
Dependability Aspects in Configurable
Embedded Operating Systems

Horst Schirmeier, Christoph Borchert, Martin Hoffmann, Christian Dietrich,
Arthur Martens, Rüdiger Kapitza, Daniel Lohmann, and Olaf Spinczyk

1 Introduction

Future hardware designs for embedded systems will exhibit more parallelism and
energy efficiency at the price of being less reliable, due to shrinking structure
sizes, increased clock frequencies, and lowered operating voltages [9]. In embedded
control systems, the handling of soft errors—e.g., transient bit flips in the memory
hierarchy—is becoming mandatory for all safety integrity level (SIL) 3 or SIL 4
categorized safety functions [30, 35]. Established solutions stem mostly from
the avionics domain and employ extensive hardware redundancy or specifically
hardened hardware components [55]—both of which are too costly to be deployed
in commodity products.

H. Schirmeier (�)
Embedded System Software Group, TU Dortmund, Dortmund, Germany
e-mail: horst.schirmeier@tu-dortmund.de

C. Borchert · O. Spinczyk
Embedded Software Systems Group, Osnabrück University, Osnabrück, Germany
e-mail: christoph.borchert@uos.de; olaf.spinczyk@uos.de

M. Hoffmann
System Software Group, FAU Erlangen, Erlangen, Germany
e-mail: hoffmann@cs.fau.de

C. Dietrich · D. Lohmann
Systems Research and Architecture Group, Leibniz University Hannover, Hannover, Germany
e-mail: dietrich@sra.uni-hannover.de; lohmann@sra.uni-hannover.de

A. Martens · R. Kapitza
Institute of Operating Systems and Computer Networks, TU Braunschweig, Braunschweig,
Germany
e-mail: martens@ibr.cs.tu-bs.de; kapitza@ibr.cs.tu-bs.de

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_4&domain=pdf
mailto:horst.schirmeier@tu-dortmund.de
mailto:christoph.borchert@uos.de
mailto:olaf.spinczyk@uos.de
mailto:hoffmann@cs.fau.de
mailto:dietrich@sra.uni-hannover.de
mailto:lohmann@sra.uni-hannover.de
mailto:martens@ibr.cs.tu-bs.de
mailto:kapitza@ibr.cs.tu-bs.de
https://doi.org/10.1007/978-3-030-52017-5_4

86 H. Schirmeier et al.

Software-based redundancy techniques, especially redundant execution with
majority voting in terms of triple modular redundancy (TMR), are well-established
countermeasures against soft errors on the application level [24]. By combining
them with further techniques—such as arithmetic codes—even the voter as the
single point of failure (SPOF) can be eliminated [53]. However, all these techniques
“work” only under the assumption that the application is running on top of a soft-
error-resilient system-software stack.

In this chapter, we address the problem of software-stack hardening for three dif-
ferent points in the system-software and fault-tolerance technique design space:

• In Sect. 3 we investigate soft-error hardening techniques for a statically con-
figured OS, which implements the automotive OSEK/AUTOSAR real-time
operating system (RTOS) standard [5, 40]. We answer the research question what
the general reliability limits in this scenario are when aiming at reliability as a
first-class design goal. We show that harnessing the static application knowledge
available in an AUTOSAR environment, and protecting the OS kernel with AN-
encoding, yields an extremely reliable software system.

• In Sect. 4 we analyze how programming-language and compiler extensions can
help to modularize fault-tolerance mechanisms. By applying the resulting fault-
tolerance modules to a dynamic commercial off-the-shelf (COTS) embedded
OS, we explore how far reliability can be pushed when a legacy software stack
needs to be maintained. We show that aspect-oriented programming (AOP) is
suitable for encapsulating generic software-implemented hardware fault toler-
ance (SIHFT) mechanisms, and can improve reliability of the targeted software
stack by up to 79%.

• Looking beyond bit flips in the memory hierarchy, in Sect. 5 we investigate
how a system-software stack can survive even more adverse fault models such
as whole-system outages. Using persistent memory (PM) technology for state
conservation, our findings include that software transactional memory (STM)
facilitates maintaining state consistency and allows fast recovery.

These works have been previously published in conference proceedings and
journals [8, 29, 36], and are presented here in a summarized manner. Section 6
concludes the chapter and summarizes the results of the DanceOS project, which
was funded by the German Research Foundation (DFG) over a period of 6 years
as part of the priority program SPP 1500 “Dependable Embedded Systems” [26]
(Fig. 1).

2 Related Work

Dependable Embedded Operating Systems While most work from the dependable-
systems community still assumes the OS itself to be too hard to protect, the topic of
RTOS reliability in case of transient faults has recently gained attention. The C3 µ-
kernel tracks system-state transitions at the inter-process communication (IPC) level

Dependability Aspects in Configurable Embedded Operating Systems 87

app
lic
ati
on

SW
/O
S

arc
hit
ect
ure

cir
cui
t/g
ate

ph
ysi
cs

application

SW/OS

architecture

circuit/gate

physics

Fig. 1 Main abstraction layers of embedded systems and this chapter’s major (green, solid) and
minor (yellow, dashed) cross-layer contributions

to be able to recover system components in case of a fault [50]. Their approach,
however, assumes that faults are detected immediately and never turn into silent
data corruptions (SDCs), and that the recovery functionality itself is part of the
reliable computing base (RCB). L4/Romain [19] employs system-call interception
to provide transparent thread-level TMR—and, hence, error detection,—but still
requires a reliable µ-kernel. The hypervisor approach of Quest-V [34] reduces the
software-part of the RCB even further—at the price of increasing the hardware-part
for the required virtualization support. In the end, however, all these approaches
assume early and reliable detection of faults and their strict containment inside the
RCB, which our three approaches provide.

Software-Based Soft-Error Detection and Correction The concept of AN-encoding
has been known for quite a while and has been taken up in recent years in
compiler- and interpreter-based solutions [45]. Yet, these generic realizations are
not practicable for realizing a RCB—not only due their immense runtime overhead
of a factor of 103 up to 105, but also due to the specific nature of low-level
system software. Thus, following our proven CoRed concept [28], we concentrate
the encoded execution to the minimal necessary points. Besides AN-encoding,
several more generic error detection and recovery mechanisms (EDMs/ERMs)
exist and have been successfully deployed. Shirvani et al. [48] evaluate several
software-implemented error-correcting codes for application in a space satellite to
obviate the use of a low-performance radiation-hardened CPU and memory. Read-
only data segments are periodically scrubbed to correct memory errors, whereas
protected variables must be accessed manually via a special API to perform error
correction. Similarly, Samurai [41] implements a C/C++ dynamic memory allocator
with a dedicated API for access to replicated heap memory. Programmers have
to manually invoke functions to check and update the replicated memory chunks.
The latter approach exposes the heap allocator as single point of failure, which
is not resilient against memory errors. To automate the hardening process, some
works extend compilers for transforming code to add fault tolerance [44]. These

88 H. Schirmeier et al.

approaches are based on duplicating or even triplicating important variables of
single-threaded user-level programs. Our work differs in that we use the general-
purpose AspectC++ compiler that allows us to focus on the implementation of
software-based EDM/ERMs in the OS/application layer, instead of implementing
special-purpose compilers. AOP also allows to separate the “business logic” from
fault-tolerance implementations, which has, e.g., been pioneered by Alexandersson
et al. [2]—however at the cost of 300% runtime overhead.

State Consistency in Non-volatile Memories Maintaining state consistency in per-
sistent memory has been achieved on the level of process-wide persistence [10, 39]
and specialized file systems [13, 20]. Our DNV Memory approach shares the most
similarities with libraries that provide safe access to a persistent heap [6, 12, 54].
Mnemosyne [54] shows the overall steps that are needed to build a persistent heap,
while NV-Heaps [12] focuses mainly on usability aspects. Both libraries rely on
a transactional-memory model that stores logs in persistent memory and executes
expensive flush operations to ensure data consistency in presence of power failures.
In order to improve performance, the memory allocator of Makalu [6] guarantees
the consistency of its own meta data without the need of transactions. However, it
does not extend this ability to the data stored within. Thus, library support, similar
to Mnemosyne [54], is still needed to enforce durability. DNV Memory shares
with these approaches the transactional model and the goal to provide a persistent
heap, but aims at improving performance and lifetime of persistent applications by
reducing the amount of writes to persistent memory. Additionally, DNV Memory
provides transparent dependability guarantees that none of the previous work has
covered.

3 dOSEK: A Dependable RTOS for Automotive Applications

In the following, we present the design and implementation of dOSEK, an
OSEK/AUTOSAR-conforming [5, 40] RTOS that serves as reliable computing base
(RCB) for safety-critical systems. dOSEK has been developed from scratch with
dependability as the first-class design goal based on a two-pillar design approach:
First we aim for strict fault avoidance1 by an in-depth static tailoring of the kernel
towards the concrete application and hardware platform—without restricting the
required RTOS services. Thereby, we constructively minimize the (often redundant)
vulnerable runtime state. The second pillar is to then constructively reintegrate
redundancy in form of dependability measures to eliminate the remaining SDCs in
the essential state. Here, we concentrate—in contrast to others [4, 50]—on reliable
fault detection and fault containment within the kernel execution path (Sect. 3.2) by

1Strictly speaking, we aim to avoid errors resulting from transient hardware faults.

Dependability Aspects in Configurable Embedded Operating Systems 89

employing arithmetic encoding [23] to realize self-contained data and control-flow
error detection across the complete RTOS execution path.

We evaluate our hardened dOSEK against ERIKA [21], an industry-grade open-
source OSEK implementation, which received an official OSEK/VDX certification
(Sect. 3.3). We present the runtime and memory overhead as well as the results of
extensive fault-injection campaigns covering the complete fault space of single-bit
faults in registers and volatile memory. Here, dOSEK shows an improvement of four
orders of magnitude regarding the SDC count, compared to ERIKA.

3.1 Development of a Fault-Avoiding Operating System

Essentially, a transient fault can lead to an error inside the kernel only if it affects
either the kernel’s control or data flow. For this, it has to hit a memory cell or register
that carries currently alive kernel state, such as a global variable (always alive),
a return address on the stack (alive during the execution of a system call), or a
bit in the status register of the CPU (alive only immediately before a conditional
instruction). Intuitively, the more long-living state a kernel maintains, the more
prone it is to transient faults. Thus, our first rule of fault-avoiding OS development
is: ➊ Minimize the time spent in system calls and the amount of volatile state,
especially of global state that is alive across system calls.

However, no kernel can provide useful services without any runtime state. So,
the second point to consider is the containment and, thus, detectability of data and
control-flow errors by local sanity checks. Intuitively, bit flips in pointer variables
have a much higher error range than those used in arithmetic operations; hence, they
are more likely to lead to SDCs. In a nutshell, any kind of indirection at runtime
(through data or function pointers, index registers, return addresses, and so on)
impairs the inherent robustness of the resulting system. Thus, our second rule of
fault-avoiding operating-system development is: ➋ Avoid indirections in the code
and data flow.

In dOSEK, we implement these rules by an extensive static analysis of the
application code followed by a subsequent dependability-oriented “pointer-less”
generation of the RTOS functionality. Our approach follows the OSEK/AUTOSAR
system model of static tailoring [5, 40], which in itself already leads to a significant
reduction of state and SDC vulnerability [27]. We amplify these already good results
by a flow-sensitive analysis of all application–RTOS interactions [17, 18] in order
to perform a partial specialization of system calls: Our system generator specializes
each system call per invocation to embed it into the particular application code. This
facilitates an aggressive folding of parameter values into the code. Therefore, less
state needs to be passed in volatile registers or on the stack (rule ➊). We further
achieve a pointer-less design by allocating all system objects statically as global
data structures, with the help of the generator. In occasions where pointers would be
used to select one object out of multiple possible candidates, an array at a constant
address with small indices is preferred (rule ➋).

90 H. Schirmeier et al.

Fig. 2 Overview of the OS data kept in RAM of an example system composed of three tasks and
two alarms. Each box represents a 32-bit memory location. All kernel data are hardened using an
ANB-Code. The remaining application- and architecture-specific values are safeguarded by dual
modular redundancy (DMR) or parity bits

Figure 2 depicts the resulting state of this analysis by the example of a system
consisting of three tasks and two alarms: The remaining volatile state variables are
subsumed under the blocks Application, Architecture, and Kernel. The architecture-
independent minimalKernel state is condensed to two machine words for the current
task’s priority, its id, and one machine word per task for the task’s dynamic priority
according to the priority ceiling protocol. Depending on the requirements of the
application, the kernel maintains the current state of additional resources: in this
case two alarms (three machine words each) and one counter (one machine word).
The Architecture blocks are related to the dispatching mechanism of the underlying
processor. In case of the IA-32, this is reduced to the administration of one stack
pointer per task.

The most frequently used (but far less visible) pointers are the stack pointer and
the base pointer. Albeit less obvious, they are significant: A corrupted stack pointer
influences all local variables, function arguments, and the return address. Here, we
eliminated the indirection for local variables by storing them as static variables at
fixed, absolute addresses, while keeping isolation in terms of visibility and memory
protection (rule ➋). Furthermore, by aggressively inlining the specialized system
calls into the application code, we reduce the spilling of parameter values and
return addresses onto the vulnerable stack, while keeping the hardware-based spatial
isolation (MPU/MMU-based AUTOSAR memory protection) between applications
and kernel using inline traps [15] (rule ➊).

Dependability Aspects in Configurable Embedded Operating Systems 91

3.2 Implementing a Fault-Detecting Operating System

dOSEK’s fault-detection strategies can be split up into two complementary con-
cepts: First, coarse-grained hardware-based fault-detection mechanisms, mainly
by means of MPU-based memory and privilege isolation. Second, fine-grained
software-based concepts that protect the kernel-internal data/control flows.

Hardware-based isolation by watchdogs and memory protection units (MPUs)
are a widely used and a proven dependability measure. Consequently, dOSEK inte-
grates the underlying architecture’s mechanisms into its system design, leveraging a
coarse-grained fault detection between tasks and the kernel. We furthermore employ
hardware-based isolation to minimize the set of kernel-writable regions during
a system call, which leverages additional error-detection capabilities for faulty
memory writes from the kernel space. With our completely generative approach, all
necessary MPU configurations can be derived already at compile time and placed in
robust read-only memory (ROM).

The execution of the dOSEK kernel itself is hardened with a fine-grained
arithmetic encoding. All kernel data structures are safeguarded using a variant of
an AN-code [23] capable of detecting both data- and control-flow errors. The code
provides a constant common key A, allowing to uncover errors when calculating the
remainder, and a variable-specific, compile-time constant signature Bn detecting the
mix-up of two encoded values as well as the detection of faulty control flows—the
ANB-Code:

nenc = A · n + Bn

A particular feature of arithmetic codes is a set of code-preserving arithmetic
operations, which allow for computation with the encoded values. Hence, a
continuous sphere of redundancy is spanned, as the corresponding operands remain
encoded throughout the entire kernel execution.

In addition to the existing elementary arithmetic operations, dOSEK also requires
an encoded variant of the mandatory OSEK/AUTOSAR fixed-priority scheduling
algorithm [40]: The encoded scheduler is based on a simple prioritized task list.
Each task’s current dynamic priority is stored at a fixed location (see also Fig. 2),
with the lowest possible value, an encoded zero, representing the suspended state.
To determine the highest-priority task, the maximum task priority is searched by
comparing all task priorities sequentially. Thus, the algorithm’s complexity in space
and time is linear to the constant number of tasks. Figure 3 shows the basic concept
for three tasks: The sequence processes a global tuple of ANB-encoded values
storing the current highest-priority task id found so far, and the corresponding
priority (〈idg, priog〉, see Fig. 2). Sequential compare-and-update operations, based
on an encoded greater-equal decision on a tuple of values (ge_tuple), compare

92 H. Schirmeier et al.

Fig. 3 General sequence of the encoded scheduling operation on the example of three tasks
(T1, T2, T3). All operations on signatures B are calculated already at compile time

the tuples’ priority value and update the global values, if necessary. The sequence
consists of five steps, as shown in Fig. 3:

(1) Initialize priog and idg to the first task.
(2–3) For all further tasks, compare the task’s priority to priog: If greater or equal,

update 〈idg, priog〉.
(4) Repeat the last step for the idle task.
(5) Recode the results to their original signatures.

The idle task priority is constantly bound to an encoded zero that is representing a
suspended state. Thus, if all previous tasks are suspended, the last comparison (in
step 4) will choose the idle task halting the system until the next interrupt.

Aside from the actual compare-and-update operation on fully encoded values,
the ge_tuple function additionally integrates control-flow error detection. For each
step, all signatures of the input operands (Bid,s1..s4, Bprio,s1..s4) and the signature of
the operation itself (Bge1..4) are merged into the resulting encoded values of the
global tuple. Each corresponding signature of a step is then applied in the next
operation accordingly. Thus, the dynamic values of the result tuple accumulate the
signatures of all preceding operations. As the combination of these compile-time
constant signatures is known before runtime, interspersed assertions can validate the
correctness of each step. Even after the final signature recode operation (step 5), any
control-flow error is still detectable by the dynamic signature. Thus, the correctness
of the encoded global tuple can be validated at any point in time. In effect, fault
detection is ensured, as all operations are performed on encoded values.

The remaining dynamic state highly depends on the underlying architecture.
Regarding the currently implemented IA-32 variant, we were able to reduce this

Dependability Aspects in Configurable Embedded Operating Systems 93

Fig. 4 Simplified representation of the I4Copter task and resource constellation used as evaluation
scenario

runtime state to an array storing the stack pointers of preempted tasks, and an
corresponding index variable, as shown in Fig. 2. The variables are used within
each interrupt entry as well as during the actual dispatch operation. As they are not
involved in any arithmetic calculations, but only read and written, we can avoid the
overhead of the ANB-encoding in these cases and protect them by DMR or parity
checks, respectively.

3.3 Evaluation

For comparison, we chose ERIKA Enterprise [21], an industry-grade (i.e., formally
certified) open-source implementation of the automotive OSEK standard [40].

The evaluation is based on a realistic system workload scenario considering all
essential RTOS services, resembling a real-world safety-critical embedded system
in terms of a quadrotor helicopter control application (cf. Fig. 4). The scenario
consists of 11 tasks, which are activated either periodically or sporadically by one
of four interrupts. Inter-task synchronization is done with OSEK resources and a
watchdog task, observing the remote control communication. We evaluated several
variants of ERIKA and dOSEK, all running the same task set. As ERIKA does not
provide support for hardware-based memory protection, we also disabled the MPU
in dOSEK:

ERIKA Standard version of ERIKA with enabled sanity checks (SVN r3274).
dOSEK (unprotected) For the dOSEK base version only the indirection avoidance

and the generative approach are used against SDCs.
dOSEK (FT) The safeguarded kernel execution with encoded operations.
dOSEK (FT+ASS) Like FT, but with additional assertions obtained by a flow-

sensitive global control-flow analysis [18].

94 H. Schirmeier et al.

The application flow is augmented with 172 checkpoints. Every RTOS under test
executes the application for three hyper periods, while, at the same time a trace
of visited checkpoints is recorded. It is the mission of the systems under test to
reproduce this sequence, without corrupting the application state. If the sequence
silently diverges in the presence of faults, we record a silent data corruption.2

The application state (task stacks) is checked for integrity at each checkpoint. To
evaluate the fault containment within the kernel execution, we further recorded an
SDC in case of violated integrity. Both SDC detection mechanisms were realized
externally by the FAIL* fault-injection framework [47] without influencing the
runtime behavior of the systems under test. Since FAIL* has the most mature
support for IA-32, we choose this architecture as our evaluation platform. FAIL*
provides elaborate fault-space pruning techniques that allow to cover the entire
space of effective faults, while keeping the total number of experiments manageable.
The evaluated fault space includes all single-bit faults in the main memory, in
the general-purpose registers, the stack pointer, and flags registers, as well as the
instruction pointer.

3.3.1 Fault-Injection Results

All OS variants differ in code size, runtime, and memory consumption—parameters
that directly influence the number of effective injected faults. To directly compare
the robustness independent of any other non-functional properties, we concentrate
on the resulting absolute SDC count, which represents the number of cases in which
the RTOS did not provide the expected behavior. Figure 5 shows, on a logarithmic
scale, the resulting SDC counts.

The results show that, compared to ERIKA, the unprotected dOSEK variant
already faces significantly fewer control-flow and register errors. This is caused by
the means of constructive fault avoidance, particularly the avoidance of indirections
in the generated code. The activation of fault tolerance measures (dOSEK FT)
significantly reduces the number of memory errors, which in total reduces the SDC
count compared to ERIKA by four orders of magnitude. The remaining SDCs can
further be halved by adding static assertions (dOSEK FT+ASS).

3.3.2 Memory- and Runtime Costs

On the downside, aggressive inlining to avoid indirections, but especially the
encoded scheduler and kernel execution path leads to additional runtime and
memory costs, which are summarized in Table 1. Compared again to ERIKA, the
SDC reduction by four orders of magnitude is paid for with a 4× increase in runtime
and a 20× increase in code size. As most of the code bloat is caused by the inlining

2Faults that lead to a hardware trap are not counted as silent, as they are handled by the kernel.

Dependability Aspects in Configurable Embedded Operating Systems 95

103

104

105

106

107

108

109

1010

0
.2
2

0
.0
2

0
.0
4 0
.0
2

1
4
4
.5
2

0
.0
9

0
.0
9

0
.0
5

8
2
4
.9
1

1
3
9
1
.3
9

0
.0
2

0
.0
1

× 106

Fig. 5 SDC distribution for the evaluated variants of the I4Copter scenario (Fig. 4 on a logarithmic
scale; pruned experiments are factored in). The encoded dOSEK system achieves an improvement
in the SDC count by four orders of magnitude compared to ERIKA (base)

Table 1 Memory- and
runtime cost

Code size Runtime
System (bytes) (instructions)

ERIKA 3782 38,912

dOSEK (unprotected) 14,985 29,223

dOSEK FT 53,956 110,524

dOSEK FT+ASS 71,049 121,583

dOSEK FT+ASS+OPT 24,955 90,106

of the encoded scheduler at each call site, we have added a fifth variant (dOSEK
FT+ASS+OPT) that employs further whole-program static optimizations to exclude
unnecessary scheduler invocations (see [17] for further details). This version is still
104× less vulnerable to SDCs, but reduces the runtime overhead to 2.5× and the
code overhead to 8×.

4 Modularizing Software-Based Memory Error Detection
and Correction

The dOSEK approach in the previous section showed the general reliability limits
when designing a static OS from scratch, focusing on reliability as a first-class
design goal. However, a different and quite common use case is that the require-
ments entail using a preexisting COTS embedded OS, which is often dynamic in the
sense that it provides an interface for creating and destroying threads or memory

96 H. Schirmeier et al.

allocations at runtime. To protect this class of system-software stacks against
transient hardware faults—e.g., bit flips—in memory, we propose a software-based
memory-error recovery approach that exploits application knowledge about memory
accesses, which are analyzed at compile time and hardened by compiler-generated
runtime checks.

A central challenge is the placement of these runtime checks in the control
flow of the software, necessitating an analysis that determines which program
instructions access which parts of the memory. In general, this is an undecidable
problem for pointer-based programming languages; however, if we assume an
object-oriented programming model, we can reason that non-public data-structure
members are accessed only within member functions of the same class. Conse-
quently, data structures—or, objects—can be examined for errors by inserting a
runtime check before each member-function call.

In this section, we describe our experiences with devising such an object-level
error recovery in AspectC++ [51]—an AOP extension to C++,—and applying
it to the embedded Configurable operating system (eCos) [37]. Our software-
based approach, called Generic Object Protection (GOP), offers the flexibility to
choose from an extensible toolbox of error-detecting and error-correcting codes, for
example, CRC and Hamming codes.

4.1 Generic Object Protection with AspectC++

Our experience with the embedded operating system eCos shows that OS kernel
data structures are highly susceptible to soft errors in main memory [8]. Several
kernel data structures, such as the process scheduler, persist during the whole OS
uptime, which increases the chance of being hit by a random soft error.

As a countermeasure, OS kernel data structures can contain redundancy, for
example, a separated Hamming code [48]. Before an instance of such a data
structure—an object in object-oriented jargon—is used, the object can be examined
for errors. Then, after object usage, the Hamming code can be updated to reflect
modifications of the object.

Manually implementing such a protection scheme in an object-oriented program-
ming language is a tedious and error-prone task, because every program statement
that operates on such an object needs careful manipulation. Therefore, we propose
to integrate object checking into existing source code by AOP [32]. Over the last 19
years, we have developed the general-purpose AspectC++ programming language
and compiler [51] that extends C++ by AOP features. A result of the SPP-1500’s
DanceOS project is AspectC++ 2.0, which provides new language features that
allow for a completely modular implementation of the sketched object protection
scheme—the GOP. In the following, we describe these programming-language
features taking the example of GOP.

Dependability Aspects in Configurable Embedded Operating Systems 97

Fig. 6 A simplified implementation of the GOP mechanism written in AspectC++

4.1.1 Generic Introductions by Compile-Time Introspection

Figure 6 shows the source code for a highly simplified implementation of the
GOP. The keyword aspect in the first line declares an entity similar to a
C++ class that additionally encompasses pointcut expressions and pieces of
advice. A pointcut expression is a reusable alias for names defined in the
program. For example, the pointcut critical() in line 2 lists two classes,
namely “Cyg_Scheduler” and “Cyg_Thread”, from the eCos kernel. This
pointcut is used by the following line that defines advice that those two classes
get extended by a slice introduction, which inserts an additional member into
these classes. The inserted member “code” is an instance of the template class
HammingCode<typename>, whose template argument is bound to the built-in
type JoinPoint. This type is only available in the body of advice code and offers
an interface to a compile-time introspection API.

AspectC++’s introspection API [7] provides the programmer with information
on the class type that is being extended by the slice introduction. We use this
information within the template class HammingCode to instantiate a generative

98 H. Schirmeier et al.

C++ template metaprogram [14] that compiles to a tailored Hamming code for each
class. In particular, we use the number of existing data members (MEMBERS) prior
to the slice introduction, their types (Member<I>::Type) to obtain the size of
each member, and a typed pointer (Member<I>::pointer(T *obj)) to each
data member to compute the actual Hamming code. Furthermore, for classes with
inheritance relationships, we recursively iterate over all base classes that are exposed
by the introspection API. To simplify the iteration over this API, we implemented a
Join-Point Template Library (JPTL) that offers compile-time iterators for each API
entry.

4.1.2 Advice for Control Flow and Data Access

Once the Hamming code is introduced into the classes, we need to make sure that
the code is checked and updated when such an object is used. At first, the Hamming
code needs to be computed whenever an object of a protected class is instantiated.
The advice for construction in line 7 implements this requirement: after
a constructor execution, the update() function is invoked on the “code” data
member. The built-in pointer tjp->target() yields the particular object being
constructed (tjp is an abbreviation for this join point).

The lines 11–14 define further pointcuts that describe situations where the objects
are used. The pointcut function member(...) translates the existing pointcut
critical() into a set of all data members and member functions belonging
to classes matched by critical(). Thus, call(member(critical()))
describes all procedure calls to member functions of the particular classes. Likewise,
the pointcut function get(...) refers to all program statements that read a
member variable, and the other way around, set(...) matches all events in
the program that write to a particular member variable. The get/set pointcut
functions are new features of the AspectC++ language that notably allow observing
access to data members declared as public.

The advice in line 16 invokes the check() routine on the Hamming-
code sub-object based on the trigger_check() pointcut, that is, whenever a
member function is called, or a member variable is read or written. Similarly, the
advice in line 20 invokes the update() function aftermember-function calls
or writing to a member variable. Both pieces of advice invoke these routines only
if the caller object (tjp->that()) and the callee object (tjp->target())
are not identical. This is an optimization that avoids unnecessary checking when an
already verified object invokes a function on itself.

A call to any function is matched by the wild-card expression in line 25. There-
with, the advice definition in line 26 updates the Hamming codewhenever a function
call leaves a critical object, as specified by within(member(critical())),
and when the caller object is not identical to the callee object. When the function
returns, the Hamming code gets checked by the advice in line 30.

By defining such generic pieces of advice, AspectC++ enables a modular
implementation of the GOP mechanism, completely separated from the remaining

Dependability Aspects in Configurable Embedded Operating Systems 99

source code. More advice definitions exist in the complete GOP implementation,
for instance, covering static data members, non-blocking synchronization, or
virtual-function pointers [8].

4.2 Implementation and Evaluation

In the following, we describe the implementation of five concrete EDMs/ERMs
based on the GOP mechanism. Subsequently, we demonstrate their configurability
on a set of benchmark programs bundled with eCos. We show that the mechanisms
can easily be adapted to protect a specific subset of the eCos-kernel data structures,
e.g., only the most critical ones. After applying a heuristic that benchmark-
specifically chooses this data-structure subset, and protecting the corresponding
classes, we present fault injection (FI) experiment results that compare the five
EDMs/ERMs. Additionally, we measure their static and dynamic overhead, and
draw conclusions on the overall methodology.

4.2.1 EDM/ERM Variants

We implemented the five EDMs and ERMs listed in Table 2 to exemplarily
evaluate the GOP mechanism. For instance, a template metaprogram generates
an optimal Hamming code tailored for each data structure and we applied a bit-
slicing technique [48] to process 32 bits in parallel. Thereby, the Hamming-code
implementation can correct multi-bit errors, in particular, all burst errors up to the
length of a machine word (32 bits in our case). Besides burst errors, the CRC
variants (see Table 2) cover all possible 2-bit and 3-bit errors in objects smaller
than 256 MiB by the CRC-32/4 code [11]. Each EDM/ERM variant is implemented
as a generic module and can be configured to protect any subset of the existing C++
classes of the target system.

In the following subsections, we refer to the acronyms introduced in Table 2, and
term the unprotected version of each benchmark the “Baseline.”

Table 2 EDM/ERM variants, and their effective line counts (determined by cloc)

Variant Description (mechanisms applied on data member granularity) LOC

CRC CRC-32, using SSE 4.2 instructions (EDM) 163

TMR Triple modular redundancy: two copies + majority voting (EDM/ERM) 124

CRC+DMR CRC (EDM) + one copy for error correction (ERM) 210

SUM+DMR 32-Bit two’s complement addition checksum (EDM) + one copy (ERM) 198

Hamming SW-implemented Hamming code (EDM/ERM), processing 32 bits in parallel 355

Framework GOP infrastructure, basis for all concrete EDM/ERM implementations 2371

100 H. Schirmeier et al.

4.2.2 Evaluation Setup

We evaluate the five EDM/ERM variants on eCos 3.0 with a subset of the benchmark
and test programs that are bundled with eCos itself, namely those 19 implemented in
C++ and using threads (omitting CLOCK1 and CLOCKTRUTH due to their extremely
long runtime). More details on the benchmarks can be found in previous work [8].
Because eCos currently does not support x64, all benchmarks are compiled for i386
with the GNU C++ compiler (GCC Debian 4.7.2–5), and eCos is set up with its
default configuration.

Using the FAIL* FI framework [47], we simulate a fault model of uniformly
distributed transient single-bit flips in data memory, i.e., we consider all program
runs in which one bit in the data/BSS segments flips at some point in time. Bochs,
the IA-32 (x86) emulator back end that FAIL* currently provides, is configured to
simulate a modern 2.666GHz x86 CPU. It simulates the CPU on a behavior level
with a simplistic timing model of one instruction per cycle, also lacking a CPU
cache hierarchy. Therefore the results obtained from injecting memory errors in this
simulator are pessimistic, as we expect a contemporary cache hierarchy would mask
some main-memory bit flips.

4.2.3 Optimizing the Generic Object Protection

As described in Sect. 4.1.1, the generic object-protection mechanisms from Table 2
can be configured by specifying the classes to be protected in a pointcut expression.
Either a wild-card expression selects all classes automatically, or the pointcut
expression lists a subset of classes by name. In the following, we explore the trade-
off between the subset of selected classes and the runtime overhead caused by the
EDM/ERMs.

We cannot evaluate all possible configurations, since there are exponentially
many subsets of eCos-kernel classes—the power set. Instead, we compile each
benchmark in all configurations that select only a single eCos-kernel class for
hardening. For these sets that contain exactly one class each, we measure their
simulated runtime, and subsequently order the classes from the least to most runtime
overhead individually for each benchmark. This order allows us to cumulatively
select these classes in the next step: We compile each benchmark again with
increasingly more classes being protected (from one to all classes, ordered by
runtime). Observing the cumulative runtimes of the respective class selections
[8], the benchmarks can be divided into two categories, based on their absolute
runtime:

1. Long runtime (more than ten million cycles): For any subset of selected
classes, the runtime overhead stays negligible. The reason is that the long-
running benchmarks spend a significant amount of time in calculations on the
application level or contain idle phases.

Dependability Aspects in Configurable Embedded Operating Systems 101

2. Short runtime (less than ten million cycles): The EDM/ERM runtime overhead
notably increases with each additional class included in the selections. These
benchmarks mainly execute kernel code.

After conducting extensive FI experiments on each of the cumulatively protected
programs, it turns out that for our set of benchmarks, the following heuristic
yields a good trade-off between runtime and fault tolerance: We only select a
particular class if its protection incurs less than 1 percent runtime overhead. Using
this rule of thumb can massively reduce the efforts spent on choosing a good
configuration, as the runtime overhead is easily measurable without running any
costly FI experiments. However, in 6 of the initial 19 benchmarks, there are no
classes that can be protected with less than 1% overhead. Those programs are most
resilient without GOP (see Sect. 4.3 for further discussion).

4.2.4 Protection Effectiveness and Overhead

Using this optimization heuristic, we evaluate the EDM/ERM mechanisms
described in Table 2. Omitting the aforementioned six benchmarks that our
heuristic deems not protectable, Fig. 7 shows FI results from an FI campaign
entailing 46 million single experiment runs, using the extrapolated absolute failure
count (EAFC) as a comparison metric that is proportional to the unconditional
failure probability [46]. The results indicate that the five EDM/ERMs mechanisms
are similarly effective in reducing the EAFC, and reduce the failure probability
by up to 79% (MBOX1 and THREAD1, protected with CRC) compared to the
baseline. The total number of system failures—compared to the baseline without
GOP—is reduced by 69.14% (CRC error detection), and, for example, by 68.75%
(CRC+DMR error correction). Note that some benchmarks (e.g., EXCEPT1 or
MQUEUE1) show very little improvement; we will discuss this phenomenon in
Sect. 4.3.

Of course, the increase in system resiliency comes at different static and dynamic
costs. With the GOP in place, the static binary sizes (Fig. 8) can grow quite
significantly by on average 57% (CRC) to 120% (TMR) (up to 229% in the case of
TMR and the KILL benchmark)—showing increases in the same order of magnitude
as those observed in the dOSEK evaluation (Sect. 3.3.2). Looking closer, the DATA
sections of all baseline binaries are negligibly tiny (around 450 bytes) and increase
by 5% up to 79%. The BSS sections are significantly larger (in the tens of kilobytes),
and vary more between the different benchmarks. They grow more moderately by
below 1% up to 15%. In contrast, the code size (TEXT) is even larger in the baseline
(23–145 kiB), and the increases vary extremely between the different variants:
While CRC increases the code by an average of 114%, CRC+DMR on average
adds 204%, SUM+DMR 197%, Hamming 200%, and TMR is the most expensive
at an average 241% code-size increase.

But although the static code increase may seem drastic in places, low amounts
of code are actually executed at runtime, as we only protected classes that introduce

102 H. Schirmeier et al.

sync2 thread0 thread1

mbox1 mqueue1 mutex2 release sched1

bin_sem2 bin_sem3 except1 flag1 kill

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

0e+00

1e+11

2e+11

0e+00
1e+05
2e+05
3e+05

0.0e+00
2.5e+11
5.0e+11
7.5e+11

0e+00
1e+06
2e+06
3e+06
4e+06
5e+06

0.0e+00
5.0e+05
1.0e+06
1.5e+06
2.0e+06

0e+00

1e+07

2e+07

3e+07

0.0e+00
5.0e+09
1.0e+10
1.5e+10
2.0e+10

0e+00
1e+11
2e+11
3e+11
4e+11

0e+00
1e+07
2e+07
3e+07
4e+07

0e+00

1e+05

2e+05

0e+00
1e+12
2e+12
3e+12
4e+12

0e+00
1e+11
2e+11
3e+11
4e+11

0e+00
1e+08
2e+08
3e+08
4e+08

Fa
ul

t−
In

je
ct

io
n

R
es

ul
t D

is
tri

bu
tio

n
(E

AF
C

)

Experiment outcome
SDC
Timeout
CPU Exception

Fig. 7 Protection effectiveness for different EDM/ERM variants

sync2 thread0 thread1

mbox1 mqueue1 mutex2 release sched1

bin_sem2 bin_sem3 except1 flag1 kill

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

Ba
se

lin
e

C
R

C
C

R
C

+D
M

R
SU

M
+D

M
R

TM
R

H
am

m
in

g

0
50

100
150

0
10
20
30
40
50

0
50

100
150

0

20

40

60

0
20
40
60

0

20

40

60

0

50

100

150

0

50

100

150

0
20
40
60

0

20

40

0
50

100
150
200

0
50

100
150

0
20
40
60

Bi
na

ry
 s

iz
e

[k
iB

]

Binary
section

TEXT
DATA
BSS

Fig. 8 Static code and data/BSS segment size of the EDM/ERM variants: the code (TEXT)
segment grows due to additional CPU instructions, with CRC (detection only) being the most
lightweight

Dependability Aspects in Configurable Embedded Operating Systems 103

less than 1% runtime overhead (see Sect. 4.2.3). Verifying the runtime on real
hardware (an Intel Core i7-M620 CPU running at 2.66GHz), we confirm that
the real-world runtime overhead totals at only 0.36% for all variants except for
TMR (0.37%). The results indicate that the GOP—when configured appropriately—
involves negligible runtime overhead on real hardware.

4.3 Discussion

As software-implemented error detection and correction always introduces a run-
time overhead, protected variants naturally run longer than their unprotected
counterparts, increasing the chance of being hit by memory bit flips (assuming
them to be uniformly distributed). Consequently, there exists a break-even point
between, metaphorically, quickly crossing the battlefield without protection (and a
high probability that a hit is fatal), and running slower but with heavy armor (and
a good probability to survive a hit). The benchmarks in our initial analysis [8] we
identified to be not effectively protectable with the GOP are on the unfavorable side
of this break-even point: The additional attack surface from the runtime and memory
overhead outweighs the gains from being protected for all configurations. Also,
some benchmarks are just barely profiting from the GOP, such as, e.g., EXCEPT1
or MQUEUE1 (see Fig. 7).

A more detailed analysis of what distinguishes these benchmarks from the others
reveals that they actually represent the pathologic worst case for GOP: Unlike
“normal” applications that spend a significant amount of time in calculations on
the application level, or waiting for input or events from the outside, this subset of
benchmarks only executes eCos system calls. This reduces the time frame between
an update() after the usage of a system object, and the check() at the begin of
the next usage (cf. Sect. 4.1.2), to a few CPU cycles. The fault resilience gains are
minimal, and the increased attack surface all in all increases the fault susceptibility
significantly. Nevertheless, we do not believe the kernel-usage behavior of these
benchmarks is representative for most real-world applications, and do not expect
this issue to invalidate our claim that GOP is a viable solution for error detection
and correction in long-living data structures.

For the remaining benchmarks, the analysis in Sect. 4.2.4 shows that the EDM/
ERMs mainly differ in their static overhead. CRC is clearly the best choice when
detection-only suffices. For error correction, the Hamming code turns out best. The
high redundancy of the DMR variants and TMR are overkill—at least unless much
more adverse fault models are considered.

104 H. Schirmeier et al.

5 Conserving Consistent State in Persistent Memory with
Software Transactional Memory

Recent advances in persistent memory (PM) enable fast, byte-addressable main
memory that maintains its state across power-cycling events. To survive power
outages and prevent inconsistent application state, current approaches introduce
persistent logs and require expensive cache flushes. In fact, these solutions can
cause a performance penalty of up to 10× for write operations on PM. With respect
to wear-out effects, and a significantly lower write performance compared to read
operations, we identify this as a major flaw that impacts performance and lifetime of
PM. Being already persistent, data corruptions in PM cannot be resolved by simply
restarting a system. Without countermeasures this limits the usability of PM and
poses a high risk of a permanently inconsistent system state.

In this section, we present DNV Memory, a library for PM management. For
securing allocated data against power outages, multi-bit faults that bypass hardware
protection and even usage violations,DNVMemory introduces reliable transactions.
Additionally, it reduces writes to PM by offloading logging operations to volatile
memory, while maintaining durability on demand by an early detection of upcoming
power failures. Our evaluation shows a median overhead of 6.5%, which is very low
considering the ability to repair up to 7 random bit-errors per word. With durability
on demand, the performance can be even improved by a factor of up to 3.5 compared
to a state-of-the-art approach that enforces durability on each transaction commit.

5.1 System Model

We assume that hybrid system architectures equipped with both, volatile and
persistent main memory, will become a commodity. This implicates that the
execution state of processes will be composed of volatile and persistent parts.

While Phase Change Memory (PCM) is the most promising PM tech-
nology today, PM modules can also be built using resistive random-access
memory (RRAM), spin-transfer-torque magnetoresistive random-access memory
(STT-MRAM), or even battery-backed DRAM. Thereby, all processes in a system
should be able to access PM directly through load and store operations in order to
achieve optimal performance.

CPU caches can be used to further speed up access to persistent data. However,
in order to survive power failures, cache lines containing data from PM must be
flushed and the data must reach the Durability Domain of the PM module before
the machine shuts down due to a power loss. This requires platform support in form
of an asynchronous DRAM refresh (ADR) [49] or a Flush Hint Address [1]. Under
these premises, we assume that word-level power failure atomicity is reached.

Depending on the used main-memory technology, various effects exist that may
cause transient faults as previously outlined. Additionally, PCM and RRAM have

Dependability Aspects in Configurable Embedded Operating Systems 105

a limited write endurance that lies in the range of 106 up to 1010 operations [31].
Once worn out, the cell’s value can only be read but not modified anymore.

We assume that all static random-access memory (SRAM) cells inside the
CPU are guarded by hardware fault tolerance and are sufficiently reliable to
ensure correct operation. Of course reliable DRAM supporting hardware error
correction code (ECC) exists and PM can be protected by hardware solutions too.
However, the common hardware ECC mechanisms only provide single-bit-error
correction, double-bit-error detection (SECDED) capabilities, which is not always
sufficient [52]. We assume that due to economic reasons not every PM module
will support the highest possible dependability standard, leaving a fraction of errors
undetected. Some PM modules may even lack any hardware protection. This paves
the way for software-based dependability solutions.

5.2 Concepts of DNV Memory

The main goal of our design is to provide the familiarmalloc interface to application
developers for direct access to PM. At the same time, we want data stored in PM to
be robust against power failures, transient faults, and usage errors.

Our core API functions (see Table 3(a) and (b)) resemble the interface of
malloc and free. The only additional requirement for making legacy volatile
structures persistent with DNV Memory is using our API functions and wrapping all
persistent memory accesses in atomic blocks (see Table 3(e)).

These atomic blocks provide ACID3 guarantees for thread safety, and addition-
ally preserve consistency in case of power failures. Furthermore, DNV Memory
combines software transactional memory (STM) with the allocator to manage

Table 3 Overview of the DNV Memory application programming interface (API)

Category Function Description Ref.

Core API
void* dnv_malloc(size_t sz) Allocates persistent memory like

malloc(3)
(a)

void dnv_free(void∗ ptr) Releases persistent memory like
free(3)

(b)

Static
Variables

DNV_POD variable Statically places plain old data in
PM at definition

(c)

DNV_OBJ variable Statically places the object in PM at
definition

(d)

Transactions __transaction_atomic{. . . } Atomic block with ACID guaran-
tees and reliability

(e)

3Atomicity, consistency, isolation, durability.

106 H. Schirmeier et al.

software-based ECC. Every data word that is accessed during a transaction is
validated and can be repaired if necessary.

In order to store entry points to persistent data structures that survive process
restarts, DNV Memory provides the possibility to create static persistent variables
(Table 3(c) and (d)). On top of this core functionality, DNV Memory introduces the
concepts durability on demand and reliable transactions that are explained in the
following.

If a power failure occurs during the update of persistent data structures, the DNV
Memorymight be in an inconsistent state after restart. To prevent this,DNVMemory
follows the best practices from databases and other PM allocators [12, 54] and wraps
operations on PM in atomic blocks. This can be achieved with STM provided by
modern compilers or libraries like TinySTM [22]. The transactions must also be
applied to the allocator itself, as its internal state must be stored in PM as well.

Different to previous works, DNV Memory aims at minimizing write accesses
to PM. We store all transaction logs in volatile memory and utilize a power-failure
detection to enforce durability on demand. When a power outage is imminent, the
operating system copies the write-back logs back to PM in order to prevent state
inconsistency. Therefore, every thread has to register its volatile memory range for
the write-back log at our kernel module, which in turn reserves a PM range for a
potential backup copy. After restart, the write-back logs are restored from PM, and
every unfinished commit is repeated.

Since durability is actually required only in case of a power failure or process
termination, memory fences and cache flushing can be performed on demand. This
preserves persistent data inside the CPU cache and consequently reduces writes
to PM. Additionally, since memory within a CPU is well protected by hardware,
persistent data inside the cache is less susceptible to transient faults and can be
accessed faster.

Enforcing durability on demand requires the ability to detect power failures
in advance. For embedded devices, the power-outage detection is a part of the
brownout detection and state of the art [43]. On servers and personal computers,
power outages can be detected via the PWR_OK signal according to the ATX power
supply unit (PSU) design guide [3]. Although the PWR_OK signal is required to
announce a power outage at least 1ms in advance, much better forecasts can be
achieved in practice. For instance, some Intel machines provide a power-failure
forecast of up to 33ms [39]. An even better power-failure detection can be achieved
by inspecting the input voltage of the PSUwith a simple custom hardware [25]. With
this approach, power failures can be detected more than 70ms in advance, which
leaves more than enough time to enforce durability and prevent further modification
of persistent data.

Crashes that are not caused by power failures can be handled just like power
failures if durability can be secured. For instance, our kernel module is aware of any
process using PM that terminates and enforces durability in that case. Crashes in the
operating-system kernel can be handled either as part of a kernel-panic procedure,
or by utilizing a system like Otherworld [16].

Dependability Aspects in Configurable Embedded Operating Systems 107

W
Original Word

+
0 63

AA BB
E

ECC Word0 63

CC DD
= A B D = CRC32(W)

Fig. 9 DNV Memory ECC

In order to protect persistent data from corruption, DNV Memory reserves
additional memory in each allocation that is meant to store ECC data. Afterwards
fault tolerance is provided through reliable transactions.

As described in the previous section, all accesses to PM should be wrapped by
atomic blocks in order to protect persistent data from power failures. These atomic
blocks simply wrap all read and write operations in TM_LOAD and TM_STORE
functions provided by the STM library, which in consequence control every word
access. In combination with support from the memory allocator, this can be
exploited to provide transparent fault tolerance.

Essentially, any ECC can be used to provide fault tolerance in software. For
instance, we considered the SECDED Hamming code that is common in hardware
protected memory. It protects 64-bit words with additional 8 bits, resulting in a
12.5% memory overhead. However, if implemented in software, the Hamming code
would highly impact the performance of the application. Additionally, as already
mentioned, we do not think that SECDED is enough to protect persistent data.
Consequently, we decided to implement an ECC that provides a high multi-bit
error correction with a memory overhead no more than dual modular redundancy.
In addition, we want a fast error detection in software by exploiting commonly
available hardware support. In general, whenever a data word W is written inside
an atomic block, an ECC word E is created and stored in the additional space that
the allocator has reserved. In theory, any fault-tolerant encoding is possible as long
as error detection can be conducted in a few CPU cycles.

For DNV Memory we combine cyclic redundancy check (CRC) for fast error
detection with an error location hint. Thus, we subdivide E into two halves C and
D as shown in Fig. 9. The error detection half word D is generated with CRC32c
(D = CRC32c(W)). We chose CRC as hardware support is available on many
architectures, including most commodity CPUs. Additionally, with CRC32c—
which is supported by SSE 4.2,—a Hamming distance of 8 is achieved on a word
length of 64 bits [33]. Without further assistance, error correction of up to 3 bits
can be achieved by guessing the error location. However, by augmenting the CRC-
based error detection with an error location hint C, less trials are needed and more
bit-errors can be corrected. Inspired by RAID level 5 [42], we subdivide the data
word W into two halves A and B and compute C according to Eq. (1).

C = A ⊕ B ⊕ D (1)

108 H. Schirmeier et al.

The data validation takes place during a transaction whenever a word W is read for
the first time. At that point, we recompute E′ from W and compare its value with
E. Normal execution can continue if both values match. Otherwise error correction
is initiated.

Since errors can be randomly distributed across W and E, we start the error
correction by narrowing the possible locations of errors. Therefore, we compute the
error vector F via Eq. (2), which indicates the bit position of errors.

F = A ⊕ B ⊕ C ⊕ D (2)

This information is, however, imprecise, as it is unknown whether the corrupted bit
is located in A, B, C, or D. Thus, for f errors detected by F , 4f repair candidates
Ri are possible, and are computed via Eq. (3). The masking vectors Ma , Mb, Mc,
Md are used to partition F between all four half words.

Ri = Wi‖Ei

Wi = A ⊕ (F ∧ Ma)‖B ⊕ (F ∧ Mb)

Ei = C ⊕ (F ∧ Mc)‖D ⊕ (F ∧ Md)

(3)

To find the repair candidate Rs that contains the right solution, each Ri needs to
be validated by recomputing E′

i from Wi and compare it to Ei . In order to repair
all errors, exactly one Rs must be found with matching E′

i and Ei . For instance, if
all errors are located in A, the repair candidate using Ma = F and other masking
vectors set to zero will be the correct result. Additionally, all combinations need to
be considered that have an error at the same bit position in two or all half words, as
these errors extinguish each other in C.

Please note that the set of repair candidates may yield more than one solution
that can be successfully validated if more than three errors are present. To prevent
a false recovery, all repair candidates must be validated for up to n errors. As an
optimization step, we estimate n by counting the population in E ⊕E′ and limit the
result to a maximum of n = 7.

To optimize the performance in a cache-aware way, we store the ECC words
interleaved with the original words W as presented in Fig. 10. However, this
interleaved data layout cannot be accessed correctly outside atomic blocks because
the original layout is always expected here. Unfortunately, omitting atomic blocks
around PM access is a very common mistake. We encountered such usage errors in
every single STAMP benchmark [38], and whenever we ported or wrote persistent
applications ourselves. Since the access to PM outside atomic blocks should be
prevented to keep data consistent during power failures, we introduce the concept
of a transaction staging (TxStaging) section as shown in Fig. 10. All memory that is
allocated by DNV Memory has addresses belonging to the TxStaging section. The
same applies to the location of persistent static variables. The TxStaging section
is only a reserved virtual address space without any access rights. Consequently,
any access to this segment will cause a segmentation fault that is easy to debug.

Dependability Aspects in Configurable Embedded Operating Systems 109

stored data layout

PVA SectionTxStaging unused
N 2NAddr. 3N1.5N

original data layout
W0W0 W1W1 W2W2 W3W3W0 W1 W2 W3 W0W0 W2W2E0E0 W1W1 E1E1 E2E2 W3W3 E3E3W0 W2E0 W1 E1 E2 W3 E3

Fig. 10 DNV Memory persistent data layout and memory sections

However, inside an atomic block every access to the TxStaging section is intercepted
by the STM library and redirected to the persistent virtual address (PVA) section
where the actual persistent data is stored. To simplify the address transformation, the
PVA section should be located at the address of the TxStaging section multiplied by
2. For instance, assuming the TxStaging section begins at address 0x1000 the PVA
section should be placed at 0x2000. In that case a 32-byte object that is located in
the address range from 0x1000 to 0x101f will be transformed into the address
space 0x2000 to 0x203f as shown in Fig. 10.

5.3 Evaluation

We implemented DNV Memory on Linux in the form of a user-space library with a
small companion kernel module and a hardware power-failure detector. Our design
does not require any changes to the operating-system kernel or the machine itself.
All components are pluggable and can be replaced by more extended solutions if
needed. All user-space code is written in C++ and compiled with an unmodified
GCC 5.4.0. A small linker-script extension provides additional sections like the
TxStaging or the PVA section as shown in Fig. 10.

To show the feasibility of durability on demand, we artificially introduced power
failures and measured the time between the detection of a power failure and the
eventual machine shutdown. This period is referred as the shutdown forecast,
and the results of 100 experiments are shown in Fig. 11. Additionally, the time
of critical tasks in the event of a power failure is shown here. As can be seen,
power failures can be detected sufficiently early to conduct all necessary durability
measures. Counterintuitively, an idling CPU has a negative impact on the feasibility
of the approach because the CPU enters the a power-saving mode with reduced
performance. Additionally, less energy is stored within the power supply in the event
of a power failure, thus leading to a quicker shutdown.

The performance impact of durability on demand was evaluated with applications
from the STAMP benchmark suite [38] and the Memcached key-value store that
was retrofitted with transactions. Figure 12 shows for each application the average
relative runtime out of 100 measurements together with the 90% quantile that is

110 H. Schirmeier et al.

Fig. 11 Duration of critical
tasks. A Heavy workload is
achieved through kernel
compilation

Measurement Workload Time in ms
min max

Stop CPU and Heavy 2.3 3.3
Flush Cache Idle 4.4 5.6

Store Heavy 3.8 4.8
Write-Back Log Idle 7.4 8.6

Shutdown Heavy 34.6 39.4
Forecast Idle 25.2 36.8

Fig. 12 Application runtime
under durability on demand
in comparison to durability
on commit (100% baseline)

0

20

40

60

80

100

120

R
un

tim
e

in
 %

indicated by the error bars. As the 100% baseline we used the state of the art,
which enforces durability on each transaction commit. The results highly correlate
with the cache efficiency of the application. For instance, little to no performance
impact was achieved for Bayes, Labyrinth, and Yada, which operate on large work
sets and show large transactions. If the transactions become large, they do not
fit well into the cache and therefore do not benefit from locality, which severely
impacts performance. Enforcing durability in this case has a low impact because the
overhead from memory barriers and cache flushing becomes negligible. The other
benchmarks, however, have moderate to small work sets, therefore a significant
performance increase of up to 3.5× can be observed.

To investigate the error detecting and correcting capabilities ofDNVMemory, we
conducted one billion fault-injection experiments, for one to seven-bit errors each.
Every fault-injection experiment used a random word and bit-error positions that
were randomly distributed over the original data and its corresponding ECC word.
Only in the case of 7-bit errors, a small fraction of 0.000012163% fault injections
produced ambiguous repair solutions that prevented a correction. In all other cases,
including all errors up to 6-bit, a detection and correction was always successful.
As can be seen in Fig. 13 the repair time increases exponentially with the number of
flipped bits. However, even for correcting seven-bit errors, the mean error-repair
time is less than 1.4ms, which is acceptable considering the low probability of
errors. Without any error, the validation only takes 34 ns.

For the performance evaluation of reliable transactions we again used STAMP
benchmark applications [38] and Memcached. The bars depicted in Fig. 14 show

Dependability Aspects in Configurable Embedded Operating Systems 111

Fig. 13 Time to repair bit
errors with reliable
transactions

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

1 2 3 4 5 6 7

sn
ni

e
mitriape

R

Bit errors

Fig. 14 Performance impact
of reliable vs. traditional
transactions (100% baseline)

0
20
40
60
80

100
120
140
160
180
200

%
ni

e
mitnu

R

the mean runtime of each benchmark. All values are relative to plain transactional
execution (the 100% baseline), and the error bars represent the 95% and the 5%
quantile. Over all applications, a median runtime of 106.5% is achieved with reliable
transactions. Applications above this median have a workload that is dominated by
reads or short transactions, hence the overhead of data verification has a higher
impact here. Applications with a balanced or write-driven workload, however, have
a higher runtime impact from transactions in general, thus the overhead that comes
from reliable transactions is less prevalent. In summary, these results indicate a very
acceptable performance impact—especially when considering the error-correcting
capabilities of the approach.

5.4 Discussion

DNV Memory provides system support for dependable PM. Unlike previous
approaches, DNV Memory enforces durability on demand, which in turn
reduces write operations on PM and therefore improves reliability, lifetime, and
performance. For tolerating power failures,DNVMemory uses software transactions
that also include and secure the allocator itself. Our system even goes one step
further and provides fault tolerance via software transactional memory. As our
evaluation showed, DNV Memory protects data at word granularity, with an ECC
word that is capable of detecting and correcting a random distributed seven-bit
error, which is by far more than common hardware protection offered by server-

112 H. Schirmeier et al.

class volatile main memory. We also demonstrated that power failures can be
detected early, allowing to conduct all necessary cleanup operations.

6 Summary

The work presented in this chapter has gained high visibility in the international
research community. It was on the programme of all major conferences in the field
and the authors received a number of best paper, best poster, and best dissertation
awards, culminating in the renowned Carter Award for Christoph Borchert.

A reason for this success might be the focus on design principles and methods
for hardening the operating system—and only the operating system. Most of
previous research did not consider the specific properties of this special execution
environment, such as different kinds of concurrent control flows, or assumed the
reliable availability of underlying system services.

In our work we made a huge effort to design and implement an embedded
operating system from scratch with the goal to explore the limits of software-
implemented hardware fault tolerance in a reliability-oriented static system design.
As a result we were able to reduce the SDC probability by orders of magnitude and
found the remaining spots where software is unable to deal with hardware faults.

For existing embedded operating systems we have developed and evaluated
Generic Object Protection by means of “dependability aspects,” which can harden
operating systems at low cost without having to change the source code, and also
addressed faults that crash the whole system by means of reliable transactions on
persistent memory.

Finally, the authors have developed a fault-injection framework for their evalua-
tion purposes that implements novel methods, which also advanced the state of the
art in this domain.

Acknowledgments This work was supported by the German Research Foundation (DFG) under
priority program SPP-1500 grants no. KA 3171/2-3, LO 1719/1-3, and SP 968/5-3.

References

1. Advanced Configuration and Power Interface Specification (Version 6.1) (2016). http://www.
uefi.org/sites/default/files/resources/ACPI_6_1.pdf

2. Alexandersson, R., Karlsson, J.: Fault injection-based assessment of aspect-oriented imple-
mentation of fault tolerance. In: Proceedings of the 41st IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’11), pp. 303–314. IEEE Press, Piscataway (2011).
https://doi.org/10.1109/DSN.2011.5958244

3. ATX12V Power Supply Design Guide (2005). http://formfactors.org/developer%5Cspecs
%5CATX12V_PSDG_2_2_public_br2.pdf

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://doi.org/10.1109/DSN.2011.5958244
http://formfactors.org/developer%5Cspecs%5CATX12V_PSDG_2_2_public_br2.pdf
http://formfactors.org/developer%5Cspecs%5CATX12V_PSDG_2_2_public_br2.pdf

Dependability Aspects in Configurable Embedded Operating Systems 113

4. Aussagues, C., Chabrol, D., David, V., Roux, D., Willey, N., Tornadre, A., Graniou, M.:
PharOS, a multicore OS ready for safety-related automotive systems: results and future
prospects. In: Proceedings of the 4th International Conference on Embedded Real Time
Software and Systems (ERTS2 ’10) (2010)

5. AUTOSAR: Specification of operating system (version 5.1.0). Tech. rep., Automotive Open
System Architecture GbR (2013)

6. Bhandari, K., Chakrabarti, D.R., Boehm, H.J.: Makalu: fast recoverable allocation of non-
volatile memory. In: Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) (2016)

7. Borchert, C., Spinczyk, O.: Hardening an L4 microkernel against soft errors by aspect-
oriented programming and whole-program analysis. In: Proceedings of the 8th Workshop on
Programming Languages and Operating Systems (PLOS ’15), pp. 1–7. ACM Press, New York
(2015). https://doi.org/10.1145/2818302.2818304

8. Borchert, C., Schirmeier, H., Spinczyk, O.: Generic soft-error detection and correction for
concurrent data structures. IEEE Trans. Dependable Secure Comput. 14(1), 22–36 (2017).
https://doi.org/10.1109/TDSC.2015.2427832

9. Borkar, S.Y.: Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro 25(6), 10–16 (2005). https://doi.org/10.
1109/MM.2005.110

10. Cassens, B., Martens, A., Kapitza, R.: The neverending runtime: using new technologies
for ultra-low power applications with an unlimited runtime. In: International Conference on
Embedded Wireless Systems and Networks, NextMote Workshop (EWSN 2016) (2016)

11. Castagnoli, G., Brauer, S., Herrmann, M.: Optimization of cyclic redundancy-check codes with
24 and 32 parity bits. IEEE Trans. Commun. 41(6), 883–892 (1993). https://doi.org/10.1109/
26.231911

12. Coburn, J., Caulfield, A.M., Akel, A., Grupp, L.M., Gupta, R.K., Jhala, R., Swanson, S.: NV-
Heaps: making persistent objects fast and safe with next-generation, non-volatile memories. In:
SIGARCH Computer Architecture News (2011). https://doi.org/10.1145/1961295.1950380

13. Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Coetzee, D.: Better I/O
through byte-addressable, persistent memory. In: Proceedings of the Symposium on Operating
Systems Principles (2009)

14. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and Applications.
Addison-Wesley, Boston (2000)

15. Danner, D., Müller, R., Schröder-Preikschat, W., Hofer, W., Lohmann, D.: Safer Sloth:
efficient, hardware-tailored memory protection. In: Proceedings of the 20th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS ’14), pp. 37–47. IEEE Press,
Piscataway (2014)

16. Depoutovitch, A., Stumm, M.: “Otherworld” - giving applications a chance to survive OS
kernel crashes. In: Proceedings of the European Conference on Computer Systems (EuroSys)
(2010)

17. Dietrich, C., Hoffmann, M., Lohmann, D.: Cross-kernel control-flow-graph analysis for event-
driven real-time systems. In: Proceedings of the 16th ACM SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES ’15). ACM Press, New
York (2015). https://doi.org/10.1145/2670529.2754963

18. Dietrich, C., Hoffmann, M., Lohmann, D.: Global optimization of fixed-priority real-time
systems by RTOS-aware control-flow analysis. ACM Trans. Embed. Comput. Syst. 16, 35:1–
35:25 (2017). https://doi.org/10.1145/2950053

19. Döbel, B., Härtig, H.: Who watches the watchmen?—protecting operating system reliability
mechanisms. In: International Workshop on Hot Topics in System Dependability (HotDep)
(2012)

20. Dulloor, S.R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R., Jackson, J.:
System software for persistent memory. In: Proceedings of the 9th ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys ’14) (2014)

21. ERIKA Enterprise. https://erika.tuxfamily.org. Accessed 29 Sept 2014

https://doi.org/10.1145/2818302.2818304
https://doi.org/10.1109/TDSC.2015.2427832
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1109/26.231911
https://doi.org/10.1109/26.231911
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/2670529.2754963
https://doi.org/10.1145/2950053
https://erika.tuxfamily.org

114 H. Schirmeier et al.

22. Felber, P., Fetzer, C., Riegel, T., Marlier, P.: Time-based software transactional memory. IEEE
Trans. Parallel Distrib. Syst. 21 (2010). https://doi.org/10.1109/TPDS.2010.49

23. Forin, P.: Vital coded microprocessor principles and application for various transit systems. In:
Proceedings of the IFAC IFIP/IFORS Symposium on Control, Computers, Communications in
Transportation (CCCT ’89), pp. 79–84 (1989)

24. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Software-Implemented Hard-
ware Fault Tolerance. Springer, New York (2006). https://doi.org/10.1007/0-387-32937-4

25. Heiser, G., Le Sueur, E., Danis, A., Budzynowski, A., Salomie, T.l., Alonso, G.: RapiLog:
reducing system complexity through verification. In: Proceedings of the 8th ACM SIGOP-
S/EuroSys European Conference on Computer Systems (EuroSys ’13) (2013). https://doi.org/
10.1145/2465351.2465383

26. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel,
M., Ernst, R., Härtig, H., Hedrich, L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel,
P., Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O., Tahoori, M., Teich, J.,
Wehn, N., Wunderlich, H.J.: Design and architectures for dependable embedded systems. In:
Dick, R.P., Madsen, J. (eds.) Proceedings of the 9th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS ’11), pp. 69–78. ACM
Press (2011). https://doi.org/10.1145/2039370.2039384

27. Hoffmann, M., Borchert, C., Dietrich, C., Schirmeier, H., Kapitza, R., Spinczyk, O., Lohmann,
D.: Effectiveness of fault detection mechanisms in static and dynamic operating system
designs. In: Proceedings of the 17th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’14), pp. 230–237. IEEE Press, Piscataway (2014).
https://doi.org/10.1109/ISORC.2014.26

28. Hoffmann, M., Ulbrich, P., Dietrich, C., Schirmeier, H., Lohmann, D., Schröder-Preikschat,
W.: A practitioner’s guide to software-based soft-error mitigation using AN-codes. In: Pro-
ceedings of the 15th IEEE International Symposium on High Assurance Systems Engineering
(HASE ’14), pp. 33–40. IEEE Press, Miami (2014). https://doi.org/10.1109/HASE.2014.14

29. Hoffmann, M., Lukas, F., Dietrich, C., Lohmann, D.: dOSEK: the design and implementation
of a dependability-oriented static embedded kernel. In: Proceedings of the 21st IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS ’15), pp. 259–270.
IEEE Press, Piscataway (2015). https://doi.org/10.1109/RTAS.2015.7108449

30. IEC: IEC 61508 – functional safety of electrical/electronic/programmable electronic safety-
related systems. International Electrotechnical Commission, Geneva (1998)

31. Kannan, S., Gavrilovska, A., Schwan, K.: pVM: persistent virtual memory for efficient capacity
scaling and object storage. In: Proceedings of the 11th ACM SIGOPS/EuroSys European
Conference on Computer Systems (EuroSys ’16), pp. 13:1–13:16. ACM, New York (2016).
https://doi.org/10.1145/2901318.2901325

32. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) Proceedings of the
11th European Conference on Object-Oriented Programming (ECOOP ’97). Lecture Notes in
Computer Science, vol. 1241, pp. 220–242. Springer, Berlin (1997). https://doi.org/10.1007/
BFb0053381

33. Koopman, P.: 32-Bit cyclic redundancy codes for Internet applications. In: Proceedings of the
32nd IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’02)
(2002). https://doi.org/10.1109/DSN.2002.1028931

34. Li, Y., West, R., Missimer, E.: A virtualized separation kernel for mixed criticality systems. In:
Proceedings of the 10th USENIX International Conference on Virtual Execution Environments
(VEE ’14), pp. 201–212. ACM Press, New York (2014). https://doi.org/10.1145/2576195.
2576206

35. Mariani, R., Fuhrmann, P., Vittorelli, B.: Fault-robust microcontrollers for automotive applica-
tions. In: Proceedings of the 12th International On-Line Testing Symposium (IOLTS ’06), 6
pp. IEEE Press, Piscataway (2006). https://doi.org/10.1109/IOLTS.2006.38

36. Martens, A., Scholz, R., Lindow, P., Lehnfeld, N., Kastner, M.A., Kapitza, R.: Dependable
non-volatile memory. In: Proceedings of the 11th ACM International Systems and Storage

https://doi.org/10.1109/TPDS.2010.49
https://doi.org/10.1007/0-387-32937-4
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2039370.2039384
https://doi.org/10.1109/ISORC.2014.26
https://doi.org/10.1109/HASE.2014.14
https://doi.org/10.1109/RTAS.2015.7108449
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1109/DSN.2002.1028931
https://doi.org/10.1145/2576195.2576206
https://doi.org/10.1145/2576195.2576206
https://doi.org/10.1109/IOLTS.2006.38

Dependability Aspects in Configurable Embedded Operating Systems 115

Conference, SYSTOR ’18, pp. 1–12. ACM Press, New York (2018). https://doi.org/10.1145/
3211890.3211898

37. Massa, A.: Embedded Software Development with eCos. Prentice Hall, Upper Saddle River
(2002)

38. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applications
for multi-processing. In: Proceedings of the International Symposium on Workload Character-
ization (IISWC) (2008)

39. Narayanan, D., Hodson, O.: Whole-System Persistence, pp. 401–410. ACM Press, New York
(2012). https://doi.org/10.1145/2189750.2151018

40. OSEK/VDX Group: Operating system specification 2.2.3. Tech. rep., OSEK/VDX Group
(2005). http://portal.osek-vdx.org/files/pdf/specs/os223.pdf. Accessed 29 Sept 2014

41. Pattabiraman, K., Grover, V., Zorn, B.G.: Samurai: protecting critical data in unsafe languages.
In: Proceedings of the 3rd ACMSIGOPS/EuroSys European Conference on Computer Systems
(EuroSys ’08), pp. 219–232. ACM Press, New York (2008). https://doi.org/10.1145/1352592.
1352616

42. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive disks
(raid). SIGMOD Rec. 17(3), 109–116 (1988). https://doi.org/10.1145/971701.50214

43. Philips Semiconductors: AN468: Protecting Microcontrollers against Power Supply Imperfec-
tions (2001)

44. Rebaudengo, M., Sonza Reorda, M., Violante, M., Torchiano, M.: A source-to-source compiler
for generating dependable software. In: Proceedings of the 1st IEEE International Workshop
on Source Code Analysis and Manipulation, pp. 33–42. IEEE Press (2001). https://doi.org/10.
1109/SCAM.2001.972664

45. Schiffel, U., Schmitt, A., Süßkraut, M., Fetzer, C.: ANB- and ANBDmem-encoding: detecting
hardware errors in software. In: Proceedings of the 29th International Conference on Computer
Safety, Reliability and Security (SAFECOMP ’10), pp. 169–182. Springer, Berlin (2010)

46. Schirmeier, H., Borchert, C., Spinczyk, O.: Avoiding pitfalls in fault-injection based compari-
son of program susceptibility to soft errors. In: Proceedings of the 45th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN ’15), pp. 319–330. IEEE Press,
Piscataway (2015). https://doi.org/10.1109/DSN.2015.44

47. Schirmeier, H., Hoffmann, M., Dietrich, C., Lenz, M., Lohmann, D., Spinczyk, O.: FAIL*:
an open and versatile fault-injection framework for the assessment of software-implemented
hardware fault tolerance. In: Proceedings of the 11th European Dependable Computing
Conference (EDCC ’15), pp. 245–255. IEEE Press, Piscataway (2015). https://doi.org/10.
1109/EDCC.2015.28

48. Shirvani, P.P., Saxena, N.R., McCluskey, E.J.: Software-implemented EDAC protection against
SEUs. IEEE Trans. Reliab. 49(3), 273–284 (2000). https://doi.org/10.1109/24.914544

49. SNIA NVDIMM Messaging and FAQ (2014)
50. Song, J., Wittrock, J., Parmer, G.: Predictable, efficient system-level fault tolerance in C3. In:

Proceedings of the 34th IEEE International Symposium on Real-Time Systems (RTSS ’13),
pp. 21–32. IEEE Press (2013). https://doi.org/10.1109/RTSS.2013.11

51. Spinczyk, O., Lohmann, D.: The design and implementation of AspectC++. Knowl.-Based
Syst. 20(7), 636–651 (2007). Special Issue on Techniques to Produce Intelligent Secure
Software. https://doi.org/10.1016/j.knosys.2007.05.004

52. Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K.B., Stearley, J., Shalf, J., Guru-
murthi, S.: Memory errors in modern systems: the good, the bad, and the ugly. In: Proceedings
of the 20th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15), pp. 297–310. ACM Press, New York (2015). https://
doi.org/10.1145/2694344.2694348

53. Ulbrich, P., Hoffmann, M., Kapitza, R., Lohmann, D., Schröder-Preikschat, W., Schmid, R.:
Eliminating single points of failure in software-based redundancy. In: Proceedings of the 9th
European Dependable Computing Conference (EDCC ’12), pp. 49–60. IEEE Press, Piscataway
(2012). https://doi.org/10.1109/EDCC.2012.21

https://doi.org/10.1145/3211890.3211898
https://doi.org/10.1145/3211890.3211898
https://doi.org/10.1145/2189750.2151018
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1145/971701.50214
https://doi.org/10.1109/SCAM.2001.972664
https://doi.org/10.1109/SCAM.2001.972664
https://doi.org/10.1109/DSN.2015.44
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/24.914544
https://doi.org/10.1109/RTSS.2013.11
https://doi.org/10.1016/j.knosys.2007.05.004
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1145/2694344.2694348
https://doi.org/10.1109/EDCC.2012.21

116 H. Schirmeier et al.

54. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory. In: SIGARCH
Computer Architecture News, vol. 39, pp. 91–104. ACM Press, New York (2011). https://doi.
org/10.1145/1961295.1950379

55. Yeh, Y.C.: Triple-triple redundant 777 primary flight computer. In: Proceedings of the IEEE
Aerospace Applications Conference, vol. 1, pp. 293–307 (1996). https://doi.org/10.1109/
AERO.1996.495891

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1109/AERO.1996.495891
http://creativecommons.org/licenses/by/4.0/

	Dependability Aspects in Configurable Embedded OperatingSystems
	1 Introduction
	2 Related Work
	3 dOSEK: A Dependable RTOS for Automotive Applications
	3.1 Development of a Fault-Avoiding Operating System
	3.2 Implementing a Fault-Detecting Operating System
	3.3 Evaluation
	3.3.1 Fault-Injection Results
	3.3.2 Memory- and Runtime Costs

	4 Modularizing Software-Based Memory Error Detection and Correction
	4.1 Generic Object Protection with AspectC++
	4.1.1 Generic Introductions by Compile-Time Introspection
	4.1.2 Advice for Control Flow and Data Access

	4.2 Implementation and Evaluation
	4.2.1 EDM/ERM Variants
	4.2.2 Evaluation Setup
	4.2.3 Optimizing the Generic Object Protection
	4.2.4 Protection Effectiveness and Overhead

	4.3 Discussion

	5 Conserving Consistent State in Persistent Memory with Software Transactional Memory
	5.1 System Model
	5.2 Concepts of DNV Memory
	5.3 Evaluation
	5.4 Discussion

	6 Summary
	References

