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1 New Requirements for Fault Tolerance

The ongoing downscaling of semiconductor feature sizes in order to integrate
more components on chip and to reduce the power and energy consumption of
semiconductors also comes with a downside. Smaller feature sizes also lead to
an increasing susceptibility to soft errors, which affect data stored and processed
using semiconductor technology. The amount of disturbance required to cause soft
errors, e.g. due to the effects of cosmic particles or electromagnetic radiation on
the semiconductor circuit, has declined significantly over the last decades, thus
increasing the probability of soft errors affecting a system’s reliable operation.

2 Semantics of Errors

Traditionally, system hardening against the effects of soft errors was implemented
using hardware solutions, such as error-correcting code circuits, redundant storage
of information in separate memories, and redundant execution of code on additional
functional units or processor cores. These protection approaches share the property
that they protect all sorts of data or code execution, regardless of the requirement to
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Fig. 1 Enabling profitable scaling using software-based fault tolerance [1]

actually enforce protection. In other terms, they do not possess knowledge about the
semantics of data and code related to the reliable operation of a system.

As shown by Austin [1], reproduced on the left-hand side of Fig. 1, together with
a rising probability of soft errors, this results in a significantly increasing overhead
in hardware required to implement error protection. As technology progresses, at
a certain point in time, the cost of this overhead will exceed the savings due to
the utilization of more recent semiconductor technologies, resulting in diminishing
returns that render the use of these advancements unattractive.

The fundamental idea applied by the FEHLER project is to reduce the amount of
error handling required in a system by introducing semantic knowledge. We enable
a system’s software to dynamically decide at runtime whether an error that occurred
is critical to the system’s operation, e.g. it might result in a crash in the worst case,
or is not critical, e.g. an error might only result in an insignificant disturbance of
a system’s output. In turn, this enables the system to handle only critical errors
and ignore the others. This flexible error handling results in a significantly reduced
hardware overhead for implementing fault tolerance, which leads to an increased
profitability window for semiconductor scaling, as shown on the right-hand side of
Fig. 1.

One important consideration when designing such a selective approach to fault
tolerance is which components of a system actually have to be protected from errors.
Inspired by the concept of the trusted computing base in information security, we
introduced the Reliable Computing Base (RCB) [6] to indicate the hardware and
software components of a system that are critical in ensuring that our flexible error
handling approach is effective.

Accordingly, we define the RCB as follows:

The Reliable Computing Base (RCB) is a subset of software and hardware
components that ensures the reliable operation of software-based fault-
tolerance methods. Hardware and software components that are not part of

(continued)
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the RCB can be subject to uncorrected errors without affecting the program’s
expected results.

To design efficient fault-tolerant systems, it is essential to minimize the size of
the reliable computing base. In the case of FEHLER, this implies that the number
and size of hardware and software components required to ensure that upcoming
critical errors will be corrected are to be reduced as far as possible.

Commonly, code-based annotations such as [13] are used to indicate sections of
code to be protected against errors regardless of the data objects handled by that
code. This implies an overhead in runtime—protection of the executed section of
code applies to all its executions without considering its execution semantics—as
well as in programmer effort, since error propagation analyses using control and
data flow information would have to consider all data objects handled in annotated
code sections. In order to increase the efficiency of this approach, additional manual
annotations seem indispensable.

A more efficient approach from a software point of view is to identify the
minimal amount of data objects that have to be protected against soft errors. Data
flow analyses provided by FEHLER allow to determine the worst-case propagation
of errors throughout a program’s execution, thus determining the precise set of
data objects requiring protection against errors. Additional savings at runtime
are achieved by employing a microkernel system tailored to exclusively address
error handling, leaving the remaining operating system functions to a traditional
embedded kernel running on top of it. An analysis of the possible savings for a
real-world embedded application is given in Sect. 7.

3 FEHLER System Overview and Semantic Annotations

Based on the observations described above, one central objective of the FEHLER
system is to enable the provision of semantics describing the worst-case effects of
errors on data objects.

Commonly, the hardware of a system only has very limited knowledge about the
semantics of data that it processes.! More semantic information, such as the types
of data objects, is available on the source code level. However, this information
is commonly discarded by the compiler in later code generation and optimization
stages when it is no longer required to ensure program correctness. Some of this
information can already be utilized to provide error semantics. For example, pointer

'For example, a processor could distinguish between integer and floating point data due to the
use of different registers and instructions to process these, but a distinction between pointer and
numeric data is often not possible on machine code level.



36 M. Engel and P. Marwedel

-

Determine o
| correction Application
methods

|

Select
correction ==
method

05
affected
?

Microvisor (Fame kemel)

Application knowledge

provided by annotations

>y

Runtime

Guest OS (rrems) )

Schedule
eror correction

Compiletime

® Impact of errors
m Feasible correction methods

LN Reinitialize component
or recovery

User Mode

unreliable int j;
reliable int control;

J

EDAC
affected
7

or reset
J
Fl d l
[ & Hardware J

m Paravirtualization-based
Microvisor environment
- Keep EDAC running

¥ Recover checkpoint

Propagation of annotations
and inference of error classes

Supervisor Mode |

|re?fab?e int y = control; |

Encoding of classification
Fig. 2 Interaction of compile time and runtime components of FEHLER

data types and variables influencing the control flow (e.g. used to conditionally
execution of code or control loops) are deemed essential in ensuring correct program
execution. Accordingly, static analyses performed during compile time are able to
extract this information.

However, additional information about the relevance of data with regard to the
correct behavior of a system in its intended context, e.g. in embedded systems where
an incorrect output controlling a peripheral might result in damaging effects, is not
expressed explicitly in the code. Hence, we have to provide additional information
in order to enable static analyses to derive more information about the worst-case
criticality of a data object.

This additional semantic information allows the system to classify errors. Data
objects which are deemed critical to a program’s execution, i.e. may cause the
program to crash, are annotated with a reliable type qualifier. All objects for
which errors in data will result only in an insignificant deviation of the program’s
behavior in the worst case are provided with an unreliable type qualifier.

Classifying data objects into only these two classes is a rather coarse approach.
However, as shown later, this minimalistic approach is effective and efficient for
systems experiencing normal error rates, i.e. applications not exposed to radiation-
rich environments, such as space and aviation systems. Approaches for improved
QoS assessment are discussed in Sect. 10.

The interaction of compile time and runtime components of a FEHLER-based
system is shown in Fig. 2. Here, the compile time component, realized as a compiler
performing static analyses and transformations in addition to code generation,
extracts semantic information on the criticality of data objects, analyzes the
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program’s control and data flow to determine possible error propagation paths and
to generate appropriate type qualifiers, and encodes this information along with the
generated program binary.

This information lies dormant as long as no error affects the system’s operation.
Since error detection is outside of the scope of FEHLER, the system is prepared
to interface with a number of different error detection methods. In the example
in Fig.2, we assume that a simple hardware mechanism, such as memory parity
checks, is employed. When an incorrect parity is detected during a memory access,
a special interrupt is raised that informs the system of the error.

Here, our runtime component, the Fault-aware Microvisor Environment (FAME)
[11] comes into play. FAME is intentionally restricted to only provide functionality
that enables decisions about the necessity of error handling, relegating all other
functionality typically found in system software to components outside of the
microkernel. This reduced functionality is an additional contribution to RCB
minimization. FAME provides a handler for the given error signalization method,
which is able to determine the address of the affected memory location. As soon as
the microkernel is able to ensure that itself is not affected, which can be ensured
by RCB analysis and minimization, it determines whether the embedded OS kernel
running on top or the application is affected. If this is the case, error handling is
initiated. In case of an error affecting the application, FAME consults the semantic
information provided by the compile time components and determines if error
correction is required or if the error can be safely ignored. Further details of FAME
are described in Sect. 6.

Like error detection, specific correction methods are not the focus of FEHLER.
Instead, FEHLER is enabled to interface with different standard as well as
application-specific correction methods. An example for a standard error correction
would be the application of checkpointing and rollback. An application-specific
method would be a function that corrects an affected macro block in a video
decoder by interpolating its contents from neighboring blocks instead of redecoding
the complete video frame, thus saving a considerable amount of compute time.

4 Timing Behavior

Figure 3 shows possible scheduling orders in case of a detected error. In an approach
that neglects to use criticality information (“naive approach”), the detection of
an error implies an immediate correction action in hardware or software. This
potentially time-consuming recovery delays the execution of subsequent program
instructions, which may result in a deadline miss.

The flexible approach enabled by FEHLER allows the system to react to an error
in a number of different ways. Here, the classifications described above come into
play. Whenever an error is detected, the system consults the classifications provided
alongside the application (“C” in Fig.3). This lookup can be performed quickly
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and provides information on how to handle the error at hand. Specifically, it can be
determined if, how, and when the error needs to be corrected:

if: Whether errors have to be handled or not depends mainly on the error impact.
If an error has a high impact, error recovery will be mandatory. In contrast, if an
error only has a low impact at all, e.g. the color of a single pixel in a frame buffer
is disturbed, further handling can be omitted. Handling errors in the latter case
will improve the quality of service at the cost of requiring additional compute
time. Error impacts are deduced using static analysis methods as described below.
how: Error handling depends on the available error correction methods, the
error impact, and the available resources. In FEHLER, commonly a bit-precise
correction method such as checkpoint-and-recovery as well as an ‘“ignore”
method (case 4 in Fig. 3) doing nothing is available. In addition, the programmer
can provide application-specific correction methods, denoted by “R*”. Such a
method may be preferable, since it can be faster than the generic correction
method provided.

when: Error scheduling can decide when an error correction method has to be
scheduled. In a multitasking system, often, the task with the highest priority is
executed. Hence, if a high priority task is affected, error correction has to be
scheduled immediately (cases 1 and 2). If a low priority task is affected, the high
priority task can continue execution and the error handling will be delayed (case
3). In order to enable the mapping of errors to different tasks, a subscriber-based
model can be employed [12].

Overall, this flexibility allows a system to improve its real-time behavior in

case of errors. While this may not be acceptable for hard real-time systems, the
behavior of soft real-time applications, such as media decoding, can be significantly
improved. The example of an H.264 video decoder is used in Sect. 7 to evaluate the
effectiveness and efficiency of FEHLER.

To enable the flexible handling of errors at runtime, the runtime system requires

the provision of detailed, correct meta information about the data objects in the given
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application. The static analyses employed to obtain this information are described
in the following section.

5 Static Analyses

The correct determination of all data objects critical to a program’s execution, which
form part of the RCB, is crucial to ensure that errors threatening to result in a system
crash are corrected before they affect its operation.

Our static analysis is based on the concept of subtyping [7]. In FEHLER,
additional semantic information on the criticality of a data object to the application’s
stability is provided by extending the C language using reliability type qualifiers.
These qualifiers enable a developer to indicate to the static analysis stages whether a
data object is deemed critical to a program’s execution (reliable classification)
or if errors in data will result only in an insignificant deviation of the program’s
behavior in the worst case (using the unreliable type qualifier).

Accordingly, we have to ensure that reliable data objects must not be modified
unpredictably to guarantee that the application will not crash. In contrast, the
application can tolerate deviations from the expected values in unreliable data
objects.

Rules for the use of our new type qualifiers applied by our static code analysis
fall into two groups: prohibit and propagation rules. Prohibit rules ensure that oper-
ations on the annotated data objects are executed error-free, whereas propagation
rules reflect the possible propagation of errors from an affected data object to others
throughout the control and data flow.

Errors in certain data objects may result in a large deviation in the control flow
or even an unintended termination of the application. Prohibit rules ensure that
those data objects are annotated with the reliable type qualifier; accordingly, errors
affecting that data are classified as fatal errors. Data objects serving as a reference
to a memory address, i.e. pointers in C, are an important example for this. An error
in a pointer that is used for reading will result in either a different address that is
read, possibly resulting in the loading of a completely unrelated data object, or even
an access to a non-existing memory location, resulting in a processor exception
that terminates the application. Pointers used for writing data can result in correct
data being written to an unintended memory location, resulting in unexpected error
propagation that is especially hard to diagnose. Indexes for arrays behave in a similar
way, resulting either in a write to a different array element or, due to the lack of
bounds checking for array indexes in C, a write to an arbitrary memory location.
Other critical data types include controlling expressions for loops and conditional
statements, divisors, branch targets, and function symbols. For details, we refer the
reader to the description in [15].

unreliable int u, X;
reliable int y, z;
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X =y - (2 +u) * 4;

Listing 1 Data flow analysis of possible horizontal error propagation and related AST
representation

The content of a data object annotated as unreliable may be affected by an
uncorrected error. In turn, that error can propagate to other data objects whenever its
content is copied or used in an arithmetic or logic expression, as shown in Listing 1.
Here, the curved arrows indicate that an error can propagate from one subexpression
to the following along the edges of the syntax tree. Accordingly, the content of
a resulting data object cannot be considered reliable and thus has to be qualified
as unreliable. The dependencies between type qualifiers of different data objects
are modeled by the FEHLER propagation rules. In addition to calculations and
assignments, other uses of data objects affected by error propagation are the copying
of parameters to functions using call-by-value semantics and cast expressions.

int step(int x) {
return x << 2;

void main(void) {
int a, b, c;
unreliable int w;
int v;

// Initializations
// omitted for brevity
while (a < b)

a += stepl(c);

w=cCc - V;

}

Listing 2 Code example and related type deduction graph

Propagation rules not only help in detecting erroneous data flow from unreliable
to reliable data objects, but also reduce the overhead required by the programmer
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to create annotations. Since it is unrealistic to expect that each and every data
object in a complex program will be annotated manually, our static analyses help
to deduce correct type qualifiers for unannotated data. This deduction is enabled
by the construction of a type deduction graph (TDG), as shown in Listing 2. Here,
the shaded special vertices marked (¥) and (@) represent an enforcement of the type
qualifiers reliable and unreliable by prohibit rules or explicitly stated annotations.
The set of edges of the TDG then reflects the dependencies between the type
qualifiers, data objects, operations, and assignments.

unreliable int u, pos, tmp;
reliable int r, al[10];

u = 10;

r = u; // invalid assignment

pos = 0;

while (pos < r) { // invalid condition
tmp = r / u; // invalid division
a[pos++] = tmp; // invalid memory access

}

Listing 3 Invalid assignments

Accordingly, the use of the TDG enables the compiler to flag invalid data
propagation from unreliable to reliable data objects. An example containing a
number of such invalid propagations is given in Listing 3.
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Overall, the static analyses provided by the FEHLER compiler toolchain enable
programmers to state reliability requirements that cannot be deduced from the
program itself while ensuring that these manual annotations do not accidentally
provide a way to propagate unreliable data to reliable data objects. During runtime,
the annotations are then used to enable flexible error handling by allowing the
operating system to ignore errors in data objects marked as unreliable, thus enabling
a tradeoff between the obtained quality of service and the required error correction
overhead, e.g. in terms of time or energy.

6 FEHLER Runtime System

Viewed from the top, as shown in Fig. 6, an application with integrated classification
information is running on a virtualized guest OS. The guest OS is linked against
the FAME Runtime Environment (FAMERE). FAMERE is responsible for the
flexible error handling as well as the interfacing with the microvisor. The microvisor
runs low-level error correction and ensures the feasibility of software-based error
handling (Fig. 4).

The FAMERE runtime is based on our specialized microvisor component which
has control over the hardware components relevant to error handling. The main
purpose of the microvisor is to isolate critical system components from possible
error propagation and schedule the error handling if required. Critical components
in this context are resources required to keep error detection and correction running.
Depending on the underlying hardware, the actual critical resources vary. If, for
example, errors are signaled via interrupts, the interrupt controller will be an element
of the critical resource set.

Since the microvisor itself can be affected by errors, it is considered to be a part
of the RCB. The microvisor is incapable of protecting itself, since it implements
the basic error handling routines. In order to ensure the effectiveness of error

Application

Guest OS

FAMERE

2 Microvisor

Fig. 4 The runtime software stack of FEHLER. The microvisor is only involved in case of an
error, whereas all other resources are administered by the paravirtualized guest OS. The guest
OS is extended by FAMERE, the system component responsible for evaluating compiler-provided
information on the criticality of errors
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handling, fault-free hardware components are required to execute the software-
based fault-tolerance mechanisms. In turn, these hardware components also have
to be considered part of the RCB. Reducing the code and data size of the microvisor
itself is, thus, an optimization objective required to reduce the overall size of the
RCB.

To shield the RCB from error propagation, our microvisor uses paravirtualization
[16]. The microvisor is tailored to the needs of embedded systems and fault
tolerance. To keep the virtualization overhead low, it supports only a single guest
operating system. This removes the requirement to provide virtual CPUs and CPU
multiplexing. In addition, caches and TLB entries need not be switched between
different guest OS instances. An additional responsibility of the microvisor is the
creation of full system checkpoints. These are used to restore a valid system state
in case of a severe error affecting the FAMERE runtime. FAMERE is a library in
the guest OS that combines compile and runtime information required to implement
flexible error handling [12].

Error handling is the central task of FAMERE. Figure 5 gives a detailed view of
the error-handling procedure at runtime (the right-hand side of Fig.2). In order to
enable a prioritization of error handling, tasks affected by an error in the OS running
on top of the microvisor have to be identified. FAMERE determines affected tasks
using a memory subscriber model [12] in which tasks explicitly subscribe to and
unsubscribe from data objects prior resp. after their use. Accordingly, each data
object is annotated with a set of tasks currently using the object, enabling FAMERE
to assign a memory address to the set of tasks using the address at the current
moment.

If there are higher prioritized tasks not affected by current error, further error
handling will be delayed until all higher prioritized tasks finish execution. Error
classification will then be performed when the error handling is scheduled again by
the microvisor, thus minimizing the impact on system timing when an error occurs.

Together with classification information for data objects, our microvisor and
the FAMERE library enable the FEHLER system to implement the envisioned
flexible error-handling principles. By keeping the amount of functionality and the
related code and data sizes of the microvisor low, the RCB size could be reduced
significantly.

7 Use Case: A Fault-Tolerant QoS-Aware Soft Real-time
Application

In order to assess the effectiveness and efficiency of the selective error correction
approach enabled by FEHLER, we analyzed typical embedded applications in the
presence of errors. Since microbenchmarks only tend to give a restricted view of the
effects of errors, we used a real-world application to evaluate the possible reduction
in overhead.
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Fig. 5 Error handling in the
runtime software stack of
FEHLER. If an error is
signaled (red flash symbol),
the microvisor checks
whether the fault affects the
RCB. If the RCB is affected,
the microvisor automatically
restores the last system
checkpoint. Otherwise, error
handling is delegated by
sending a message to
FAMERE, which includes an
error description containing
information about the
occurred error as well as the
user space context
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As mentioned above, the class of applications that we expect to benefit most from
our flexible error-handling approach are soft real-time applications that are able to
accept—or even make use of—varying levels of QoS in their output. Thus, we used
a constrained baseline profile H.264 video decoder application comprising ca. 3500
lines of ANSI C code as a real-world benchmark to assess the effectiveness and

efficiency of FEHLER [9].

The evaluation is performed on a simulated embedded system using Synopsys’
CoMET cycle-accurate simulator as well as a physical platform based on a Marvell
ARM926-based SoC. CoMET is configured to resemble the real system by simu-
lating a 1.2 GHz ARM926 system with 64 MiB RAM, 16 MiB ROM, and 128 KiB
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Fig. 6 Analysis of error impacts on the H.264 video decoder using different injection rates

reliable RAM (using ECC-based hardware error protection). All components are
considered reliable, except the 64 MiB of RAM.

The H.264 video decoder is configured to create a checkpoint after every
displayed frame. In each experiment, we decoded 600 frames in total at a rate of
10 frames per second and a resolution of 480x 320 pixels.

We were primarily interested in evaluation results showing the impact of the
injected errors themselves on the achievable QoS of the decoded video, the possible
reduction of the RCB size using flexible error handling as well as the impact of error
handling on system timing.

To assess the impact on the QoS, we developed the quality assessment tool shown
in Fig. 6 [8]. It receives video frames decoded by the target ARM system under the
influence of errors using FEHLER’s flexible error correction and compares these
frames to the correctly decoded reference frames (indicated by the yellow and red
squares in the lower left pictures—the more red, the larger the difference between
the two frames is). For each frame, the tool then calculates several different metrics
indicating the QoS, e.g. the peak signal-to-noise ratio (PSNR) and the AE color
distance metrics. The left-hand side of Fig. 6 shows a moderate error injection rate
resulting in some visible defects in the output, whereas the right-hand side shows an
artificially high injection rate which renders the output unusable.

For evaluation, we injected uniformly distributed transient faults into RAM. For
each memory access, error detection in hardware is simulated. If the processor

2Although resolution and frame rate seem rather low, this setup leads to a CPU utilization of more
than 65%, since we decode H.264 in software only. However, higher resolutions and frame rates
will be possible if more computing power is available.
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Table 1 Peak Signal-to-Noise Ratio (PSNR) for different error injection rates [dB]
r=1.10"10 A=1-10"1 A=1-10"1

All errors handled 36.19 36.15 n/a
Flexible error handling 36.19 36.18 29.01
Flexible + application-specific 36.20 36.12 28.95

accesses an erroneous word, an interrupt will be raised. The number of faults to
be injected is determined by a Poisson distribution with a configurable parameter
A3

Table 1 shows QoS results given as PSNR values for different injection rates
and correction approaches. We compare a standard correction approach—correcting
all errors irrespective of the worst-case outcome—with two approaches based on
FEHLER, one which only uses generic error correction such as checkpoint-and-
restore and one which, in addition, applies more efficient, application-specific error
correction methods. It can be seen that for low error injection rates (A = 1 - 10716
and 1 - 10’15), uncorrected errors result in a PSNR of about 36 dB, which is still a
reasonable quality for lossy compressed media and is similar to the quality of VHS
video. For the high error rate (A = 1 - 10’14), however, the PSNR drops below
30dB.*

It is important to notice that, although high injected error rates can lead to a
significant degradation of the perceived QoS, the primary objective of the binary
classification of error impacts employed by FEHLER is achieved—we were unable
to provoke the system to crash no matter what the used error injection rate was.

Based on the configuration described above, we analyzed the fraction of memory
that the compiler annotated as unreliable, implying no protection against errors
is required. This fraction is a direct indicator of the reduction of the size of memory
that has to be protected, i.e., the RAM memory component of the RCB. In traditional
software-based error correction approaches, all of the RAM would be considered
part of the RCB. Table 2 shows the results of this evaluation for different video
resolutions. It can be observed that for low resolutions, the amount of data classified
as reliable dominates the memory usage. However, the share of this type of
memory is reduced when decoding videos with higher resolutions. For a 720p HD
video, already 63% of the RAM used by the H.264 decoder can remain unprotected
using FEHLER classifications.

The remaining interesting evaluation is the impact of flexible error handling
on the soft real-time properties of the video decoder application. In the first two

3Not all injected faults are visible by the application, since faults are only detected when the
corresponding memory cell is accessed.

4To control the amount of faults to inject, a Poisson distribution with configurable parameter A is
used. The time base used for the Poisson distribution is memory bus ticks. Faults are randomly
injected and are equally distributed over the memory. Hence, the locations of the accesses have no
influence on the fault distribution.
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Table 2 Reduction of the amount of reliable memory required by the H.264 video decoder

Memory size of Memory size of
Video resolution | reliable data Percentage unreliable data Percentage
176 x 144 90kB 55% 74kB 45%
352 x 288 223kB 43% 297kB 57%
1280 x 720 1585kB 37% 2700kB 63%

Table 3 Average deadline misses for different error-handling configurations

Naive error Flexible + application
Error rate handling Flexible error handling | -specific

# Avg. | Avg # Avg. | Avg # Avg. | Avg
A [s71] |Miss Missed by | Miss Missed by Miss Missed by
A=1-10"1% | 0.14 |0.00 |0.00ms 0.00 |0.00ms 0.00 0.00 ms
A=1-10"1% | 144 (286 |8.15ms 0.52 |7.93ms 0.36 4.89 ms
A=1-10"1% 3584 |- - 1937.87 | 10,268.98ms | 1887.12 | 9346.16 ms

columns of Table 3, the observed average error rates (of detected faults) are given,
ranging from several faults per minute to an artificially high rate of 36 per second.

We analyzed three different scenarios. In naive error handling, the system treats
every error as an error which cannot be handled by FAMERE. Hence, a checkpoint
is immediately restored. For this scenario, columns three and four in Table 3 show
the average amount of missed deadlines and the average duration of a deadline miss,
respectively. For the lowest error rate, no deadline misses occur since enough slack
time is available for the recovery of checkpoints. If the error rate increases by an
order of magnitude, deadline misses can be observed. On average, deadlines were
missed by 8.15 ms. For the highest error rate, no run of the experiment terminated
within a set limit of 2 h of simulation time, thus no results are given here.

The results for flexible error handling are shown in columns five and six. Here,
only errors affecting reliable and live data are handled by checkpoint recovery.
Errors affecting other data are ignored. Flexible error handling reduces the number
of deadline misses significantly (81.75%). The time by which a deadline is missed
is reduced as well (2.70%). For the artificially increased rate of 35.84 errors per
second, however, significant deadline misses could be observed.

The final timing evaluation scenario augmented flexible error handling by
including an application-specific error-handling method. For data objects with a
special annotation, this method is able to transform a corrupted motion vector into
a valid state. For these cases, a time-consuming rollback to a valid system state
is not required, reducing the overhead for error correction. Accordingly, using this
approach, deadline misses could be reduced by 87.37% for the second highest error
rate.

To conclude the overview of our evaluation, we provide an overview of a possible
use of application-specific error correction approaches for our H.264 video decoder.
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Fig. 7 Classification of error impacts for the H.264 video decoder

As shown in Fig. 7, errors can occur in different data structures, such as frame header
or macro blocks. These can be handled by a number of efficient application-specific
error correction approaches.

8 Use Case: Adaptive Error Handling in Control
Applications

Control-based systems are the basis of a large number of applications for embedded
real-time systems. The inherent safety margins and noise tolerance of control
tasks allow that a limited number of errors might be tolerable and might only
downgrade control performance; however, such limited errors might not lead to
an unrecoverable system state. In control theory literature, techniques have been
proposed to enable the stability of control applications even if some signal samples
are delayed [14] or dropped [2]. Accordingly, we expect that our idea of flexible
fault tolerance as described for the video decoder case will also be applicable to
control applications.

As described above, software-based fault-tolerance approaches such as redun-
dant storage or code execution may lead to system overload due to execution time
overhead. For control tasks, an adaptive deployment of related error correction is
desired in order to meet both application requirements and system constraints.
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Fig. 8 Different ways to deal with soft errors: red blocks represent reliable executions, green
blocks represent executions with error detection, while yellow blocks represent unreliable version
without any protection (deadlines are implicit in the schedules shown)

Thus, it has to be investigated how and when to compensate, or even ignore
errors, given a choice of different techniques. In an initial case study, we observed
that a control task can tolerate limited errors with acceptable performance loss [5].°

The general approach used to investigate the effectiveness of this approach is
to model the fault tolerance of control applications as a (m, k)-constraint which
requires at least m correct runs out of any k consecutive runs to be correct. We
investigate how a given (m, k) constraint can be satisfied by adopting patterns of task
instances with individual error detection and compensation capabilities. Figure 8

SThis section is based on joint work with Kuan-Hsun Chen, Bjérn Bonninghoff and Jian-Jia Chen,
TU Dortmund.



50 M. Engel and P. Marwedel

shows four different ways to handle soft errors. Some of the presented schedules are
infeasible, since they lead to deadline misses.

A static approach to ensure this property is Static Pattern-Based Reliable
Execution. In this approach, we enforce the (m; , k;) constraints by applying (m,
k) static patterns to allocate the reliable executions for task r;. While the adopted
pattern will affect the schedulability, stability, and flexibility, deciding the most
suitable pattern is out of scope of this work.

Due to its inability to react dynamically to changes at runtime, it is obvious
that this approach has to be overprovisioning. Thus, we introduce a runtime
adaptive approach called Dynamic Compensation that enhances Static Pattern-
Based Reliable Execution by recognizing the need to execute reliable instances
dynamically instead of having a static schedule.

It is too pessimistic to allocate the reliable instances strictly due to the fact that
soft errors randomly happen from time to time. To mitigate the pessimism, we pro-
pose an adaptive approach, called Dynamic Compensation, to decide the executing
task version on-the-fly by enhancing Static Pattern-Based Reliable Execution and
monitoring the erroneous instances with sporadic replenishment counters.

The idea is to execute the unreliable instances and exploit their successful
executions to postpone the moment that the system will not be able to enforce
an (m, k) constraint, in which the resulting distribution of execution instances still
follows the string of static patterns in the worst case.

With Dynamic Compensation, we prepare a mode indicator IT for each task to
distinguish the behaviors of dynamic compensation for different status of tasks,
i.e., IT € {tolerant, safe}. If a task 7i cannot tolerate any error in the following
instances, the mode indicator will be set to safe and the compensation will be
activated for the robustness accordingly. If it can tolerate error in the next instance,
the mode indicator will be set to tolerant and execute the unreliable version with
fault detection.

Our investigation showed that in embedded systems used for control applications
which are liable to both hard real-time constraints and fulfillment of operational
objectives, the inherent robustness of control tasks can be exploited when applying
error-handling methods to deal with transient soft errors induced by the environ-
ment. When expressing the resulting task requirement regarding correctness as a
(m, k) constraint, scheduling strategies based on task versions with different types
of error protection become applicable. We have introduced both static- and dynamic-
pattern-based approaches, each combined with two different recovery schemes.
These strategies drastically reduce utilization compared to full error protection while
adhering to both robustness and hard real-time constraints. To ensure the latter for
arbitrary task sets, a schedulability test is provided formally. From the evaluation
results, we can conclude that the average system utilization can be reduced without
any significant drawbacks and be used, e.g., to save energy. This benefit can
be increased with further sophistication; however, finding feasible schedules also
becomes harder.

For an in-depth discussion in the context of a follow-up investigation of this topic,
we refer the reader to [17].
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9 Application of FEHLER to Approximate Computing

Whereas the work described above concentrates on handling bit flips in memory,
more recently, approximate computing approaches have been investigated to design
energy-efficient systems that trade result precision for energy consumption.

One of the novel semiconductor technologies at the basis of approximate com-
puting is Probabilistic CMOS [3] (PCMOS). Figure 9 shows the general layout of a
ripple-carry adder based on PCMOS technology (PRCA). While traditional energy-
conserving circuits use uniform voltage scaling (UVOS), PCMOS employs biased
voltage scaling (BIVOS), which provides different single-bit full adder components
with differing supply voltages that increase from the least to the most significant bit
in multiple steps. As a consequence, the delay required to calculate a bit decreases
from the LSB to the MSB; accordingly, the probability p. of bit errors due to carry
bits arriving too late is larger in the least significant bits. Using the PCMOS voltage
scaling approach, we also employed a probabilistic Wallace-tree multiplier (PWTM)
component and added a related energy model and instructions enabling the use of
the probabilistic components to our ARMv4 architecture simulator.

We investigated whether FEHLER reliability annotations would also be appli-
cable to determine which arithmetic operations of a program could be executed on
PCMOS-based arithmetic components instead of a less energy-efficient traditional
ALU without sacrificing the program’s stability [10]. A first evaluation using
floating point data objects showed that the use of PCMOS technology has the
potential for significant energy conservation. Accordingly, we investigated the
possible conservation potential for a real-world embedded application. FEHLER
type qualifiers were used to indicate data which accepts precision deviation
(unreliable). Accordingly, our compiler backend generated instructions using
probabilistic arithmetic instructions operating on these data objects.

Table 4 shows that a significant fraction of arithmetic ARM machine instructions
of our H.264 video decoder could be executed safely on probabilistic components.°

as bs a, b, a; b, ag bg
pc(\r;;,vs) pc(;j,vz) pc(n/:/e,vl) pc(r;/s,vo)

FA < FA oV FA oV FA
Model 4 Model 5 Model 6 Model 6

2 Po(ma,vs) 2 po(ms,v2) 2 po(me,va) |2 po(me,vo)
Cout S3 S; S1 So

Fig. 9 Probabilistic ripple-carry adder

6rsb is the ARM reverse subtract instruction.



52 M. Engel and P. Marwedel

Table 4 Instructions executed using probabilistic components

Instruction type Add Sub rsb Mul Overall
Executed using PRCA/PWTM 18.59% 18.60% 43.01% 76.27% 13.36%
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Fig. 10 PSNR (peak signal-to-noise ratio) values for different supply voltage configurations

Surprisingly, our results indicated that for our typical embedded H.264 decoder
application, the use of PCMOS components did not result in energy conservation
for the identical level of QoS compared to uniform voltage scaling.” This
result contradicts the microbenchmarks described in [4]. Figure 10 shows the PSNR
of the H.264 decoder output for different video clips decoded with circuits using
four different UVOS (0.8 V-1.1V) as well as three BIVOS schemes with similar
energy consumption to the UVOS schemes. It can be observed that the PSNR of the
BIVOS-decoded videos does not increase, which is a counterintuitive result at first.

A subsequent investigation of the differences between our H.264 decoder and the
code used in the microbenchmarks gave insights into the observed effects. Whereas
the microbenchmarks employed floating point numbers, our video decoder is a
typical embedded application that employs integer and fixed-point numbers.

void enter (unreliable uchar *ptr, unreliable int g delta) {
unreliable int i = *ptr + ((g_delta + 32) >> 6);
*ptr=Clip (i) ;

}

Listing 4 H.264 decoder clipping code

This difference in data representation is one of the reasons for the observed
phenomenon. The H.264 specification requires a special behavior when copying
32 bit integer values into an eight bit value in the frame buffer. Here, a saturating
clipping function (cf. Listing 4) is used. This function restricts the value to 255 if

TThis only concerns the static and dynamic energy consumption of the PCMOS components. The
additional static energy required by the traditional ALU has not been considered here.
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the input is larger than that. Accordingly, the shift operation used has the ability
to eliminate bit errors in the least significant bits, diminishing the gains of BIVOS
scaling.

In contrast, floating point values are always normalized after arithmetic opera-
tions. This implies that the bits most relevant to a floating point number’s value—sign,
exponent, and the MSBs of the mantissa—are always the MSBs of the memory word.
In this case, the BIVOS approach to construct arithmetic components that show
larger error probabilities in the LSBs is beneficial.

Since it is unrealistic to assume that separate adders for different data widths
and data types will be provided in future architectures, an analysis of the number
of bits actually used in arithmetic operations is required. However, this implies
further complications. One idea for future compiler-based analyses is an approach
that combines bit-width analysis methods for arithmetic operations and code
transformations to use bits with optimal supply voltage for the operation at hand.
The effectiveness of this approach, however, requires further implementation and
analysis work.

10 Summary and Outlook

The results of the FEHLER project have shown that for a large class of embedded
applications, software-based fault tolerance is a feasible way to reduce the overhead
of error handling. The results, as demonstrated using real-world applications, show
that already the simple binary classification employed so far is able to avoid crashes
due to soft errors while reducing the size of the reliable computing base, i.e. the
amount and size of hard- and software components requiring protection from errors.

The technologies developed in the context of FEHLER suggest a number of
ways to further improve on the ideas and design of the approach. One constraint
of the current design is that the current version of reliability type qualifiers is
too coarse-grained. Correcting only errors that affect reliable data objects will
result in avoiding program crashes. However, a sufficiently high error rate affecting
unreliable data might still result in a significant reduction of the QoS, rendering
its output useless.

The existing static analysis in FEHLER is based on subtyping. Accordingly, to
provide a more fine-grained classification of errors, additional error classes have to
be introduced. These classes would have to be characterized according to a given
total order, so that an error can be classified with the correct worst-case effect. If,
for example, the impact of errors is measured in the degradation of a signal-to-noise
ratio, a total order can be determined by the resulting amount of degradation.

However, for the overall assessment of a program’s QoS, the resulting overall
error visible in the output that accumulated throughout the data flow is relevant.
Here, one can imagine setting an acceptable QoS limit for the output data and
backtracking throughout the arithmetical operations in the program’s data flow to
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determine the worst-case deviation that an error in a given variable can cause in the
output. Here, we intend to employ approaches related to numerical error propagation
analysis.

We expect that approximate computing approaches will be able to directly benefit
from these analyses. Since the approximations already trade precision for other non-
functional properties, such as energy consumption, a Pareto optimization of the
differing objectives could benefit from worst-case QoS deviation analyses. Here,
our initial analysis of the use of binary classifiers for the PCMOS case has already
given some interesting preliminary insights.
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