
Robust Computing for Machine
Learning-Based Systems

Muhammad Abdullah Hanif, Faiq Khalid, Rachmad Vidya Wicaksana Putra,
Mohammad Taghi Teimoori, Florian Kriebel, Jeff (Jun) Zhang, Kang Liu,
Semeen Rehman, Theocharis Theocharides, Alessandro Artusi,
Siddharth Garg, and Muhammad Shafique

1 Introduction

Machine learning (ML) has emerged as the principal tool for performing complex
tasks which are impractical (if not impossible) to code by humans. ML techniques
provide machines the capability to learn from experience and thereby learn to
perform complex tasks without much (if any) human intervention. Over the past
decades, many ML algorithms have been proposed. However, Deep Learning (DL),
using Deep Neural Networks (DNNs), has shown state-of-the-art accuracy, even
surpassing human-level accuracy in some cases, for many applications [31]. These
applications include, but are not limited to, object detection and localization, speech
recognition, language translation, and video processing [31].

The state-of-the-art performance of the DL-based methods has also led to the
use of DNNs in complex safety-critical applications, for example, autonomous
driving [11] and smart healthcare [10]. DNNs are intrinsically computationally

M. A. Hanif (�) · F. Khalid · R. V. W. Putra · M. T. Teimoori · F. Kriebel · S. Rehman
M. Shafique
Technische Universität Wien (TU Wien), Vienna, Austria
e-mail: muhammad.hanif@tuwien.ac.at; faiq.khalid@tuwien.ac.at; rachmad.putra@tuwien.ac.at;
florian.kriebel@tuwien.ac.at; semeen.rehman@tuwien.ac.at; muhammad.shafique@tuwien.ac.at

J. Zhang · K. Liu · S. Garg
New York University, New York, NY, USA
e-mail: jeffjunzhang@nyu.edu; kang.liu@nyu.edu; sg175@nyu.edu

T. Theocharides
University of Cyprus, Nicosia, Cyprus
e-mail: ttheocharides@ucy.ac.cy

A. Artusi
University of Cyprus, Nicosia, Cyprus

MRG DeepCamera RISE, Nicosia, Cyprus

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_20

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_20&domain=pdf
mailto:muhammad.hanif@tuwien.ac.at
mailto:faiq.khalid@tuwien.ac.at
mailto:rachmad.putra@tuwien.ac.at
mailto:florian.kriebel@tuwien.ac.at
mailto:semeen.rehman@tuwien.ac.at
mailto:muhammad.shafique@tuwien.ac.at
mailto:jeffjunzhang@nyu.edu
mailto:kang.liu@nyu.edu
mailto:sg175@nyu.edu
mailto:ttheocharides@ucy.ac.cy
https://doi.org/10.1007/978-3-030-52017-5_20

480 M. A. Hanif et al.

DrainSource

p+ p+

n – substrate

Gate
Oxide Layer

Vg= – Vdd

Si HTR
AP

OH+

NBTI

Aging

HCID

Process Variations Soft Errors

n+ n+

P-Well

P-Substrate

Isolation
Gate

+-
+-

+-
+- +-

+- +- +-

+-

+- Depletion
Region

High-Energy Particle
(Neutron or Proton)

Side Channel Attacks

1 0 1 1 0

Processing
Computations

M
em

oryPower Supply

Machine Learning-based SystemHardware Trojans

Structural Attacks Training/Inference Attacks

+ �� ��

Inference

era
wtfo

S
-

leveL
seit iliba renlu

V
era

wdra
H

-
seitil ibarenlu

VleveL

Input Adversarial
Noise

Detected
Class

Input Deterministic
Noise

Projected
to Class

Training

Trigger
Neuron

Trigger
Neuron

Fig. 1 Overview of different reliability and security vulnerabilities to machine learning-based
systems. (Picture sources: [47, 49])

Fig. 2 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) contributions app

lic
ati
on

SW
/O
S

arc
hit
ect
ure

cir
cui
t/g
ate

ph
ysi
cs

application

SW/OS

architecture

circuit/gate

physics

intensive and also require high memory resources [53]. Current research mainly
focuses on the development of less computationally intensive and resource-efficient
DNNs that can offer high accuracy, and energy and performance efficient DNN
accelerators for ML-based applications [1, 18, 23, 29, 34, 36, 37, 44, 53]. However,
when considered for safety-critical applications, the robustness of these DNN-based
systems to different reliability and security vulnerabilities also becomes one of
the foremost objectives. An overview of different types of vulnerabilities in ML-
based systems is shown in Fig. 1, which are discussed from the architectural- and
application-layer perspective in this chapter. Figure 2 shows the abstraction layers
in the context of the SPP 1500 covered in this chapter.

Robust Computing for Machine Learning-Based Systems 481

Reliability Threats: In hardware design, reliability is the ability of the hardware to
perform as intended for a specified duration, i.e., the lifetime of the hardware. There
are a number of hardware related vulnerabilities that can disrupt the functionality of
a digital system in its lifetime.

1. Soft Errors are transient faults caused by high energy particle strikes. These
faults surface at hardware-layer as bit-flips and can propagate to the application
layer resulting in incorrect output.

2. Aging is the gradual degradation of the hardware due to different physical phe-
nomena like Hot carrier Injection (HCI), Negative-Bias Temperature Instability
(NBTI), and Electromigration (EM). It leads to timing errors and eventually can
also lead to permanent faults [56].

3. Process variations are the imperfections caused by the variations in the fabrica-
tion process of the chips. This can lead to variations in the timing and leakage
power characteristics within a chip as well as across different chips [45].

Apart from the above-listed vulnerabilities, environmental conditions can also
affect the reliability of a system. Such factors include temperature, altitude, high
electric fields, etc.

A number of techniques have been proposed for improving the resilience of the
systems against the reliability threats. However, most of these mitigation techniques
are based on redundancy, for example, DMR: dual modular redundancy [58] and
TMR: triple modular redundancy [35]. The redundancy based approaches, although
considered to be very effective for other application domains [19], are highly
inefficient for DNN-based systems because of the compute intensive nature of
the DNNs [48], and may incur significant area, power/energy, and performance
overheads. Hence, a completely new set of resource-efficient reliability mechanisms
is required for robust machine learning systems. A list of techniques proposed for
improving the reliability of DNN-based systems, which are later discussed in the
following sections of the chapter, are mentioned in Fig. 3.

Security Threats: In system design, security is defined as the property of a system
to ensure the confidentiality, integrity, and availability of the hardware and the data
while performing the assigned tasks. There are several security vulnerabilities that
can be exploited to perform security attacks.

1. Data Manipulation: The input data or data during inter-/intra-module commu-
nication in a system can be manipulated to perform several security attacks. For
example, in DNNs, the training dataset and the inference data can be manipulated
to perform misclassification or confidence reduction attacks [17, 24, 26, 27, 43,
51].

2. Denial-of-Service: A tiny piece of code/hardware or flooding the communi-
cation channels can be used to trigger the malfunctioning or failure of the
system. For example, in DNNs, adding an extra neuron/set of neurons [17] or
introducing the kill switch in DNN-based hardware can lead to system failure or
malfunctioning, i.e., misclassification.

482 M. A. Hanif et al.

Robust Deep
Learning

Reliability Security
• Gradient Sign-based Adversarial A�acks [28,25,43]
• Op�miza�on-based Adversarial a�acks [6,54]
• Backdooring A�acks [15]

• Pruning-based Defenses [15]
• Preprocessing-based Defenses [26,27,3,55]
• GAN-based Defenses [52,9,63,67]

• Methodology for Building Resilient Hardware [18]
• Error-Resilience Analysis [18,17]
• Fault-Aware Pruning (FAP) [66]
• Fault-Aware Pruning + Training (FAP+T) [66]
• Timing Error-Drop (TE-Drop) [64]
• Sta�c Voltage Underscaling (ThVolt-Sta�c) [64]
• Per-layer Voltage Underscaling (ThVolt-Dynamic) [64]

Fig. 3 Overview of the works discussed in this chapter for addressing reliability and security
vulnerabilities of deep learning-based systems

3. Data/IP Stealing: The side-channel information (in hardware, power, timing,
and loopholes or behavior leaking properties of the algorithms) can be exploited
to steal the confidential information. For example, in DNNs, the gradient
information can be used to steal trained model [50, 57, 60].

Several countermeasures have been developed to address these threats, but most of
these defenses are either based on obfuscation or run-time monitoring [3, 22]. These
techniques are very effective for traditional systems, however, DNN-based systems
require different approaches because of their unique security vulnerabilities, i.e.,
training/inference data manipulation. Some of the techniques proposed for address-
ing the security of DNN-based systems are listed in Fig. 3 and are later discussed in
the chapter.

In the following sections, we discuss:

1. A brief overview of DNNs and the hardware accelerators used for efficiently
processing these networks.

2. In Sect. 3, we present our methodology for building reliable systems and discuss
techniques for mitigating permanent and timing errors.

3. The security vulnerabilities in different types of DNNs are discussed in Sect. 4.
4. Open challenges and further research opportunities for building robust systems

for ML-based safety-critical applications

2 Preliminaries

2.1 Deep Neural Networks

A neural network can be described as a network of interconnected neurons. Neurons
are the fundamental computational units in a neural network where each neuron
performs a weighted sum of inputs (dot-product operation), using the inputs and
the weights associated with each input connection of the neuron. Each output
is then (optionally) passed through an activation function which introduces non-
linearity and thereby allows the network to learn complex classification boundaries.

Robust Computing for Machine Learning-Based Systems 483

wij

Input layer

Hidden layer H1

Hidden layer H2

Output layer

i

j

k

l

wjk

wkl

= ()

=

= ()

=

H1

= ()

=

H2

(a) (b)

…

Input feature maps
Output feature maps

Filters

Fig. 4 Illustration of (a) a multi-layer perceptron and (b) a convolutional layer

In neural networks, neurons are arranged in the form of layers. There are several
types of NNs, for instance, Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Multi-Layer Perceptrons (MLPs) [31]. Although the
techniques discussed in the following sections are not limited to a specific type
of NNs, in this chapter, we mainly focus on feed-forward neural networks (i.e.,
CNNs and MLPs) because of their widespread use in many artificial intelligence
applications.

An MLP is a type of NN that is composed of multiple fully-connected layers. In a
fully-connected layer, each neuron is connected to all the neurons in the neighboring
layers. An example illustration of a three layer MLP is shown in Fig. 4a.

A CNN is a type of NN that is composed of several convolutional layers and the
fully-connected layers. An example illustration of a convolutional layer is shown
in Fig. 4b. The layer is composed of multiple filters which are convolved with the
input feature maps to generate the output feature maps. The depth of the filters and
the input feature maps is the same. Each filter results in one output feature map
and, therefore, the number of output feature maps is equal to the number of filters
in a convolutional layer. These input and output feature maps are also referred to as
activation maps. A detailed description of CNNs can be found in [53].

2.2 Hardware Accelerators for Deep Neural Networks

To enable the use of DNNs in energy-/power-constraint scenarios as well as in
high performance applications, several different hardware architectures for DNN
acceleration have been proposed. While all the accelerators provide some unique

484 M. A. Hanif et al.

features and support some specific dataflows in a more efficient manner, systolic
array-based designs are considered among the promising ones [18, 23, 37, 61].

A systolic array is a homogeneous network of processing elements (PEs),
which are tightly coupled together. Each PE in the network receives data from its
nearest neighbors, performs some function, and passes on the result and data to
the neighboring PE/s. The systolic array-based architectures alleviate the memory
bottleneck issue by locally reusing the data, without the need of expensive memory
read and write operations. Moreover, the systolic arrays are intrinsically efficient at
performing matrix multiplications, which is the core operation of neural networks.
Therefore, many accelerators use these arrays at their core for accelerating the neural
networks [18, 23, 37, 61]. The Tensor Processing Unit (TPU), a DNN accelerator
that is currently in use in the datacenters of Google, is a systolic array-based
architecture that uses an array of 256 × 256 multiply-and-accumulate (MAC) units.
The TPU provides 15 × −30× faster execution, and 30 × −80× more efficient
(in terms of performance/Watt) performance than the K80 GPU and the Haswell
CPU [23].

Figure 5 illustrates a design overview of an exemplar DNN accelerator which is
based on the TPU architecture. The design is used as the basic architecture in the
following section. The architecture is composed of a systolic array of MAC units,
similar to that in the TPU. Prior to the computations, the weights are pre-loaded
in the PEs from the weight memory in a manner that the weights from the same
filter/neuron are loaded in the same column of the array. During processing, the

a11a12…

a21

…

…

…

… … …

PE PE PE

PE PE PE

PE PE PE

…

× +

a
8

w
8

PE

24

24

Ac
cu

m
ul

at
or

s

16

…

psum

a

psum

+

…

+

…

+

…

Systolic Array

LEGEND:

PE : Processing Element
a : Ac�va�on
w : Weight
psum : Par�al sum

psum psum

yr o
me

M noi tavitcA

Weight Memory

Par�al
sums

Ac�va�ons
a22

a13a14

a23

Clock
cycles

a24

Fig. 5 A systolic array-based DNN accelerator architecture (adapted from [65])

Robust Computing for Machine Learning-Based Systems 485

weights are held stationary inside the PEs and the activations are streamed in from
the activation memory. At each clock cycle, the activations are passed-on from left
to right while the partial sums are moved downstream. The activations across rows
are aligned such that the activations corresponding to a particular output reaches a
particular PE at the same instance when its partial sum reaches that PE. In case, the
size of a filter/neuron is larger than the number of rows in the array, each output
computation related to the filter/neuron is divided into multiple portions and the
accumulators at the bottom are used for temporarily holding the partial sums while
rest of the corresponding partial sums are computed by the array. A more detailed
explanation of the architecture can be found in [65].

3 Reliable Deep Learning

In this section, we present our methodology for building reliable hardware for DNN-
based applications. We also highlight a few case studies, targeting different types
of reliability threats, for building reliable yet efficient hardware for DNN-based
applications.

3.1 Our Methodology for Designing Reliable DNN Systems

Figure 6 presents our design flow for developing reliable hardware for DNN-based
applications [17]. The methodology is composed of two parts: (1) Design-time
steps; and (2) Run-time steps.

The design-time steps focus on proposing a hardware architecture which is
capable of mitigating different types of reliability faults that arise due to process
variations and aging, as well as aggressive voltage scaling (i.e., permanent faults

Deep Neural Networks (DNNs)

DNN 1 DNN n...

Resilience Evaluation
of Parts of the DNNs
as well as the Whole

Resilience- and Fault-
Aware DNN Mapping

DNN Accelerator
Adaptive Voltage

and Frequency
Control

Online Error
Monitoring

Post-fabrication
Testing for Identifying

Faults

Design Constraints (Area, Energy, Power,

Latency, Throughput, Accuracy, etc.)

Error Resilient
Accelerator

Design

Permanent Fault
Mitigation Circuitry

Timing Error
Detection and

Mitigation Circuitry

Reliability-
Aware Synthesis

InputsRun-time stepsDesign-time steps

Fig. 6 Our methodology for designing reliable hardware for DNN-based applications (adapted
from [17])

486 M. A. Hanif et al.

and timing errors). Provided a set of design constraints, representative DNN
models, and resilience of the DNNs to different types of reliability threats and
errors, a baseline hardware architecture is designed. We then reinforce it with
different architectural enhancements for mitigating permanent faults (see Sect. 3.3)
and handling timing errors (see Sect. 3.4). The architectural enhancements are
performed in a manner that they do not significantly affect the resource efficiency
of the baseline architecture. Once the architecture is finalized, the hardware is
synthesized using reliability-aware synthesis techniques, for example, by using
standard cells to selectively harden vulnerable nodes in the hardware [33], to harden
the more vulnerable parts of the hardware design.

The run-time steps focus on proposing mapping policies for mapping DNN
computations to the synthesized hardware. The mapping policies are decided
based on the fault maps generated using post-fabrication and testing, and the
error resilience of the DNNs. Techniques like error injection can be used for
the resilience analysis [16, 46]. Fault-aware training of DNNs can also be used
for designing/modifying network architecture/parameters (see Sect. 3.3). Moreover,
adaptive voltage scaling can be employed for trading off reliability with energy
efficiency based on the error resilience of the DNNs. If required, software-level
redundancy can also be employed to further improve the reliability by performing
the computations related to critical neurons/filters multiple times.

3.2 Resilience of DNNs to Reliability Threats

Neural Networks are assumed to be inherently error resilient [12]. However,
different types of errors can have different impact on the output of a DNN. This
section presents the accuracy analysis of DNNs in the presence of different types of
reliability faults.

3.2.1 Resilience of DNNs to Permanent Faults

This section highlights the resilience of DNNs to permanent faults by empirically
analyzing the effects of stuck-at permanent faults in the TPU-based accelerator
(presented in Fig. 5) on the classification accuracy of different DNNs. The datasets
(i.e., MNIST and TIMIT) and the corresponding network architectures used for this
analysis are listed in Table 1. To study the resilience, the TPU with a systolic array of
256×256 MAC units is synthesized using 45 nm OSU PDK to generate a gate-level
netlist and then stuck-at faults are inserted at internal nodes in the netlist. For this
analysis, faults only in the data-path were considered as the faults in the memory
components can be mitigated using Error Correction Codes (ECC) and faults in
control-path can lead to undesirable results.

Figure 7a shows the impact of using a faulty TPU for two different classification
tasks, i.e., image classification using the MNIST dataset and speech recognition

Robust Computing for Machine Learning-Based Systems 487

Table 1 Datasets and the corresponding 8-bit DNNs used for evaluation (adapted from [65])

Dataset Network architecture Accuracy(%)

MNIST [30] Fully-connected (L1–L4): 784×256×256×256×10 98.15

TIMIT [4] Fully-connected (L1–L4):
1845×2000×2000×2000×183

73.91

ImageNet [7] Convolutional (L1–L2): (224, 224, 3)×(27, 27,
64)×(13, 13, 192)

76.33 (Top-5)

Convolutional (L3–L5): (13, 13, 384)×(13, 13,
256)×(6, 6, 256)

Fully-connected (L6–L8): 4096×4096×1000

Fig. 7 Impact of stuck-at-faults in the baseline TPU-based architecture on DNN applications.
(a) Classification accuracy drop due to stuck-at-fault MACs. (b) Impact of TPU stuck-at-faults
on DNN applications (adapted from [66])

using the TIMIT dataset. It can be seen in the figure that the classification accuracy
of both the tasks decreases significantly with the increase in the number of faulty
PEs in the hardware. For example, the classification accuracy for the TIMIT dataset
drops from 74.13 to 39.69% when only four (out of 256×256) MAC units are faulty
and is almost 0% when the number of faulty MACs increases to 16 or more.

The reason for the significant drop in accuracy can be understood by comparing
the golden (fault-free) output of the neurons of a particular layer with the outputs
computed by the faulty TPU. Figure 7b shows that the computed output of the final
layer of the network used for the TIMIT dataset in most of the cases has higher
activation value as compared to the expected. This is mainly because of the fact
that stuck-at faults, in some of the cases, affect the higher order bits of the MACs
output. This highlights the need for permanent fault mitigation in the hardware to
increase the yield as hardware with permanent faults cannot be used for ML-based
applications, specifically for the safety-critical applications.

488 M. A. Hanif et al.

3.2.2 Resilience of DNNs to Timing Faults

Timing failures in high performance nanometer technology-based digital circuits
are a major reliability concern and are caused by various mechanisms, e.g., power
supply disturbance, crosstalk, process variations, as well as aging. Moreover, the
operating conditions, which play a vital role in defining the performance and
energy efficiency of the hardware, also have a significant impact on the frequency
of the timing errors. Although it is assumed that the critical paths, which are
more vulnerable to timing errors, are rarely exercised, the timing errors can
significantly affect the functionality of an application. Here, we highlight this
for DNN-based applications by analyzing the energy-quality trade-off achieved
using voltage underscaling. We show the analysis for two widely accepted types
of timing error mitigation techniques: (1) timing error detection and recovery
(TED) [9]; and (2) timing error propagation (TEP) [41, 62]. The TED makes use of
additional components (e.g., using Razor flip-flops [9]) for detecting timing errors,
and recovers by reliably re-executing the function in case of errors. On the other
hand, TEP allows errors to propagate through to the application layer in the hope
that the application is error resilient.

For this analysis, the TPU-based hardware architecture discussed in Sect. 2.2 is
considered. The architecture is assumed to be composed of a 256×256 MAC array.
The terms Local Timing Error and Global Timing Error are used to characterize
the resilience. The local timing error is used to denote the error in a single MAC
unit. The global timing error defines the error in the complete systolic array. Figure
8b shows the impact on the classification accuracy for the MNIST dataset with
voltage underscaling when the timing errors are allowed to propagate through to
the application layer. It can be seen from the figure that as soon as the timing errors
start occurring, i.e., below the voltage underscaling ratio of r = 0.9 (as shown in
Fig. 8b), the classification accuracy of the DNN for TEP drops sharply.

As mentioned above, the TED-based approaches work on the principle of error
detection and recovery. The recovery phase in TED defines its limitation for huge
systolic array-based systems as, for synchronization of the data flow, the complete
systolic array has to be stalled to recover the error in a single PE. This limitation of
the TED-based approach can be highlighted using Fig. 8a which shows the impact of
voltage underscaling on the overall energy consumption of the TPU-based hardware
architecture for generating accurate outputs. It can be noted from the figure that
the overall energy consumption for a recovery based technique starts increasing as
soon as errors start appearing, which is the case for even the most naive type of
error recovery mechanism, i.e., single cycle recovery.

3.2.3 Resilience of DNNs to Memory Faults

To illustrate the importance of memory faults, we presented an analysis in [17]
where we injected random faults at bit-level in the weight memory (i.e., the memory
storing the network parameters) and studied the impact of those faults on the

Robust Computing for Machine Learning-Based Systems 489

Fig. 8 (a) Timing error probabilities versus voltage underscaling ratio, and the corresponding
energy cost for global TED. (b) DNN accuracy on the MNIST versus voltage underscaling for
TEP. (Adapted from [65])

accuracy of a DNN. The analysis concluded that, for the higher significance bits
of the weights, the accuracy of the DNNs drop sharply with the increase in error
rate. We also studied the impact of different types of bit-flips, i.e., from 0 to 1 bit-
flips and from 1 to 0 bit-flips, and found that the 0 to 1 bit-flips result in erroneous
output while the 1 to 0 bit-flips do not impact the accuracy much. This is inline
with the concept of dropout [20] and dropconnect [59] in the sense that in case of
1 to 0 bit-flips the erroneous output is leaned towards 0 value, whereas in case of 0
to 1 bit-flips the error can increase significantly if the bit-flip occurs in any of the
higher significance bits. This analysis was performed on the AlexNet network using
the ImageNet dataset. Similar, fault injection methods, e.g., [16] and [46], can also
be used for analyzing the resilience of DNNs, as a whole as well as of individual
layers/neurons of the networks.

3.3 Permanent Fault Mitigation

To mitigate permanent faults in the computing units of the hardware, two different
methods have been proposed: (1) Fault-Aware Pruning (FAP); and (2) Fault-Aware
Pruning + Training (FAP+T).

The Fault-Aware Pruning (FAP) works on the principle of pruning the weights
(i.e., setting them to zero) that have to be mapped on faulty MAC units. The
principle is inline with the concepts of dropout [20] and dropconnect [59] which
are commonly used for regularization and avoiding over-fitting. For this work, the
TPU architecture shown in Fig. 5 with static mapping policy is assumed. The static
mapping policy means that each weight is mapped to a specific PE while multiple
weights can be mapped to the same PE at different time instances. Moreover, it is
also assumed that post-fabrication tests are performed on each TPU chip to extract
the fault map which indicates the faulty PEs.

490 M. A. Hanif et al.

Fig. 9 Systolic array-based
architecture for permanent
fault mitigation (adapted from
[66])

PE PE PE

… …

PE PE PE

…

PE PE PE

snoitavitcA

…

…

…Systolic
Array

…

PE

psum
110

PE

…

PE

PE

psum psum psumpsum

PE

PE

PE

PE

psum
010

psum

Par�al Sum (psum)

PE PE PE…PE PE

Faulty PE

Figure 9 shows an implementation that can be used to realize the concept where
a bypass path is provided for each MAC unit [66]. The bypass path enables to skip
the contribution of a specific partial sum in case the specific PE is faulty, which is
equivalent to setting the weight to zero. The area overhead of the modified design is
only around 9% [66].

The Fault-Aware Pruning + Training (FAP+T) technique starts with the FAP
approach, however, it additionally retrains the unpruned weights while forcing the
pruned weights to zero to optimize the network parameters. One drawback of this
approach is that the fault map of each chip can be different which means that a
network has to be retained for each chip based on its own fault map.

Figure 10 shows the impact on the classification accuracy versus the percentage
of faulty MAC units for three different classification problems mentioned in
Table 1. The results show that both the techniques show significant resilience to the
permanent faults. Moreover, the FAP+T technique outperforms FAP because of the
involved optimization of the network parameters and allows the DNN-based system
to run with negligible accuracy loss even when 50% of its MAC units are faulty.
However, in cases where FAP+T is impractical FAP can also provide reasonable
accuracy, specifically in cases where the number of faulty units is less.

3.4 Timing Fault Mitigation

As mentioned in Sect. 3.2.2, the conventional TED approaches have significant
overheads when used for DNN accelerators. Here, we discuss the new architectural
innovations proposed in Thundervolt [65] for mitigating timing errors in DNN
accelerators in a performance efficient manner.

Robust Computing for Machine Learning-Based Systems 491

Fig. 10 Classification accuracy versus percentage of faulty MACs using FAP and FAP+T for the
networks used corresponding to (a) MNIST and TIMIT; and (b) ImageNet datasets (adapted from
[66])

Fig. 11 A block-level
diagram illustrating the
architectural modifications
for TE-Drop and the impact
of timing errors on the
computation of a neuron
(adapted from [65])

PE

PE

CLK
D D’

CLK CLK+Δ

CLK+Δ

Q1

Q2

Error

CLK+Δ

CLK

Q1

D

D’

Error

Q2

3’h000 3’hFFF

3’h000

3’hFFF

3’hFFF

Timing Diagram

3.4.1 TE-Drop

Thundervolt [65] proposed a novel technique to deal with timing errors in a systolic
array-based DNN accelerator, i.e., TE-Drop. TE-Drop utilizes the Razor flip-flops to
detect timing errors, however, it does not re-execute erroneous MAC operations.
Similar to the FAP techniques, TE-Drop also works on the principle that the
contribution of each individual MAC output to the output of a neuron in DNNs is
small. Hence, a few MAC operations can be ignored without significantly affecting
the overall accuracy of the network. In case of a timing error, TE-Drop allows the
MAC unit to sample the correctly computed output to an alternate register operating
on a delayed clock. The succeeding PE is then bypassed and the correctly computed
output is provided instead. The architectural modifications required to realize the
concept are shown in Fig. 11.

Figure 11 illustrates the functionality of the TE-Drop with the help of a timing
diagram. Here, it is assumed that the shadow clock is delayed by 50% of the clock

492 M. A. Hanif et al.

Fig. 12 Timing error probabilities for each layer of the networks used corresponding to
(a) MNIST. (b) TIMIT, and (c) ImageNet datasets (adapted from [65])

period. It is assumed that the clock frequency is defined such that the error signal
and correct partial sum from the erroneous MAC become available after this much
duration. Note that the error signal is obtained by OR-ing the bitwise XOR of all the
individual Razor flip-flop at the output of the MAC unit.

3.4.2 Per-Layer Voltage Underscaling

In most of the accelerators, it is assumed that the layers of a DNN are executed in
a serial fashion (i.e., one after the other), where processing of each layer can take
thousands of clock cycles, depending on the size of the layer. Figure 12 shows the
timing error rate versus voltage underscaling ratio plots for each individual layer of
three DNN architectures mentioned in Table 1. It can be seen from the figures that
the error rate varies significantly across layers. Based on this observation, a per-layer
voltage underscaling scheme was proposed in Thundervolt [65] that distributes the
total timing error budget equally among the layers of a network to ensure that the
more sensitive layers should not consume a significant part of the budget and limits
the achievable efficiency gains.

Figure 13 compares two versions of Thundervolt:

1. ThVolt-Static where each voltage underscaling ratio is kept the same throughout
a DNN execution.

2. ThVolt-Dynamic that utilizes per-layer voltage underscaling based on the
sensitivity of each layer.

For the baseline, the results of the TEP scheme are also shown. The plot for
ThVolt-Static is obtained by sweeping voltage underscaling ratios, and that of
ThVolt-Dynamic is obtained by sweeping the total timing error budget. The figures
show that for each case Thundervolt outperforms TEP scheme, and for complex
tasks (e.g., image classification on the ImageNet dataset) the ThVolt-Dynamic
outperforms the ThVolt-Static approach.

Robust Computing for Machine Learning-Based Systems 493

Fig. 13 Accuracy versus energy trade-off using Thundervolt [65] on validation data. (a) MNIST.
(b) TIMIT (c) ImageNet (adapted from [65])

4 Secure Deep Learning

In this section, we present different security attacks on DNNs and potential
countermeasures.

4.1 Security Attacks on DNNs

Several security attacks have been proposed by exploiting the security vulnerabil-
ities, especially data dependency and unpredicted behavior of intermediate layers
of DNN-algorithms during training as well as inference. However, adversarial and
backdooring attacks are some of the most effective and popular attacks for DNNs.
Therefore, in the following subsections, we analyze the state-of-the-art adversarial
attacks and proposed backdoor attacks.

4.1.1 Adversarial Perturbation Attacks

It can be defined as the crafted imperceptible noise to perform targeted or untargeted
misclassification in a DNN-based system. In these attacks, an attacker’s objective
can be summarized as follows: given an image x with a classification label y =
classifier(x), where classifier is the function of the neural network. The attacker aims
to find an image x′ whose classification label is y′, such that y′ = classifier(x′) �= y,
and ‖x′ − x‖ ≤ δ, where δ is an upper bound of the distortion from x to x′. For
example, some input adversarial attacks are shown in Fig. 14.

Several attacks have proposed to exploit the adversarial vulnerabilities in DNN-
based systems. However, based on the attack methodology, these attacks can broadly
be categorized into Gradient Sign Methods and Optimization-based approaches.

1. Gradient Sign Methods: These attacks exploit the derivatives and backpropa-
gation algorithm to generate the attack images with imperceptible crafted noise.
The main goal of these attacks is to minimize the prediction probability of the
true label so as to mislead the network to output a different label (can be targeted
or untargeted) other than the ground truth. Some of the most commonly proposed

494 M. A. Hanif et al.

Fig. 14 Clean and adversarial images with different prediction labels, where the clean image of
a horse and its adversarial images remain extremely similar, however, their prediction labels are
quite distinct and each targets a totally different class

attacks are Fast Gradient Sign (FGS), Iterative Fast Gradient Sign (IFGS), and
Jacobian-based saliency map attack (JSMA) methods [42]. Based on the similar
principle, there are following attacks which do not require training data and also
have less convergence time (in terms of queries):

• TrISec: This attack exploits the backpropagation algorithm to identify the
small change (attack noise) in input pixels with respect to misclassification
at the output, while ensuring the imperceptibility [25].

• RED-Attack: Most of the state-of-the-art attacks require a large number of
queries to generate an imperceptible attack. However, in resource-constraint
scenarios, these attacks may fail, therefore, we proposed a methodology that
generates an attack image with imperceptible noise while requiring a very less
number of queries [26].

2. Optimization-based Approaches: Unlike the gradient-based approaches, these
attacks redefine the loss function (i.e., the cost function used for optimization) by
adding extra constraints with respect to targeted or untargeted misclassification,
and then propose different optimization algorithms to generate adversarial
images. For example, Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
[54] and Carlini and Wagner (CW) [5] attacks use the box-constrained L-BFGS
algorithm with single and multi-objective optimization, respectively.

Other types of neural networks, i.e., Capsule Networks and Spiking Neural Net-
works, are emerging as an alternative because of their robustness to affine transfor-
mations and potential for offering higher energy efficiency, respectively. However,
recent works showed that these networks are also vulnerable to adversarial attacks
[38, 39].

Robust Computing for Machine Learning-Based Systems 495

4.1.2 Backdoor Attacks

Due to expensive and computationally intensive training, the training (or fine-
tuning) of DNNs is usually outsourced which opens the new frontiers of security
threats, e.g., backdoored neural networks (BadNets [14]). These threats arise
due to the involvement of untrusted third party service providers that can insert
backdoors by training the ML models on compromised training data, or by altering
the DNN structure. The untrusted third party also ensures the required accuracy
of the backdoored model on most validation and testing inputs, but cause targeted
misclassification or confidence reduction based on backdoor trigger. For example,
in case of autonomous driving use case, an attacker can introduce the backdoor
in a street sign detector while ensuring the required accuracy for classifying street
signs in most of the cases, however, it can perform either targeted or untargeted
misclassification, i.e., classifies stop signs with a particular sticker as speed limit
signs or any other sign different from stop sign. This kind of misclassification
can lead to catastrophic effects, e.g., in case of misclassification of a stop sign,
autonomous vehicle does not stop at the intersection which can result in an accident.

4.2 Defences Against Security Attacks on DNNs

Several countermeasures have been proposed to defend against the adversarial
attacks, i.e., DNN masking, gradient masking, training for known adversarial
attacks, and pre-processing of the CNN inputs [6]. For examples, Fig. 15 shows

L-BFGS FGSM BIM

99.47%Classify as Stop Sign

with Confidence
99.47% 99.47%

85.68%Classify as Speed limit

60km/h with Confidence
75.68% 89.68%

72.74%Classify as Stop Sign

with Confidence
78.45% 70.39%

78.64%Classify as Speed limit

60km/h with Confidence
68.45% 85.64%

Classification of the Original
samples

Classification the perturbed
samples

Classification of the perturbed
samples after filtering

Classification of the perturbed
samples with filtering effects

Input Label = Stop

Output Label =

Speed Limit
(60km/h)

Buffer
Preprocessing

Noise filters

(a) Attack Model I: An attacker can directly perturb the

pre-processed data and does not have input of the pre-

processing noise filter.

DNN

Integrated IP

Input Label = Stop

Output Label =

Speed Limit
(60km/h)

Buffer

Preprocessing

Noise filters

(b) Attack Model II: An attacker have access to the input of

the pre-processing noise filter.

DNN

Integrated IP

Fig. 15 Impact of the pre-processing filtering on the state-of-the-art adversarial attacks with
different attack models with and without the access of filters. (a) Attack model I: an attacker can
directly perturb the pre-processed data and does not have input of the pre-processing noise filter.
(b) Attack model II: an attacker have access to the input of the pre-processing noise filter (adapted
from [24, 27])

496 M. A. Hanif et al.

that low-pass pre-processing filters that can nullify the adversarial attacks if they
are not known to the attacker [24, 27]. Therefore, based on this analysis, we have
proposed to utilize the pre-processing quantization to improve the perceptibility of
the attack noise [2]. Similarly, Sobel-filers can also be used to decrease the attack
strength [55].

However, these defences are not applicable to backdoor-based attacks because
the backdoor attacks intrude the networks and are activated through a specific
trigger. Therefore, to address these attacks, we propose to use pruning as a natural
defense because it eliminates the neurons that are dormant on clean inputs, conse-
quently disabling backdoor behavior [14]. Although these defenses are effective,
most of them provide defense against known adversarial and backdoor attacks.
Therefore, one of the most important problems in designing secure machine learning
systems is the ability to define threats, and model them sufficiently so that any
learning system can be trained to be able to identify such threats.

4.2.1 Generative Adversarial Networks

To address the above-mentioned challenge, Generative Adversarial Networks
(GANs) have emerged as one of the prime solutions because of their ability to
generate the model by learning to mimic actual models [13]. In particular, GANs
is a framework to estimate generative models where simultaneously two models
are trained, generator (G) and discriminator (D) (see Fig. 16). This is achieved
through an adversarial process where the two models are competing with each other
for achieving two opposite goals. Simply speaking, D is trying to distinguish real
images from fake images and G is trying to create images as close as possible to
real images so as D will not be able to distinguish them, as illustrated in Fig. 16.
When dealing with inference scenarios, the challenge is to provide a training set
which includes attack-generated data patterns labeled of course correctly as attacks.
For example, an autonomous system may rely on visual information to orient and
steer itself or to undertake significant decisions. However, white or patterned noise
can be maliciously inserted into a camera feed that may fool the system, and thus
results in potentially catastrophic scenarios. The problem with modeling these types
of attacks is that the attack models are hard to mathematically formulate, and thus

G D cost

∇
1

σ =1 log + log 1 − ′

−∇
1

σ =1 log 1 − ′ ∇
1

σ =1 log

Fig. 16 GANs framework: an illustration of how G and D are trained, adapted from [21]

Robust Computing for Machine Learning-Based Systems 497

hard, if not impossible, to replicate and therefore, train the system to recognize them
as attacks. Hence, GANs provide us with this capability, as we can utilize the G

model to generate-and-evaluate threat models and train the D model to differentiate
between what we consider an attack or not. However, GAN-based threat comes
with the following challenges [21, 40]:

1. Collapsing: In this case G produces only a single sample or set of similar
samples, regardless the type of input given to it.

2. Convergence: Since G and D models are competing towards achieving two
opposite goals, this may make the model parameters to oscillate, destabilizing
the training process.

3. Gradient Vanish: If one of the two models becomes more powerful than the
other, the learning signal is becoming useless, making the system incapable to
learn.

4. Over-Fitting: This is typically due to the unbalance optimization of G and the
D models, e.g., if too much time is spent on minimizing G, then D will most
likely collapse to a few states.

5. Sensitive: It is characterized by being highly sensitive to the selection of the
hyperparameters, i.e., learning rate, momentum, etc.; making the training process
much more tedious.

4.2.2 Case Study: Noisy Visual Data, and How GANs Can be Used to
Remove Noise and Provide Robustness

To illustrate how a GAN-based framework can be used to define threats and
subsequently to provide robustness in a DNN-based system, we use computer vision
as an example because security threats in computer vision applications may arise
from either physical attacks, cyber attacks or a combination of both. We use the
hazing in images to model such threats. To remove this threat, we use the GANs
because of their capability in preserving fine details in images and producing results
that look perceptually convincing [28]. The goal is to translate the input image with
haze, into a haze-free output image. In this case, the noise distribution z is the noisy
image, and it is given as input to the GANs, i.e., haze input image. Afterwards, a
new sample image F is generated by G. D will receive as input the generated image
F and the ground truth haze-free image, to be trained to distinguish between real
and artificially generated images (see Fig. 17).

This approach has recently been used for haze removal [8, 52, 63]. These methods
mainly differ from each other, based on the utilized deep learning structure for G

and D, i.e., using three types of G to solve the optimization of the haze removal
problem [63], using the concept of cycle GAN introduced in [67]. Also they may
differ for the type of loss function used for the training process, where the overall
objective functions is constrained to preserve certain features or priors. However,
they provide a solution that, in most of the cases, is capable to improve the quality
performances of the state-of-the-art haze removal methods for single image, so as
making this quite a promising area.

498 M. A. Hanif et al.

Generator (G) Discriminator (D)

GAN ModelFine Tuning

Clear Image

F

Hazy Image (z)

GAN Clear Image

Fig. 17 Example of GANs used for removing haze noise from a single image. The haze image is
input to G that generate an output image F and D receives as input both the generated image F

and the free-haze image. Input images taken from [32]

5 Open Research Challenges

Machine learning has paved its way to a majority of the fields that involve data
processing. However, regardless of all the work which has been carried out in
interpreting the neural networks and making the ML-based systems reliable, there
are still quite some challenges which are to be addressed before ML algorithms
(specifically, DNNs) can be widely accepted for complex safety-critical applica-
tions. Following is a list of a few of the main challenges in this direction.

• Error-Resilience Evaluation Frameworks: One approach towards this for
timing error estimation is proposed in [64]. However, more sophisticated frame-
works are required to study the impact of multiple types of reliability threats and
their interdependence in a time efficient manner.

• Methodologies for Designing Robust and Resource-Efficient DNNs: Retrain-
ing a DNN in the presence of hardware-induced faults [15] can improve their
resilience. However, there is a need to investigate the types of DNN architectures
which are inherently resilient to most (if not all) of the reliability threats.
Furthermore, there is a need to investigate frameworks to develop robust ML
systems by synergistically investigating reliability and security vulnerabilities.

• Reliable and Resource-Efficient Hardware Architectures: With all the secu-
rity and reliability challenges highlighted in the chapter, there is a dire need to
re-think the way current DNN hardware is designed, such that the vulnerabilities
that cannot be addressed at the software-level have to be addressed through a
robust DNN hardware.

• Interpretability of Deep Neural Networks: Developing interpretable DNNs
is a challenge, however, it has to be addressed in order to better understand
the functionality of the DNNs. This will help us in improving the learning
capabilities of the DNNs, as well as in uncovering their true vulnerabilities and
thereby will help is developing more efficient and robust network architectures.

• Practicality of the Attacks: With the ongoing pace of the research in ML, new
methods and types of network architectures are surfacing, e.g., CapsuleNets.

Robust Computing for Machine Learning-Based Systems 499

Also, the focus of the community is shifting more towards semi-/un-supervised
learning methods as they overcome the need for large labeled datasets. Therefore,
there is a dire need to align the focus with the current trends in the ML
community. Also, the attacks should be designed considering the constraints of
the real systems, i.e., without making unrealistic assumptions about the number
of queries and the energy/power resources available to generate an attack. An
early work in this direction by our group can be found at [26].

Acknowledgments This work was supported in parts by the German Research Foundation
(DFG) as part of the priority program “Dependable Embedded Systems” (SPP 1500—
spp1500.itec.kit.edu) and in parts by the National Science Foundation under Grant 1801495.

References

1. Ahmad, H., Tanvir, M., Abdullah, M., Javed, M.U., Hafiz, R., Shafique, M.: Systimator: a
design space exploration methodology for systolic array based CNNs acceleration on the
FPGA-based edge nodes (2018). arXiv:1901.04986

2. Ali, H., Tariq, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: QuSecNets:
quantization-based defense mechanism for securing deep neural network against adversarial
attacks (2018). arXiv:1811.01437

3. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:
circumventing defenses to adversarial examples (2018). arXiv:1802.00420

4. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information
Processing Systems, vol. 27, pp. 2654–2662. Curran Associates, New York (2014). http://
papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks (2016).
arXiv:1608.04644

6. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: Adversarial
attacks and defences: a survey (2018). arXiv:1810.00069

7. Deng, J., Dong, W., Socher, R., Li, L.: ImageNet: a large-scale hierarchical image database.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

8. Engin, D., Genç, A., Ekenel, H.K.: Cycle-Dehaze: enhanced cycleGAN for single image
dehazing. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2018, Salt Lake City, June 18–22, 2018, pp. 825–833 (2018). https://doi.org/
10.1109/CVPRW.2018.00127. http://openaccess.thecvf.com/content_cvpr_2018_workshops/
w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html

9. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro 24(6), 10–20
(2004)

10. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nat. Med. 25(1),
24 (2019)

11. Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep learning-based multi-scale multi-object
detection and classification for autonomous driving. In: Fahrerassistenzsysteme 2018, pp. 233–
242. Springer, Berlin (2019)

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPRW.2018.00127
https://doi.org/10.1109/CVPRW.2018.00127
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Engin_Cycle-Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html

500 M. A. Hanif et al.

12. Gebregiorgis, A., Kiamehr, S., Tahoori, M.B.: Error propagation aware timing relaxation for
approximate near threshold computing. In: Proceedings of the 54th Annual Design Automation
Conference 2017, p. 77. ACM, New York (2017)

13. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, NIPS’14, pp. 2672–2680. MIT
Press, Cambridge (2014). http://dl.acm.org/citation.cfm?id=2969033.2969125

14. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning
model supply chain (2017). arXiv:1708.06733

15. Hacene, G.B., Leduc-Primeau, F., Soussia, A.B., Gripon, V., Gagnon, F.: Training modern
deep neural networks for memory-fault robustness. In: 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–5. IEEE, Piscataway (2019)

16. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: 2018 Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 913–916. IEEE, Piscataway (2018)

17. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 257–260. IEEE,
Piscataway (2018)

18. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: MPNA: a
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks (2018). arXiv:1810.12910

19. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: lessons learnt and future trends. In: Proceedings of
the 50th Annual Design Automation Conference, p. 99. ACM, New York (2013)

20. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580

21. Hui, J.: Gan why it is so hard to train generative adversarial networks! Elsevier, Amster-
dam (2018). https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-
advisory-networks-819a86b3750b

22. Jia, J., Gong, N.Z.: Attriguard: a practical defense against attribute inference attacks via
adversarial machine learning. In: 27th {USENIX} Security Symposium ({USENIX} Security
18), pp. 513–529 (2018)

23. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12. IEEE, Piscataway (2017)

24. Khalid, F., Hanif, M.A., Rehman, S., Qadir, J., Shafique, M.: Fademl: understanding the impact
of pre-processing noise filtering on adversarial machine learning (2018). arXiv:1811.01444

25. Khalid, F., Hanif, M.A., Rehman, S., Shafique, M.: ISA4ML: training data-unaware imper-
ceptible security attacks on machine learning modules of autonomous vehicles (2018).
arXiv:1811.01031

26. Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: Red-attack: resource
efficient decision based attack for machine learning (2019). arXiv:1901.10258

27. Khalid, F., Hanif, M.A., Rehman, S., Qadir, J., Shafique, M.: FAdeML: understanding
the impact of pre-processing noise filtering on adversarial machine learning. In: Design,
Automation and Test in Europe. IEEE, Piscataway (2019)

28. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion
deblurring using conditional adversarial networks. In: Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

29. Kwon, H., Samajdar, A., Krishna, T.: MAERI: enabling flexible dataflow mapping over
DNN accelerators via reconfigurable interconnects. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 461–475. ACM, New York (2018)

http://dl.acm.org/citation.cfm?id=2969033.2969125
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

Robust Computing for Machine Learning-Based Systems 501

30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
32. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image

dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2019)
33. Limbrick, D.B., Mahatme, N.N., Robinson, W.H., Bhuva, B.L.: Reliability-aware synthesis

of combinational logic with minimal performance penalty. IEEE Trans. Nuclear Sci. 60(4),
2776–2781 (2013)

34. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: FlexFlow: a flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 553–564. IEEE, Piscataway (2017)

35. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Development 6(2), 200–209 (1962)

36. Marchisio, A., Shafique, M.: Capstore: energy-efficient design and management of the on-chip
memory for CapsuleNet inference accelerators (2019). arXiv:1902.01151

37. Marchisio, A., Hanif, M.A., Shafique, M.: CapsAcc: an efficient hardware accelerator for
CapsuleNets with data reuse (2018). arXiv:1811.08932

38. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Capsattacks:
robust and imperceptible adversarial attacks on capsule networks (2019). arXiv:1901.09878

39. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: SNN
under attack: are spiking deep belief networks vulnerable to adversarial examples? (2019).
arXiv:1902.01147

40. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In:
Proceedings of the International Conference on Learning Representations (ICLR’17) (2017)

41. Nakhaee, F., Kamal, M., Afzali-Kusha, A., Pedram, M., Fakhraie, S.M. Dorosti, H.: Lifetime
improvement by exploiting aggressive voltage scaling during runtime of error-resilient appli-
cations. Integr. VLSI J. 61, 29–38 (2018)

42. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 372–387. IEEE, Piscataway (2016)

43. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-
box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 506–519. ACM, New York (2017)

44. Putra, R.V.W., Hanif, M.A., Shafique, M.: ROMANet: fine-grained reuse-driven data organi-
zation and off-chip memory access management for deep neural network accelerators (2019).
arXiv:1902.10222

45. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: 2013 Design, Automation
and Test in Europe Conference and Exhibition (DATE), pp. 39–44. IEEE, Piscataway (2013)

46. Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D.,
Wei, G.Y.: Ares: a framework for quantifying the resilience of deep neural networks. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, Piscataway
(2018)

47. Rehman, S., Shafique, M., Henkel, J.: Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer, Berlin (2016)

48. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitigation for deep
neural network accelerators. In: International Conference on Computer Safety, Reliability, and
Security, pp. 205–219. Springer, Berlin (2018)

49. Shafique, M., Garg, S., Henkel, J., Marculescu, D.: The EDA challenges in the dark silicon era:
temperature, reliability, and variability perspectives. In: Proceedings of the 51st Annual Design
Automation Conference, pp. 1–6. ACM, New York (2014)

50. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against
machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18.
IEEE, Piscataway (2017)

https://doi.org/10.1109/5.726791

502 M. A. Hanif et al.

51. Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning
{FAIL}? Generalized transferability for evasion and poisoning attacks. In: 27th {USENIX}
Security Symposium ({USENIX} Security’18), pp. 1299–1316 (2018)

52. Swami, K., Das, S.K.: Candy: conditional adversarial networks based fully end-to-end system
for single image haze removal (2018). https://arxiv.org/abs/1801.02892v2

53. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a
tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

54. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks (2013). arXiv:1312.6199

55. Tariq, H., Ali, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: SSCNets: a
selective sobel convolution-based technique to enhance the robustness of deep neural networks
against security attacks (2018). arXiv:1811.01443

56. Tiwari, A., Torrellas, J.: Facelift: hiding and slowing down aging in multicores. In: Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, pp. 129–140.
IEEE Computer Society, Washington (2008)

57. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction APIs. In: 25th {USENIX} Security Symposium ({USENIX} Security’16), pp.
601–618 (2016)

58. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 27–32. European Design and Automation Association, Leuven (2010)

59. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using
dropconnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)

60. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP), pp. 36–52. IEEE, Piscataway (2018)

61. Wei, X., Yu, C.H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang, Y., Cong, J.: Automated
systolic array architecture synthesis for high throughput CNN inference on FPGAs. In:
Proceedings of the 54th Annual Design Automation Conference 2017, p. 29. ACM, New York
(2017)

62. Whatmough, P.N., Das, S., Bull, D.M., Darwazeh, I.: Circuit-level timing error tolerance for
low-power DSP filters and transforms. IEEE Trans. Very Large Scale Integration Syst. 21(6),
989–999 (2013)

63. Yang, X., Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentangle-
ment and adversarial training. In: Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI) (2018)

64. Zhang, J.J., Garg, S.: Fate: fast and accurate timing error prediction framework for low power
DNN accelerator design. In: Proceedings of the International Conference on Computer-Aided
Design, p. 24. ACM, New York (2018)

65. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: ThUnderVolt: enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep neural network accelerators
(2018). arXiv:1802.03806

66. Zhang, J.J., Gu, T., Basu, K., Garg, S.: Analyzing and mitigating the impact of permanent faults
on a systolic array based neural network accelerator. In: 2018 IEEE 36th VLSI Test Symposium
(VTS), pp. 1–6. IEEE, Piscataway (2018)

67. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244

https://arxiv.org/abs/1801.02892v2
https://doi.org/10.1109/ICCV.2017.244

Robust Computing for Machine Learning-Based Systems 503

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Robust Computing for Machine Learning-Based Systems
	1 Introduction
	2 Preliminaries
	2.1 Deep Neural Networks
	2.2 Hardware Accelerators for Deep Neural Networks

	3 Reliable Deep Learning
	3.1 Our Methodology for Designing Reliable DNN Systems
	3.2 Resilience of DNNs to Reliability Threats
	3.2.1 Resilience of DNNs to Permanent Faults
	3.2.2 Resilience of DNNs to Timing Faults
	3.2.3 Resilience of DNNs to Memory Faults

	3.3 Permanent Fault Mitigation
	3.4 Timing Fault Mitigation
	3.4.1 TE-Drop
	3.4.2 Per-Layer Voltage Underscaling

	4 Secure Deep Learning
	4.1 Security Attacks on DNNs
	4.1.1 Adversarial Perturbation Attacks
	4.1.2 Backdoor Attacks

	4.2 Defences Against Security Attacks on DNNs
	4.2.1 Generative Adversarial Networks
	4.2.2 Case Study: Noisy Visual Data, and How GANs Can be Used to Remove Noise and Provide Robustness

	5 Open Research Challenges
	References

