̄ has even weight, then the decoder concludes no error has occurred, i.e.,
c̄ was the original codeword. Second, if c̄ has odd weight and η = 0, the decoder
attempts to correct the error. Since GS is in systematic form, HS , its corresponding
parity-check matrix can be easily retrieved. The decoder calculates the syndrome
s1 = HT

S c̄. If s1 is equal to a column in HS , then that corresponding bit in c̄ is
flipped. Third, if c̄ has odd weight and either s1 does not correspond to any column
in HS or η = 1, then the decoder declares a DUE.
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The decoding process described above guarantees that any single-bit error in a
special codeword will be corrected, and any single-bit error in a normal codeword
will be detected (even if the bit in error is η).

Let us take a look at two concrete examples for the (10, 8) Parity++ code.
Without any pre-mapping, a special message begins with log2(3)+1 = 4 zeros. Let
the original message be m = (00001011), which is encoded to c = (1011010110).
Note that the first 4 bits of c is the systematic part of the special codeword. After
passing through the channel, let the received vector be y = (1001010110), divided
into c̄ = (1001010110) and η = 0. Since the weight of c is odd and η = 0, the
decoder attempts to correct the error. The syndrome is equal to the 3rd column in
HS , thus the decoder correctly flips the 3rd bit of c̄.

For the second example, let us begin with m = (11010011), which is encoded
to (0011111101). After passing through the channel, the received vector is y =
(0011011101). Since the weight of c̄ is odd and η = 1, the decoder declares a DUE.
Note that for both normal and special codewords, if the only bit in error is η itself,
then it is implicitly corrected since c̄ has even weight and will be correctly mapped
back to m without any error detection or correction required.

3.4 Architecture

In an ECC protected cache, every time a cache access is initiated, the target block
is sent through the ECC decoder/error detection engine. If no error is detected, the
cache access is completed and the cache block is sent to the requester. If an error
is detected, the block is sent through the ECC correction engine and the corrected
block is eventually sent to the requester. Due to the protection mechanism, there is
additional error detection/correction latency. Error detection latency is more critical
than error correction as occurrence of an error is a rare event when compared to the
processor cycle time and does not fall in the critical path. However, a block goes
through the detection engine every time a cache access is initiated.

When using Parity++, the flow almost remains the same. Parity++ can detect all
single-bit errors but has correction capability for “special messages.” When a single-
bit flip occurs on a message, the error detection engine first detects the error and
stalls the pipeline. If the non-linear bit says it is a “special message” (non-linear bit is
‘0’), the received message goes through the Parity++ error correction engine which
outputs the corrected message. This marks the completion of the cache access. If the
non-linear bit says it is a non-special message (non-linear bit is “1”), it is checked
if the cache line is clean. If so, the cache line is simply read back from the lower
level cache or the memory and the cache access is completed. However, if the cache
line is dirty and there are no other copies of that particular cache line, it leads to a
crash or a roll back to checkpoint. Note that both Parity++ and SECDED have equal
decoding latency of one cycle that is incurred during every read operation from an
ECC protected cache. The encoding latency during write operation does not fall in
the critical path and hence is not considered in the analyses.
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The encoding energy overhead is almost similar for both Parity++ and SECDED.
The decoding energy overheads are slightly different. For SECDED, the original
message can be retrieved from the received codeword by simply truncating the
additional ECC redundant bits. However, all received codewords need to be
multiplied with the H-matrix to detect if any errors have occurred. For Parity++, all
messages go through the chain of XOR gates for error detection and only the non-
systematic non-special messages need to be multiplied with the decoder matrix to
retrieve the original message. Since the error detection in Parity++ is much cheaper
in terms of energy overhead than SECDED and the non-special messages only
constitute about 20–25% of the total messages, the overall read energy in Parity++
turns out to be much lesser than SECDED.

3.5 Experimental Methodology

Parity++ was evaluated over applications from the SPEC 2006 benchmark suite.
Two sets of core micro-architectural parameters (provided in Table 5) were chosen
to understand the performance benefits in both a lightweight in-order (InO) proces-
sor and a larger out-of-order (OoO) core. Performance simulations were run using
Gem5 [6], fast forwarding for one billion instructions and executing for two billion
instructions.

The first processor was a lightweight single in-order core architecture with a
32kB L1 cache for instruction and 64kB L1 cache for data. Both the instruction and
data caches were 4-way associative. The LLC was a unified 1MB 8-way associative
L2 cache. The second processor was a dual core out-of-order architecture. The L1
instruction and data caches had the same configuration as the previous processor.
The LLC comprises of both L2 and L3 caches. The L2 was a shared 512KB cache
while the L3 was a shared 2MB 16-way associative cache. For both the baseline
processors it was assumed that the LLCs (L2 for the InO processor and L2 and L3
for the OoO processor) have SECDED ECC protection.

Table 5 Core micro-architectural parameters

Processor-1 Processor-2

Cores 1 (@ 2 GHz) 2 (@ 2 GHz)

Core type InO (@ 2 GHz) OoO (@ 2 GHz)

Cache line size 64B 64B

L1 Cache per core 32 KB I$, 64 KB D$ 32 KB I$, 64 kB D$

L2 Cache 1 MB (unified) 512 KB (shared, unified)

8-way 8-way

L3 Cache – 2 MB 16-way (shared)

Memory configuration 4 GB of 2133 MHz DDR3 8 GB of 2133 MHz DDR3

Nominal voltage 1 V 1 V
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The performance evaluation was done only for cases where there are no errors.
Thus, latency due to error detection was taken into consideration but not error
correction as correction is rare when compared to the processor cycle time and does
not fall in the critical path. In order to compare the performance of the systems
with Parity++ against the baseline cases with SECDED ECC protection, the size
of the LLCs was increased by ∼9% due to the lower storage overhead of Parity++
compared to SECDED. This is the iso-area case since the additional area coming
from reduction in redundancy is used to increase the total capacity of the last level
caches.

3.6 Results and Discussion

In this section the performance results obtained from the Gem5 simulations (as
mentioned in Sect. 3.5) are discussed. Figures 8 and 9 show the comparative results
for the two different sets of core micro-architectures across a variety of benchmarks
from the SPEC2006 suite when using memory speculation. In both the evaluations,
performance of the system with Parity++ was compared against that with SECDED.

Fig. 8 Comparing normalized execution time of Processor-I with SECDED and Parity++

Fig. 9 Comparing normalized execution time of Processor-II with SECDED and Parity++
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For both the core configurations, the observations are almost similar. It was
considered that both Parity++ and SECDED protected caches have additional
cache hit latency of one cycle (due to ECC decoding) for all read operations.
The results show that with the exact same hit latency, Parity++ has up to 7%
lower execution time than SECDED due to the additional memory capacity. The
applications showing higher performance benefits are mostly memory intensive.
Hence, additional cache capacity with Parity++ reduces overall cache miss rate. For
most of these applications, this performance gap widens as the LLC size increases
for Processor-II. The applications showing roughly similar performances on both
the systems are the ones which already have a considerably lower LLC miss rate.
As a result, increase in LLC capacity due to Parity++ does not lead to a significant
improvement in performance.

On the other hand, if the cache capacity is kept constant (iso-capacity), Parity++
helps to save ∼5–9% of last level cache area (cache tag area taken into consider-
ation) as compared to SECDED. Since the LLCs constitute more than 30% of the
processor chip area, the cache area savings translate to a considerable amount of
reduction in the chip size. This additional area benefit can either be utilized to make
an overall smaller sized chip or it can be used to pack in more compute tiles to
increase the overall performance of the system.

The results also imply that Parity++ can be used in SRAM based scratchpad
memories used in embedded systems at the edge of the Internet-of-Things (IoT)
where hardware design is driven by the need for low area, cost, and energy
consumption. Since Parity++ helps in reducing area (in turn reducing SRAM
leakage energy) and also has lower error detection energy [1], it provides a better
protection mechanism than SECDED in such devices.
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