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1 Overview

An overview of the chapter structure and the connection of the different sections is
illustrated in Fig. 1. Soft error mitigation techniques like [17, 29] have shown that
the software layer can be employed for enhancing the dependability of computing
systems. However, to effectively use them, their overhead (e.g., in terms of power
and performance) has to be considered. This also includes the option of adapting
to different output accuracy requirements and inherent resilience against faults of
different applications, for which appropriate metrics considering information from
multiple system layers are required. Therefore, we start with a short overview
of reliability and resilience modeling and estimation approaches, which not only
focus on the functional correctness (like application reliability and resilience) but
also consider the timeliness, i.e., determining the change of the timing behavior
according to the run-time dependability, and providing various timing guarantees
for real-time systems. They are used to evaluate the results of different dependable
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Fig. 2 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

code generation approaches, like dependability-driven software transformations and
selective instruction redundancy. This enables generation of multiple compiled code
versions of an application realizing different performance/energy vs. dependability
trade-offs. The evaluation results and the different versions are then used by a
dependability-driven adaptive run-time system. It considers offline and online
optimizations, for instance, for selecting appropriate application versions and
adapting to different workloads and conditions at run-time (like fault rate, aging,
and process variation). Thereby, it finally enables a dependable execution of the
applications on the target system.

As, however, not all systems are general-purpose, towards the end of the chapter
an example design of a video processing system is included, which illustrates
different approaches for application-specific dependability.

Embedding this chapter’s content in the scope of this book and the overall
projects [12, 14], the main contributions lie on the application, SW/OS, and
architectural layers as illustrated in Fig. 2.
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2 Dependability Modeling and Estimation

Modeling dependability at the software layer is a complex task as parameters and
effects of different systems layers have to be taken into account. For an accurate yet
fast evaluation of application dependability, information from lower system layers
has to be considered, while abstracting it in a reasonable way to also allow for a
fast estimation. For this purpose, different aspects have been separated into distinct
metrics focusing on individual phenomena, as discussed below.

The Instruction Vulnerability Index (IVI) [19, 25] focuses on the error proba-
bility of each instruction when being executed on different components/pipeline
stages of a processor by analyzing their spatial and temporal vulnerabilities. This
requires an analysis of vulnerable bits as well as vulnerable time period, i.e.,
the residence times of instructions in different components, while considering
micro-architecture dependent information from the lower layers like the area
consumption of different components and the probability that an error is
observed at their output (see Fig. 1). The IVI of individual instructions can then
be combined to estimate the vulnerability at higher granularity (e.g., Function
Vulnerability Index—FVI). In this case, the susceptibility towards application
failures and incorrect application outputs can be considered as well, for instance
by classifying instructions into critical and non-critical ones, which is important
if deviations in the application output can be tolerated.

As not all errors occurring during the execution of an application become
visible to the user due to data flow and control flow masking, the Instruction
Error Masking Index (IMI) [31] provides probabilistic estimates whether the
erroneous output of an instruction will be masked until the visible output of an
application.

The Instruction Error Propagation Index (EPI) [31] captures the effects of
errors not being masked from the time of their generation until the final output of
an application. It analyzes the propagation effects at instruction granularity and
quantifies the impacts of the error propagation and how much it affects the final
output of an application.

Based on the information theory principles, the Function Resilience model [24]
provides a probabilistic measure of the function’s correctness (i.e., its output
quality) in the presence of faults. In contrast to the IVI/FVI, it avoids exposing
the application details by adopting a black-box modeling technique.

The Reliability-Timing Penalty (RTP) [23] model jointly accounts for the
functional correctness (i.e., generating the correct output) and the timing cor-
rectness (i.e., timely delivery of an output). In this work, we studied RTP as
a linear combination of functional reliability and timing reliability, where the
focus (functional or timing correctness) can be adjusted. However, it can also be
devised through a non-linear model depending upon the design requirements of
the target system.

The (m,k) robustness constraint model [4, 35] quantifies the potential inherent
safety margins of control tasks. In this work, several error-handling approaches
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guarantee the minimal frequency of correctness over a static number of instances
while satisfying the hard real-time constraints in the worst-case scenario.

e The Deadline-Miss Probability [3, 9, 34] provides a statistical argument for
the probabilistic timing guarantees in soft real-time systems by assuming that
after a deadline miss the system either discards the job missing its deadline or
reboots itself. It is used to derive the Deadline-Miss Rate [7], which captures
the frequency of deadline misses by considering the backlog of overrun tasks
without the previous assumption of discarding jobs or rebooting the system.

A more detailed description of the different models as well as their corresponding
system layers are presented in chapter “Reliable CPS Design for Unreliable
Hardware Platforms”.

3 Dependability-Driven Compilation

Considering the models and therewith the main parameters affecting the depend-
ability of a system, several mitigation techniques are developed, which target to
improve the system dependability on the software layer. Three different approaches
are discussed in the following.

3.1 Dependability-Driven Software Transformations

Software transformations like loop unrolling have mainly been motivated by and
analyzed from the perspective of improving performance. Similarly, techniques for
improving dependability at the software level have mainly focused on error detec-
tion and mitigation, e.g., by using redundant instruction executions. Therefore, the
following dependability-driven compiler-based software transformations [19, 25]
can be used to generate different application versions, which are identical in terms
of their functionality but which provide different dependability-performance trade-
offs.

* Dependability-Driven Data Type Optimization: The idea is to implement the
same functionality with different data types, targeting to reduce the number
of memory load/store instructions (which are critical instructions due to their
potential of causing application failures) and their predecessor instructions in the
execution path. However, additional extraction/merging instructions for the data
type optimization have to be taken care of when applying this transformation.

* Dependability-Driven Loop Unrolling: The goal is to find an unrolling factor
(i.e., loop body replications), which minimizes the number of critical instruc-
tions/data (e.g., loop counters, branch instructions) that can lead to a significant
deviation in the control flow causing application failures. This reduction, how-
ever, needs to be balanced, e.g., with the increase in the code size.
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Fig. 3 Fault injection results for two applications and the generated application versions (adapted
from [25])

* Reliability-Driven Common Expression Elimination and Operation Merging:
The idea of eliminating common expressions is to achieve performance improve-
ment due to less instructions being executed and therefore less faults being
able to affect an application execution. However, excessively applying this
transformation might lead to register spilling or longer residence times of data in
the registers. Therefore, it needs to be evaluated carefully whether eliminating a
common expression leads to a vulnerability reduction or whether the redundancy
implied by a re-execution provides a benefit.

* Reliability-Driven Online Table Value Computation: The goal of the online
table value computation is to avoid long residence times of pre-computed tables
in the memory, where the values can be affected by faults and can therefore
affect a large set of computations. This needs to be traded off against the
performance overhead (and therefore increased temporal vulnerability) of online
value computation.

As the transformations listed above also imply certain side effects (e.g., increased
code size, additional instructions), they need to be applied carefully. We evaluate the
above techniques using an instruction set simulator-based fault injection approach,
where faults can be injected in different processor components (e.g., register file,
PC, ALU, etc.) considering their area. It supports injecting a single or multiple
faults per experiment, where each fault can itself corrupt a single or multiple
bits. The results for two example applications from the MiBench benchmark
suite [13] are shown in Fig.3. They illustrate the effectiveness of the proposed
transformations, e.g., for the “HT” application by the reduction of the application
failures and incorrect outputs generated when comparing the Baseline application
version and V3.

Finally, the dependability-driven software transformations are not only useful
as a standalone technique, but can also be combined with other error mitigation
techniques. For example, by reducing the number of instructions accessing the
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memory, they can help reduce the required checking instructions in [29], and thereby
lead to a performance improvement.

3.2 Dependability-Driven Instruction Scheduling

Instruction scheduling can significantly affect the temporal vulnerability of instruc-
tions and data, as it determines their residence time in different processor compo-
nents. To improve the dependability of an application, several problems have to be
addressed, which usually do not have to be considered for a performance-oriented
instruction scheduling:

1. Critical instructions should not be scheduled after multi-cycle instructions or
instructions potentially stalling the pipeline as this increases their temporal
vulnerability;

2. High residence time (and therefore temporal vulnerability) of data in registers/
memory;

3. High spatial vulnerability, e.g., as a consequence of using more registers in
parallel.

Therefore, the dependability-driven instruction scheduling in [21, 22] estimates
the vulnerabilities, and separates the instructions into critical and non-critical ones
statically at compile-time before performing the instruction scheduling. Afterwards,
it targets minimizing the application dependability by minimizing the spatial and
temporal vulnerabilities while avoiding scheduling critical instructions after multi-
cycle instructions to reduce their residence time in the pipeline. These parameters
are combined to an evaluation metric called instruction reliability weight, which
is employed by a lookahead-based heuristic for scheduling the instructions. The
scheduler operates at the basic block level and considers the reliability weight of
an instruction in conjunction with its dependent instructions to make a scheduling
decision. In order to satisfy a given performance overhead constraint, the scheduler
also considers the performance loss compared to a performance-oriented instruction
scheduling.

3.3 Dependability-Driven Selective Instruction Redundancy

While the dependability-driven software transformations and instruction scheduling
focus on reducing the vulnerability and critical instruction executions, certain
important instructions might still have to be protected in applications being highly
susceptible to faults. Therefore, it is beneficial to selectively protect important
instructions using error detection and recovery techniques [24, 31], while saving
the performance/power overhead of protecting every instruction.



Dependable Software Generation and Execution on Embedded Systems 145

To find the most important instructions, the error masking and error propagation
properties as well as the instruction vulnerabilities have to be estimated. These
results are used afterwards to prioritize the instructions to be protected, considering
the performance overhead and the reliability improvement. For this, a reliability
profit function is used, which jointly considers the protection overhead, error
propagation and masking properties and the instruction vulnerabilities. The results
of this analysis are finally used to select individual or a group of instructions,
which maximize the total reliability profit considering a user-provided tolerable
performance overhead.

4 Dependability-Driven System Software

Based on the dependability modeling and estimation approaches and the
dependability-driven compilation techniques, multiple code versions are generated.
These code versions exhibit distinct performance and dependability properties
while providing the same functionality. They are then used by the run-time system
for exploring different reliability-performance trade-offs by selecting appropriate
application versions while adapting to changing run-time scenarios (e.g., different
fault rates and workloads) for single- and multi-core systems.

4.1 Joint Consideration of Functional and Timing
Dependability

The key requirement of many systems is producing correct results, where a (limited)
time-wise overhead is oftentimes acceptable. However, for real-time (embedded)
systems both the functional dependability (i.e., providing correct outputs even in
the presence of hardware-level faults) and the timing dependability (i.e., providing
the correct output before the deadline) play a central role and need to be considered
jointly trading-off one against the other [23, 27]. To enable this, multiple system
layers (i.e., compiler, offline system software, and run-time system software) need
to be leveraged in a cross-layer framework to find the most effective solution [15].
For an application with multiple functions, the problem is to compose and execute
it in way that jointly optimizes the functional and timing correctness. For this, the
RTP (see Sect. 2) is used as an evaluation metric.

Figure 4a presents an overview of our approach. It is based on multiple
function versions generated by employing the approaches described in Sect.3,
where additionally even different algorithms might be considered. As an example,
a sorting application is illustrated in Fig.4b, where the vulnerability of different
algorithms and implementations as well as their execution times are compared
showing different trade-offs. For generating the versions, a dependability-driven
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Fig. 4 (a) Overview of the design-time, compile-time, and run-time steps for generating different
function/application versions. (b) Different algorithms and implementations for sorting (adapted
from [23])

compilation process is used, given different implementations and a tolerable
performance overhead to limit the design space. Then, only a limited number of
versions from the pareto-frontier are selected, representing a wide spectrum of
solutions.

In the next step, a Dependability-Driven Offline System Software generates
schedule tables by minimizing the expected RTP. For the execution time, a
probability distribution is considered, since it is not constant for all functions. For
applications with only one function, the version minimizing the RTP (based on a
weighting parameter) can be found by analyzing its probability for deadline misses
and its reliability. For applications with multiple functions, it is required to consider
that the selected version of a function is dependent on the functions executed earlier,
e.g., if they finish early, a high-reliability version with a longer execution time
can be selected. Therefore, a dynamic version selection scheme is adopted, where
schedule tables are prepared offline and the scheduler selects appropriate function
versions depending on the run-time behavior. Selecting a version for a particular
function depends on both the functions executed earlier, and the functions executed
afterwards (i.e. the predecessor and the successor functions in the execution path).
The schedule tables are filled from the last function to be executed and remaining
entries are added successively later, where the properties of earlier functions have
to be explored and later functions can be captured by a lookup in the already filled
parts of the table.

At run-time, a Dependability-Driven Run-time System Software selects an appro-
priate function version from the schedule table depending on the RTP. To execute the
corresponding function, dynamic linking can be used. At the start of an application,
the RTP is zero and the remaining time is the complete time until the deadline, as
no function has been executed so far. With these parameters, the entry is looked
up in the schedule table and the corresponding function version is executed. When
one of the following functions need to be executed, the RTP observed so far is
accumulated and the remaining time until the deadline is calculated. Afterwards,
the corresponding table lookup is performed and a version is selected. To ensure
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the correctness of the schedule tables, they should be placed in a protected memory
part. As they, however, might become large, the size of the table can be reduced
by removing redundant entries and entries where the RTP difference is too small.
However, in this chapter, we assume that the system software is protected (for
instance, using the approaches described in the OS-oriented chapters) and does not
experience any failures.

In case the ordering of function executions is (partially) flexible, i.e., no/only
partial precedence constraints exist, this approach can be extended by a function
prioritization technique [27].

4.2 Adaptive Dependability Tuning in Multi-Core Systems

While Sect.4.1 mainly focused on single-core systems and transient faults, the
following technique will extend the scope towards multi-core systems and reliability
threats having a permanent impact on the system (like process variation and aging).
Thereby, different workloads on the individual cores might further aggravate the
imbalance in core frequencies, which already preexists due to process variation.
Consequently, a joint consideration of soft errors, aging, and process variation
is required to optimize the dependability of the system. The goal is to achieve
resource-efficient dependable application execution in multi-core systems under
core-to-core frequency variation.

In a multi-core system, the software layer-based approaches can be comple-
mented by Redundant Multithreading (RMT), which is a hardware-based tech-
nique that executes redundant threads on different cores. An application can
be executed with either Dual Modular Redundancy (DMR) or Triple Modular
Redundancy (TMR). This broadens the mitigation solutions against the above-
mentioned dependability threats, but also demands for the following problems to
be solved [26].

1. The activation/deactivation of RMT has to be decided based on the properties
(i.e., vulnerability, masking, performance) of the concurrently executing applica-
tions, the allowed performance overhead, and the error rate.

2. Mapping of (potentially redundant) threads to cores at run-time needs to consider
the cores’ states.

3. A reliable code version needs to be selected based on the performance variations
of the underlying hardware and the application dependability requirements.

These problems are addressed by employing two key components: (1) a Hybrid
RMT-Tuning technique, and (2) a Dependability-Aware Application Version Tuning
and Core Assignment technique.

The Hybrid RMT-Tuning technique considers the performance requirements
and vulnerability of the upcoming applications in combination with the available
cores and history of encountered errors. It estimates the RTP of all applications,
activates RMT for the one with the highest RTP in order to maintain the history, and
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Fig. 5 (a) RPF improvements of dTune, RTO, and CRT normalized to TO for different aging years
summarizing different chips and workloads. (b) RPF improvements detailing different workloads
(adapted from [28])

takes RMT activation decisions based on the available cores and recent error history.
For applications with RMT activated, the fastest compiled code version is selected.

After the RMT mode is decided for each application, the Dependability-
Aware Application Version Tuning and Core Assignment is performed. It starts
with an initial decision on the application version for applications where RMT
has not been activated, considering their vulnerability and deadline. Then, the
core allocation/mapping is performed, which takes the performance variations of
individual cores (caused by process variation and aging) into account. It starts with
the applications having the highest RTP and intends to allocate cores with similar
performance properties to all redundant copies while also considering their distance.
Finally, the application versions selected in the earlier step are tuned to improve the
RTP further. Since the allocated core is now known, the potential for improving the
dependability is evaluated considering the application’s deadline.

Figure 5 shows the results of this approach (dTune) for different number of
applications and different years. For the evaluation, a multi-core system with
10 x 10 ISA-compatible homogeneous RISC cores is used. These cores differ in
their performance characteristics due to aging, where we consider NBTI-induced
aging [1], and process variation, where the model of [18] is used. The comparison is
done against three approaches: (1) Chip-Level Redundant Threading (CRT) which
targets maximizing the reliability; (2) Reliability-Timing Optimizing Technique
(RTO) jointly optimizing functional and timing dependability, but not using RMT;
(3) Timing Optimizing Technique (TO) targeting to minimize the deadline misses.
The evaluation is performed taking TO as a reference against which dtune, CRT,
and RTO are compared with, where

6]

RTP
RPF = 100 x (1 M)

 Yer RTP(D70
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Figure 5a shows an overview of the achieved improvements for different chip
maps with process variations, scenarios of application mixes and aging years. dTune
achieves better RPF-results compared to 7O, CRT, and RTO for both aging years, as
it jointly considers functional and timing dependability as well as the performance
variation of the cores. For year 5, a wider spread of RPF-results is observed due to
the decrease in processing capabilities of the chips. Figure 5b details the application
workload, where it can be observed that CRT performs as good as dTune for a lower
number of applications, but does not deal well with a higher number of applications
due to focusing only on minimizing functional dependability.

The solution discussed above can further be enhanced by starting with a
preprocessing for application version selection, as demonstrated in [5]. First, the
version with the minimal reliability penalty achieving the tolerable miss rate
(for applications not being protected by RMT) and the best performance (for
applications protected with RMT) are selected. Afterwards, the application-to-core
mapping problem is solved for the applications protected with RMT by assigning
each of them the lowest-frequency group of cores possible. Then, the applications
that are not protected with RMT are mapped to cores by transforming the problem to
a minimum weight perfect bipartite matching problem, which is solved by applying
the Hungarian Algorithm [16]. The decision whether to activate RMT or not is
made by iteratively adapting the mode using a heuristic in combination with the
application mapping approaches.

Nevertheless, solely adopting CRT to maximize the reliability is not good
enough, since the utilization of the dedicated cores may be unnecessarily low due to
low utilization tasks. If the number of redundant cores is limited, the number of tasks
activating RMT is also limited. When the considered multi-core systems have multi-
tasking cores rather than single thread-per-core (but homogeneous performance),
the same studied problems, i.e., the activation of RMT, mapping of threads to cores,
and reliable code version selection, can be addressed more nicely while satisfying
the hard real-time constraints. The main idea is to use Simultaneous Redundant
Threading (SRT) and CRT at the same time or even a mixture of them called Mixed
Redundant Threading (MRT). There are six redundancy levels characterized as a set
of directed acyclic graphs (DAGS) in Fig. 6, where each node (sub-task) represents a
sequence of instructions and each edge represents execution dependencies between
nodes.

For determining the optimal selection of redundancy levels for all tasks, sev-
eral dynamic programming algorithms are proposed in [8] to provide coarse- or
fine-grained selection approaches while satisfying the feasibility under Federated
Scheduling. In extensive experiments, the proposed approaches can generally
outperform the greedy approach used in dTune when the number of available cores
is too limited to activate CRT for all tasks. Since the fine-grained approach has
more flexibility to harden tasks in stage-level, the decrease of the system reliability
penalty is at least as good as for the coarse-grained approach. When the resources
are more limited, e.g., less number of cores, the benefit of adopting the fine-grained
approach is more significant.
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necessary steps for forking the original executions and replicas, joining, and comparing the
delivered results from DMR/TMR at the end of redundant multithreading. The directed edges
represent the dependencies between nodes. Each block represents one core, i.e., the number of
cores differs depending on the redundancy level

5 Resilient Design for System Software

Considering the adoption of error detection and recovery mechanisms due to the
occurrence of soft errors from time to time, resilient designs for system software
can be developed. (1) Execution versions can be determined to handle soft errors
without over-provision while satisfying given robustness and timing constraints. (2)
Dynamic timing guarantees can be provided without any online adaptation after
a fault occurred. (3) Probabilistic analyses on deadline misses for soft real-time
system. The detailed designs are presented in the following.

5.1 Adaptive Soft Error Handling

To avoid catastrophic events like unrecoverable system failures, software-
based fault-tolerance techniques have the advantages in both the flexibility and
application-specific assignment of techniques as well as in the non-requirement for
specialized hardware. However, the main expenditure is the significant amount of
time due to the additional computation incurred by such methods, e.g., redundant
executions and majority voting, by which the designed system may not be feasible
due to the overloaded execution demand. Due to the potential inherent safety
margins and noise tolerance, control applications might be able to tolerate a
limited number of errors and only degrade its control performance. Therefore,
costly deploying full error detection and correction on each task instance might not
be necessary.

To satisfy the minimal requirement of functional correctness for such control
applications, (m, k) robustness constraint is proposed, which requires m out of any
k consecutive instances to be correct. For each task an individual (m, k) constraint
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is possible to be given by other means analytically or empirically [35]. Without
skipping any instances so likely achieving higher control performance, a static
pattern-based approach [4] can be used to comply the reliable executions on the
marked instances by following an (m, k)-pattern repeatedly to satisfy the given
minimal requirement. To validate the schedulability, the multi-frame task model can
then be applied to provide a hard real-time guarantee offline. A run-time adaptive
approach [4] can further decide the executing version on the fly by enhancing
the static pattern-based approach and monitoring the current tolerance status with
sporadic replenishment counters. It is worth noting that the resulting distribution
of execution jobs can still follow the (m, k) static patterns even in the worst case.
Hence, the schedulability test for the static pattern-based approach can be directly
used for the run-time adaptive approach as well.

Figure 7 shows the results for a self-balancing control application under different
(m, k) requirements and varying fault rates. When the fault rate increases, the overall
utilization of the run-time adaptive approach (DRE and DDR) also rises, since the
requirement of reliable executions is increased within the application execution.
Furthermore, the static pattern-based approaches (SRE and SDR) are always
constant for a fixed (m, k) requirement, as the overall utilization is deterministic
by the amount of job partitions. When the fault rate is as low as 10% and the (m, k)
requirement is loose as (3, 10), the probability of activating reliable executions is
rare, and, hence, the run-time adaptive approach can closely achieve the minimum
overall utilization. Overall, the results suggest that the proposed approaches can
be used to serve various applications with inherent fault-tolerance depending on
their perspectives, thus avoiding over-provision under robustness and hard real-time
constraints.

5.2 Dynamic Real-Time Guarantees

When soft errors are detected, the execution time of a real-time task can be increased
due to potential recovery operations. Such recovery routines may make the system
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very vulnerable with respect to meeting hard real-time deadlines. This problem is
often addressed by aborting not so important tasks to guarantee the response time
of the more important tasks. However, for most systems such faults occur rarely
and the results of not so important tasks might still be useful, even if they are a
bit late. This implicates to not abort these not so important tasks but keep them
running even if faults occur, provided that the more important tasks still meet their
hard real-time deadlines. To model this behavior, the idea of Systems with Dynamic
Real-Time Guarantees [33] is proposed, which determines if the system can provide
without any online adaptation after a fault occurred, either full timing guarantees or
limited timing guarantees. Please note that, this study is highly linked to the topic of
mixed-criticality systems [2]. We can imagine that the system is in the low-criticality
mode if full timing guarantees are needed, and in the high-criticality mode if only
limited timing guarantees are provided. However, in most of the related works, such
mode changes are assumed to be known, without identifying the mode change. The
system only switches from low-criticality to high-criticality mode once, without
ever returning to the low-criticality mode. Moreover, the low-criticality tasks are
considered to be either ignored, skipped, or run with best efforts as background
tasks. Such a model has received criticism as system engineers claim that it does not
match their expectations in Esper et al. [11], Ernst and Di Natale [10], and Burns
and Davis [2].

Suppose that a task set can be partitioned into two subsets for more important
and not so important tasks, and a fixed priority order is given. To test the
schedulability of a preemptive task set with constrained deadlines under a fixed
priority assignment, the typical Time Demand Analysis (TDA) as an exact test with
pseudo-polynomial run-time can be directly applied. To determine the schedulability
for a System with Dynamic Real-Time Guarantees, the following three conditions
must hold:

» Full timing guarantees hold, if the given task set can be scheduled according to
TDA when all tasks are executed in the normal mode.

*  When the system runs with limited timing guarantees, all more important tasks
will meet their deadlines if they can be proven to be scheduled by TDA while all
tasks are executed in the abnormal mode.

* Each not so important task has bounded tardiness if the sum of utilization over
all tasks in the abnormal mode can be less than or equal to one.

To decide such a fixed priority ordering for a given task set, the Optimal Priority
Assignment (OPA) can be applied to find a feasible fixed priority assignment, since
the above schedulability test is OPA compatible. It is proven that a feasible priority
assignment for a System with Dynamic Real-Time Guarantees can be found if one
exists by using the priority assignment algorithm presented in [33], which has a
much better run-time than directly applying OPA.

As faulty-aware system design is desirable in the industrial practice, having an
online monitor to reflect the system status is also important. This monitor should
trigger warnings if the system can only provide limited timing guarantees, and
display the next time the system will return to full timing guarantees. To achieve
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utilization 70% in the normal mode under different fault rates. The median of the acceptance rates
over 40 task sets is colored in red. The blue box represents the interval around this median that
contains the inner 50% of those values while the whiskers display the range of the top/bottom 25%
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this, an approximation is needed to detect the change from full timing guarantees
to limited timing guarantees, and for the calculation of an upper bound of the next
time instance the system will return to full timing guarantees. To realize the routine
of the online monitor, the system software has to ensure that the release pattern is
still correct when a task misses its deadline and there is a helper function to keep
tracking the number of postponed releases. How to enhance a real-time operating
system for the previous two requirements is further discussed in [6].

Figure 8 shows the results with the percentage of time that the system was
running with full timing guarantees. At a fault rate of 10~* and 3 x 10~# (faults/ms),
the system always provides full timing guarantees. When the fault rate is increased,
the average of the time where full timing guarantees are provided drops. For the
worst-case values, the drop is faster but even in this case full timing guarantees
are still provided ~292.59% and ~82.91% of the time for fault rates of 10~3 and
3x 1073, respectively. This shows that even for the higher fault rates under a difficult
setting, the system is still able to provide full timing guarantees for a reasonable
percentage of time.

5.3 Probabilistic Deadline-Miss Analyses

When applying software fault-tolerant techniques, one natural assumption is that
the system functions normally most of time. Therefore, it is meaningful to model the
occurrence of different execution of a task by probabilistic bounds on the worst-case
execution time (WCETs) due to potential recovery routines. This allows the system
designer to provide probabilistic arguments, e.g., Deadline-Miss Probability (DMP)
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and Deadline-Miss Rate, as the statistical quantification to evaluate the proposed
analyses scheduling algorithms, etc.

To derive the DMP, statistical approaches, i.e., Probabilistic response time anal-
ysis and Deadline-misses probability analysis, are usually taken into consideration.
The state of the art of the probabilistic response time analysis is based on task-level
convolution-based approaches [34]. Naturally, convolution-based approaches are
computationally expensive to be applied when the number of tasks or jobs is large.
Alternatively, Deadline-Misses probability analysis [3] is proposed, which can
utilize analytical bounds, e.g., Chernoff bounds [3, 9], Hoeffding’s and Bernstein’s
inequalities [34]. Please note that, the deadline-misses probability analysis is not
better than the probabilistic response time analysis in terms of accuracy of the DMP.
However, it is essentially much faster and has a better applicability in practice.

Figure 9 shows the results for randomly generated tasks sets with a normal-mode
utilization 70%, fault rate 0.025, and for all tasks the execution time of abnormal
mode is assumed to be two times of the normal mode. Three approaches based
on the task-level convolution-based approaches [34], i.e., Pruning, Unify, Approx,
result in similar values, roughly one order of magnitude better than Chernoff [3].
Although Bernstein [34] and Hoeffding [34] are orders of magnitude faster than
the other approaches which are compatible with respect to the related run-time, the
error of them is large compared to Chernoff by several orders of magnitude. The
results suggest that, if sufficiently low deadline-miss probability can be guaranteed
from analytical bounds, the task-level convolution-based approach then can be
considered.

DMP and Deadline-Miss Rate are both important performance indicators to
evaluate the extent of requirements compliance for soft real-time systems. However,
the aforementioned probabilistic approaches all focus on finding the probability of
the first deadline miss, and it is assumed that after a deadline miss the system either
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discards the job missing its deadline or reboots itself. Therefore, the probability of
one deadline miss directly relates to the deadline-miss rate since all jobs can be
considered individually. If this assumption do not hold, the additional workload due
to a deadline miss may trigger further deadline misses.

To derive a tight but safe estimation of the deadline-miss rate, an event-
driven simulator [7] with a fault injection module can be used, which can gather
deadline-miss rates empirically. However, the amount of time needed to per-
form the simulations is too large. Instead of simulating the targeted task set, an
analytical approach [7] can leverage on the above probabilistic approaches that
over-approximate the DMP of individual jobs to derive a safe upper bound on the
expected deadline-miss rate.

6 Application-Specific Dependability

In this section, we focus on application-specific aspects on dependability improve-
ment with the help of a case study on the Context Adaptive Variable Length Coding
(CAVLC) used in the H.264 video coding standard [20, 30, 32]. It summarizes how
application-specific knowledge can be leveraged to design a power-efficient fault-
tolerance technique for H.264 CAVLC.

CAVLC is an important part of the coding process and is susceptible to errors
due to its context adaptivity, multiple coding tables, and complex structure. It
transforms an input with a fixed length to flexible-length code consisting of
codeword/codelength tuples. The impact of a single error on the subjective video
quality is illustrated in Fig. 10a, which shows a significant distortion in a video
frame when the header of a macroblock (i.e., a 16 x 16 pixels block) is affected.
Faults during the CAVLC can also propagate to subsequent frames or even lead to
encoder/decoder crashes.

Consequently, it is required to address these problems during the CAVLC
execution. To reduce the overhead compared to generic solutions, application-

Ol | (b)
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Fig. 10 (a) Example of a corrupted frame showing the effects of a single-bit error. (b) Overview
of the contributions for the dependable CAVLC and the corresponding system layers (adapted
from [32])
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specific knowledge is considered. Specifically, Fig. 10b shows an overview of the
dependable CAVLC with contributions on the architecture and algorithm/software
layer, which are based on exploiting the video content properties and performing a
statistical analysis of CAVLC.

Application-Specific Knowledge is considered by (1) an analysis of error
probabilities, (2) distribution of different syntax elements, (3) algorithmic prop-
erties, and (4) specifications defined by the standard. It includes an analysis
of different macroblock categories (homogeneous/textured, fast/slow motion).
The most important observations are that the total non-zero coefficients have a
significant influence on the error probabilities of different syntax elements. They
can be used to detect potential errors at the algorithm level if the macroblock
properties are known.

Selective Data Redundancy: Based on the application-specific knowledge
obtained by the analysis, selected CAVLC data (e.g., quantized coefficients,
coefficient statistics, etc.) can be protected by storing redundant copies and parity
data in unused data structures. This is possible, e.g., for the quantized coefficients
as the quantization often leads to unused (““0”) entries, where redundant data can
be stored in a reflected fashion. Only the low-frequency coefficients are protected
in case the space is insufficient.

Dependable CAVLC Hardware Architecture: The original and redundant
values are loaded by a hardware module, which performs error detection and
error recovery. In case of a mismatch, the parity is calculated and compared to
the stored one, so that the correct entry can be found. A recovery is even possible
if both entries are corrupted by reloading the original block and performing
the quantization step again. Additionally, the coding tables used by CAVLC
for obtaining the codeword and codelength need to be protected. For that,
the individual tables are split into different sub-tables, where the partitioning
decision is based on the distribution of the syntax elements. Sub-tables not
being accessed frequently can then be power-gated for leakage energy savings.
For each sub-table, a block parity-based protection approach is used for error
detection, trading-off the additional memory required and the protection offered.
Furthermore, entries not being accessed due to the algorithm properties and
zero-entries are not stored. Similarly, the data in tables containing mirrored
entries also has to be stored only once, thereby further reducing the memory
requirements and leakage energy.

Run-Time Manager: The dependable CAVLC architecture is controlled by a
run-time manager which activates/deactivates the power-gating of the memory
parts storing the sub-tables, loads the requested data from the tables, and controls
error detection and reloading of data.

Dependable CAVLC Processing Flow: The overall flow starts with a mac-
roblock characterization, which determines the power-gating decision. Then,
highly probable values for the syntax elements are predicted, which are used
later for the algorithm-guided error detection. Afterwards, the header elements
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are loaded by the hardware module performing error detection and error recovery.
Finally, the quantized coefficients are coded by CAVLC for each 4 x 4 block.

This example architecture illustrates how application-specific knowledge can be
leveraged to improve the design decisions for enhancing the dependability of the
system and its power consumption. It achieves significant improvements in terms of
the resulting video quality compared to an unprotected scheme. Moreover, leakage
energy savings of 58% can be achieved by the application-guided fault-tolerance
and table partitioning.

7 Conclusion

Dependability has emerged as an important design constraint in modern com-
puting systems. For a cost-effective implementation, a cross-layer approach is
required, which enables each layer to contribute its advantages for dependability
enhancement. This chapter presented contributions focusing on the architecture,
SW/OS, and application layers. Those include modeling and estimation tech-
niques considering functional correctness and timeliness of applications as well
as approaches for generating dependable software (e.g., by dependability-aware
software transformations or selective instruction redundancy). Additionally, the
run-time system is employed for selecting appropriate dependable application
versions and adapting to different workloads and run-time conditions, enabling a
tradeoff between performance and dependability. It has furthermore been shown
how application-specific characteristics can be used to enhance the dependability of
a system, taking the example of a multimedia application.
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