
Online Test Strategies and Optimizations
for Reliable Reconfigurable Architectures

Lars Bauer, Hongyan Zhang, Michael A. Kochte, Eric Schneider,
Hans-Joachim Wunderlich, and Jörg Henkel

1 Introduction and Motivation

Runtime/reconfigurable architectures based on Field-Programmable Gate Arrays
(FPGAs) are a promising augment to conventional processor architectures such as
Central Processing Units (CPUs) and Graphic Processing Units (GPUs). Since the
reconfigurable parts are typically manufactured in the latest technology, they may
suffer from aging and environmentally induced dependability threats. In this chapter,
strategic online test methods for dependable runtime-reconfigurable architectures
as well as cross-layer optimizations for high reliability and lifetime are developed.
Firstly, two orthogonal online tests are proposed that ensure reliable configuration
of the reconfigurable fabric and aid fault detection. Secondly, a novel design method
called module diversification is presented that enables self-repair of the system
in case of faults caused by degradation effects as well as single-event upsets in
the configuration. Thirdly, a novel stress-aware placement method is proposed that
aims for slowing down system degradation by aging effects. The combined methods
ensure reliable operation across architectural and gate level and allow to prolong the
lifetime of dependable runtime-reconfigurable architectures.

The dependable operation of VLSI circuits is not only threatened by test escapes,
intermittent or transient errors, but also by emerging hardware defects due to aging
[11–13]. In nano-scale CMOS circuits, aging is related to stress which is defined
as the condition under which a circuit structure experiences electrical and physical

L. Bauer (�) · H. Zhang · J. Henkel
Chair for Embedded Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: lars.bauer@kit.edu; henkel@kit.edu

M. A. Kochte · E. Schneider · H.-J. Wunderlich
Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Stuttgart,
Germany
e-mail: schneiec@iti.uni-stuttgart.de; wu@informatik.uni-stuttgart.de

© The Author(s) 2021
J. Henkel, N. Dutt (eds.), Dependable Embedded Systems, Embedded Systems,
https://doi.org/10.1007/978-3-030-52017-5_12

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52017-5_12&domain=pdf
mailto:lars.bauer@kit.edu
mailto:henkel@kit.edu
mailto:schneiec@iti.uni-stuttgart.de
mailto:wu@informatik.uni-stuttgart.de
https://doi.org/10.1007/978-3-030-52017-5_12

278 L. Bauer et al.

Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions

ap
pl
ica
tio
n

SW
/O
S

ar
ch
ite
ctu
re

cir
cu
it/
ga
te

ph
ys
ics

application

SW/OS

architecture

circuit/gate

physics

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 4 5 6 7 8 9 10

ΔV
th

 [a
.u

.]

1 million
3 million
5 million

Critical ΔVth

MTTF improvement

Toggle rate [s-1]

Time [Years]

Fig. 2 Threshold voltage increase due to HCI-related stress (based on [22])

degradations. Two types of stress are distinguished: static stress and dynamic stress.
Dynamic stress is typically characterized by the toggle rate of a transistor during
which high currents flow between drain and source. A transistor is under static
stress when an electric field is exerted across its gate oxide to induce a conducting
channel. The stress is characterized by the duty cycle, i.e., the fraction of operation
time the transistor is conducting. Dynamic stress leads to aging effects like Hot
Carrier Injection (HCI), while static stress can lead to Bias Temperature Instability
(BTI). Both are dominating aging mechanisms in nano-CMOS technologies [8, 16]
and cause shifts in the threshold voltage �Vth of a transistor, which ultimately
impacts the device performance over time. In this chapter, strategic online test
methods for dependable runtime-reconfigurable architectures as well as cross-layer
optimizations for high reliability and lifetime are developed (see Fig. 1).

The Mean Time to Failure (MTTF) of a transistor is defined as the time until
its threshold voltage exceeds a certain critical value at which the transistor cannot
deliver the required performance anymore. As shown in Fig. 2, the MTTF can be
greatly increased if the transistor stress and consequently the threshold voltage shift
are reduced.

Different aging models exist [2, 8], which indicate that both dynamic and static
stress are generally additive through accumulation of the degradation effects. As a

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 279

result, this additive stress accumulation causes amonotonic increase in the transistor
degradation over long terms. Although BTI degradation may experience a recovery
effect, the recovery requires complex conditions or long relaxation periods [10] and
will thus hardly affect the additive property. The monotonic and additive properties
allow to consider stress during runtime (e.g., for resource management) with limited
computational resources.

1.1 Application Model

In this work, a general application model is considered, as shown in Fig. 3. An
application (Fig. 3a) consists of a mixture of normal operations, e.g., memory
allocation and data preparation, and one or multiple computationally intensive parts,
the so-called kernels. A kernel (Fig. 3b) corresponds to an outer loop that iterates
through the whole data set and that contains one or multiple inner loops that work
on small data parts, specified by the current iteration of the outer loop. For example,
in a stencil operation of an image, the outer loop iterates over each output pixel
and the inner loop computes the output value based on multiple neighboring input
pixel values. Such an inner loop is a good candidate to be implemented as a Special
Instruction (SI) that is composed of one or multiple accelerators of potentially
different types. An SI (Fig. 3c) is represented by a data-flow graph (DFG) where
each node corresponds to an accelerator and the edges correspond to data-flow
between the accelerators [4]. Before the execution of an SI, all required accelerators
need to be configured into the reconfigurable fabric, or otherwise the SI has to be
emulated in software on the GPP. A sophisticated H.264 video encoder is the main
application used for evaluation. The encoder consists of three kernels that require
different SIs, implemented by nine types of accelerators [6].

Special Instruc�on (SI)Applica�on

Accelerator reconfig.
Kernel 1

Accelerator reconfig.
kernel 2

Normal opera�ons

Normal opera�ons

Special Instruc�on 1

Normal opera�ons

Special Instruc�on 2

Normal opera�ons

Normal opera�ons Normal opera�ons
Accelerated kernel

Control
step 1

Control
step 2

Control
step 3

Accelerators:
(a) (b) (c)

Fig. 3 This generic application model considers applications that consist of one or multiple
kernels that may use Special Instructions (SIs) that are implemented by accelerators (based on
[23])

280 L. Bauer et al.

IF

ID

EXE

MEM

WB

Interconnect

Load/
store
unit

Reconf.
region

Reconf.
region

Reconf.
region

Reconf.
region...

Test
manager

TPG ORA

Memory
controller

Bitstream
loader

Execution/idle monitor

System bus

Soft-error
monitor

Configuration
memory scrubber

C
or

e
p

ip
el

in
e

Reconf.
fabric

Baseline
architecture
Extended
architecture

Legend:

Fig. 4 Target reconfigurable architecture (based on [7])

1.2 Runtime-Reconfigurable Architectures

Runtime reconfiguration enables dynamic hardware customization to adapt to
changing application requirements or environmental constraints, which maximizes
performance at very low energy consumption. A reconfigurable architecture consists
of a general-purpose processor and a reconfigurable fabric, partitioned into multiple
reconfigurable regions (used to implement application-specific accelerators on-
demand) that are interconnected via a communication infrastructure.

This chapter presents Online Test Strategies for Reliable Reconfigurable Archi-
tectures (OTERA), which targets FPGA-based fine-grained reconfigurable architec-
tures as shown in Fig. 4. While transient faults due to single-event upsets are also
addressed by OTERA (more details in [7]), this chapter focuses on aging-related
challenges. To support dependable operation by online testing, stress balancing,
and resource management for reliability and graceful degradation, a reconfigurable
baseline architecture is extended by the following components:

• a test manager including a test-pattern generator (TPG) and an output response
analyzer (ORA) to perform structural tests on the reconfigurable fabric and
functional tests on the reconfigured accelerators;

• a workload monitor to track when a region is reconfigured and how often the
currently configured accelerator is executed, which is used for stress estimation;

• a configuration memory scrubber to detect and correct errors in the configuration
memory by periodical read-back and check of the configuration;

• a runtime system for dynamic dependability management by environmental
monitoring, online test, reliability management, and aging mitigation.

The architecture is implemented using a LEON processor [9] and a parameteriz-
able number of reconfigurable regions. A SystemC-based cycle-accurate simulator
is used to evaluate the architecture and its runtime system. A hardware prototype is

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 281

developed on a Xilinx Virtex-5 FPGA and operates at a clock frequency of 100MHz
with a reconfiguration bandwidth of 50MB/s.

FPGA hardware is composed of a two-dimensional array of reconfigurable
primitive logic elements and routing structures that logic functions are mapped
to. The two essential components are Configurable Logic Blocks (CLBs) and
Programmable Switching Matrices (PSMs). The CLBs are the basic reconfigurable
resources for implementing combinatorial and sequential logic functions. The
interconnection between the components is configured using the PSMs. The logic
function in a reconfigurable region is determined by configuration bits, called its
bitstream, stored in SRAM-based configuration memory. Modern FPGAs support
partial reconfiguration and allow to change the logic function without interrupting
the operation in other parts of the chip [19].

An FPGA-based reconfigurable fabric, manufactured in latest technology nodes
(e.g., 16 nm for Xilinx’ UltraScale+ family), may suffer from degradation due
to aging [10, 18]. Due to the increasing susceptibility of ever-shrinking nano-
CMOS devices, these effects cannot be ignored anymore [11–13]. The resilience
of the reconfigurable fabric is essential to the dependability of reconfigurable
architectures, since most of the application’s computations are offloaded to the
fabric. The dependable operation of a hardware accelerator in the reconfigurable
fabric relies on both the structural integrity of the fabric and the accelerator’s
functional correctness. While structural integrity of the reconfigurable fabric is a
prerequisite for functional correctness of accelerators, the latter requires the correct
completion of the reconfiguration process and correctness of the configuration data.
However, the functionality of accelerators can be impacted during operation, for
instance by SEUs that corrupt configuration data [7] as well as degradation of
the hardware. To increase the dependability of the reconfigurable architecture, the
structural integrity and functional correctness need to be addressed at different
layers.

2 Fault Detection Through Strategic Online Testing

As latent defects and aging threaten the structural integrity of nano-CMOS devices,
conventional manufacturing and burn-in tests are no longer sufficient to guar-
antee dependable operation over the whole lifetime. Therefore, online tests are
required to check the system functionality. This task is particularly challenging
for runtime-reconfigurable architectures, since the hardware organization changes
during runtime as part of the normal operation [4]. This chapter presents two
complementing types of online tests that are scheduled concurrently by the runtime
system: pre-configuration online tests (PRET) and post-configuration online tests
(PORT).

282 L. Bauer et al.

2.1 Generation and Runtime Scheduling of Online Tests

PRET is designed to exhaustively test the underlying hardware structure in the
reconfigurable fabric (e.g., logic resources in CLBs) periodically or on-demand. For
PRET, an array-based structural test approach is used to generate test configurations
for the exhaustive test of all logic resources in a reconfigurable region [1, 5]. Addi-
tional PRET test configurations are generated to target the application-dependent
interconnects [6].

Since errors may also occur during the loading of bitstreams (e.g., due to faults
in the configuration logic or transient events like SEUs), the configured function
of the targeted region may be wrong or the configuration in other parts of the
reconfigurable fabric may be adversely altered. For this reason, PORT is designed
to perform at-speed functional tests on accelerators after their instantiation to ensure
that they were configured correctly. At runtime, PORT also periodically checks the
accelerators for malfunctions due to emergent permanent faults or soft errors in
the configuration memory. An Automatic Test Pattern Generation (ATPG) tool is
used to generate accelerator-specific test patterns to target the LUTs, combinational
functions, and sequential elements in CLBs, as well as interconnects. The stuck-
at fault model is used for components for which sufficient structural information
is available to derive the faults and for the interconnects. For the remaining
components, structural and cell faults are targeted during test generation resulting
in a hybrid fault model [6].

Figure 5 shows the proposed online test flow for a reconfigurable fabric with three
regions. In the first step (Fig. 5a), the runtime system decides that an accelerator
shall be reconfigured into a particular region, which triggers the demand to test the
hardware structures in that region before the actual configuration of accelerators
(the so-called on-demand PRET). To exhaustively test all reconfigurable resources
in the region, multiple test configurations (TCs) are required. The runtime system
can choose to execute PRET incrementally to reduce the delay, applying only a
subset of TCs (possibly none) prior to an accelerator reconfiguration. In practice,
on-demand PRET-TCs are only scheduled after a certain number of accelerator
configurations (ACs) have been configured. To reduce the impact on the application
performance due to unavailable regions, PRET is only executed at times when the
system needs to be reconfigured anyway. The runtime system tracks which TCs were
applied to a region in the past and how much time passed since the last exhaustive
PRET. Depending on this history, it activates PRET prior to an AC, reconfigures
the selected TCs into the region, and uses TPG and ORA of the Test Manager to
exercise the region (Fig. 5b).

In addition to on-demand PRETs, the runtime system also schedules periodic
PRETs to ensure that seldom-reconfigured regions are properly tested. Note that
PRET also needs to be executed regularly for regions that the application only
reconfigures once and then never again (e.g., if the application only consists of
one kernel; see Sect. 1.1). The reason is that PORT—despite its generally high
fault coverage (see [6])—cannot always identify all faults. For instance, when an

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 283

Test manager

PORT

Test manager

PORT PRET

Runtime
System

Recon-
fig port

Bit-
streams

Runtime
System

Bit-
streams

Test manager

PRET

Runtime
System

Recon-
fig port

Bit-
streams

PORT

Test manager

PORT PRET

Reconfigurable Fabric Reconfigurable Fabric

Reconfigurable Fabric Reconfigurable Fabric

a) binding accelerator to region b) PRET configuration and online test

c) accelerator configuration d) initial and periodic PORT

Recon-
fig port

Recon-
fig port

Bit-
streams

PRET

Runtime
System

Fig. 5 Test flow with PRET and PORT (based on [6])

accelerator contains internal state, it is not always possible to apply an input value
that propagates a possibly faulty value to an observable output. The periodic PRET
is implemented using a timer interrupt and a handler that consists of two phases:
(1) triggering the reconfiguration of a TC for a particular region and (2) executing
PRET after the TC is reconfigured.

If no structural fault is found by PRET, the runtime system reconfigures the
desired accelerator into the region (Fig. 5c). Before the accelerator is used by
the application, the runtime system triggers an on-demand PORT (Fig. 5d) to test
whether the reconfiguration process has completed without error. Additionally,
accelerators instantiated in other regions are tested as well to check that they
were not adversely affected by the reconfiguration. As PORT does not require
any reconfiguration of TCs, it operates significantly faster than PRET and is also
scheduled periodically during normal operation.

2.2 Online Test Integration

The test manager, TPG, and ORA are integrated into the reconfigurable architecture
and coupled to the interconnect for the reconfigurable fabric such that commu-
nication channels between the regions and the test manager can be established.
PRET and PORT are implemented as dedicated test-SI. In the base architecture,
all SIs implicitly configure the interconnect infrastructure for the required data-flow

284 L. Bauer et al.

among accelerators and the system. The test-SIs reuse this mechanism to establish
the connections between the test manager and the regions under test.

When the runtime system initiates a test-SI, the test parameters such as the target
region or selection of test patterns are sent as the SI input data from the register file
of the processor to the test manager. The test manager then generates the patterns by
the TPG or sends stored patterns to the regions. While the PRET responses are sent
back to the test manager for comparison, the PORT responses are compacted locally
in space and time using a 32-bit multiple input signature register (MISR). The MISR
is integrated into the interconnect infrastructure such that the outputs and the bus
interface of a region are tested as well. After the test, the locally stored signatures are
transferred to the test manager and compared with the expected signatures that are
specific for each accelerator. At the end of PRET, the pass/fail information is written
back to the register file of the processor. On-demand PORT is executed directly after
an accelerator configuration to assure that the reconfiguration process completed
without error and that the configured accelerator delivers the expected functionality.
As PORT tests all configured accelerators in one test session, errors in the other
accelerators, e.g., due to address decoder faults, are detected as well.

2.3 Experimental Evaluation

The effectiveness of PRET and PORT as well as the impact on the system
performance is evaluated for the targeted platform. A test session consists of
multiple test configurations (TCs) as shown in Table 1. In total nine TCs are required
to test all logic primitives in the CLBs [1], and another nine TCs are required to test
the interconnects of the accelerators of the H.264 application [6]. Each TC tests
a subset of the logic primitives in the CLBs of a region or a set of interconnects
used by the accelerator to be configured (Column 2). Columns 3 and 4 give the area
overhead of PRET and the size of the generated partial bitstreams. The total area
overhead introduced by PRET for all TCs is 17 CLBs. That is a one-time overhead
to implement the test-pattern generator (TPG) and output response analyzer (ORA)
for PRET, independent of which reconfigurable region is to be tested, whereas the
other numbers in the table are per reconfigurable region. Note that the configuration
time with tens of thousands of cycles dominates the actual application of the test
patterns (Column 6).

The PRET overhead for the interconnect TCs is not applicable as the determin-
istic patterns are not generated by a TPG but stored similar to PORT patterns. The
responses are compacted in the MISR introduced for PORT. In total 3780 bytes
are required to store the test patterns of all interconnect TCs together with their
signatures. The interconnect test reaches a fault coverage of up to 100% with the
lowest being 98.28% [6].

The application performance loss introduced by PRET depends on the test
frequency and number of reconfigurable regions. In this experiment, architectures

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 285

Table 1 Test configurations for CLBs and interconnects for reconfigurable regions of 4 × 20
CLBs (based on [6])

PRET over- Bitstream Freq. Test length

TC Tested primitives head [CLBs] size [KB] [MHz] [Patterns]

1 LUT conf. as XOR, connected to
FF

2 24.0 207 64

2 LUT conf. as XNOR, connected to
FF

2 24.0 207 64

3 Carry MUX, interleaved with
MUX and latch

1 28.6 168 6

4 Carry MUX, interleaved with
MUX and latch

1 26.1 154 6

5 Carry XOR, interleaved with MUX
and FF

1 28.0 168 6

6 Carry XOR, interleaved with MUX
and FF

1 28.2 154 6

7 Carry-in/-out with multiplexed
scan chain

1 27.1 183 6

8 LUT conf. as SR with slice MUX 1 22.9 157 6

9 LUT conf. as RAM with slice
output

7 22.3 225 320

10–18 Interconnect and PIPs of 9
accelerators

n.a. 29.6 78.8–191.9 13–123

with 5 and up to 14 reconfigurable regions are considered. The PRET handler is
triggered every 1ms and performs PRET if a region has not been tested for 500ms.
The observed test latencies until a region is completely tested ranged from 3.8 to
8.1 s, i.e., emergent faults do not remain undetected in the system for longer than 1.9
to 4.05 s on average. Table 2 reports the PORT performance impact and test latency.
The upper part of the table shows the performance impact for PORT frequencies
from 143 to 1000Hz, i.e., test intervals from 1 to 7ms. For each PORT frequency,
the table shows the minimum and maximum performance loss of ten reconfigurable
systems with different number of regions (5–14). The performance overhead due to
PORT is very low (between 0.51% and 3.73%) and scales well with higher PORT
frequencies. The observed worst case test latency, which corresponds to the longest
untested time period of a region, is shown in the lower part of Table 2.

With PRET and PORT both enabled, the system is able to defend the configured
accelerators against structural faults induced by aging effects or latent faults and
transient events such as radiation [6]. For a PORT frequency of less than 100Hz,
the performance loss was dominated by the configuration frequency. After that
point, the PORT frequency dominates the performance loss. The highest observed
performance loss of only 4.4% occurs for a PORT frequency of 1000Hz and a
configuration frequency of 41Hz.

286 L. Bauer et al.

Table 2 Performance loss and worst case test latency under PORT (based on [6])

PORT application frequency [Hz]

143 167 200 250 333 500 1000

Performance loss min.a [%] 0.51 0.59 0.72 0.89 1.20 1.81 3.68

max.a [%] 0.56 0.63 0.75 0.92 1.23 1.85 3.73

Worst case test latencyb min.a [ms] 7.0 6.0 5.0 4.1 3.3 2.3 1.7

max.a [ms] 7.8 6.8 5.8 4.8 3.8 2.8 1.8
aSummarizing ten reconfigurable systems with 5–14 regions
bCorresponds to the longest time period in the whole runtime in which a configured accelerator
remains untested

3 Self-Repair by Module Diversification

Using PRET and PORT we can detect faults in the reconfigurable fabric. We now
present a design method called module diversification [21] that generates a set of
diversified configurations for each module/accelerator to tolerate any single-CLB
fault and part of multi-CLB faults. The diversified configurations of an accelerator
provide all the same functionality, but they vary in their CLB usage. They are
reconfigured into the region at runtime without performance degradation. If a faulty
CLB is detected, it is isolated from the system (i.e., a configuration is chosen that
does not use it) to avoid any errors.

3.1 Diversified Configurations

A module defines the logic functions to be implemented in a region which consists
of CLBs that are arranged regularly in a 2-dimensional array in the FPGA fabric.
The CLB usage of a configuration is described by a configuration matrix as shown
in Eq. (1) whose dimensions X × Y match the width X and height Y of a region
in CLBs. If a configuration uses a certain CLB, the corresponding element in
the matrix is 1, otherwise 0. For each module, a set C = {A1, · · · ,Aw} of
configurations matrices with different CLB usage is generated. To be able to tolerate
any single-CLB fault, this set of configurations must satisfy the completeness
condition (Eq. (2)), which ensures that for any CLB in a region at least one
diversified configuration Ai exists where the CLB is not used. Given that all
diversified configurations implemented in a X × Y region occupy the same amount
U(< X · Y) of CLBs (with at least one free CLB) a minimum number of wmin

configurations (Eq. (3)) is required for the completeness condition [21].

A =
⎡
⎣
1 1 1
1 1 0
0 0 0

⎤
⎦ (1)

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 287

∀x, y, 1 ≤ x ≤ X, 1 ≤ y ≤ Y : ∃Ai ∈ C with [Ai]x,y = 0 (2)

wmin := ⌈
X·Y

X·Y−U

⌉
(3)

Two configurations Ai ,Aj ∈ C are said to be maximally diversified if their
difference in the CLB usage is maximized. The max diversification condition [21]
states that for every configuration Ai ∈ C there exists a maximally diversified
configuration Aj ∈ C with a common number of CLBs:

∀i, 1 ≤ i ≤ wmin : ∃Aj ∈ C, j �= i such that

∑
x,y

(
[Ai]xy · [

Aj
]
xy

)
=

{
2U − X · Y if

(
U > 1

2X · Y
)

0 else.

(4)

3.2 Generation Algorithm

Algorithm 1 allows to generate maximally diversified configurations that satisfy the
completeness condition [21]. Starting from an initial configuration A1 (Line 1) of a
module, it incrementally generates diversified versions. A score matrix G stores

Algorithm 1 Generation of diversified configurations C

1. C := {A1} // A1 is the initial configuration (X × Y)

2. G := A1 // Score matrix G stores swapping priority of CLBs (X × Y)

3. Anew := A1
4. while |C| �= desired number of config. ∧ |C| �= (

XY
U

)
do

5. zero_elem_list := {(x, y) | [Anew]xy = 0} // unused CLBs
6. cand_list := {(x, y) | [Anew]xy = 1} // candidate list
7. sort cand_list in descending order according to the score in Gxy

8. for all (x, y) in zero_elem_list do
9. swap_candidates := {(p, q) | (p, q) ∈ cand_list and Gpq = Gcand_list[0]} //

all CLBs with the highest score
10. farthest_swap_candidate := (p, q) ∈ swap_candidates with max.

Manhattan distance between (x, y) and (p, q)
11. swap([Anew]xy, [Anew]farthest_swap_candidate)
12. cand_list.pop(farthest_swap_candidate)
13. if cand_list = ∅ then
14. break
15. end if
16. end for
17. while Anew ∈ C do
18. swap a random zero- with random one-element in Anew
19. end while
20. G := G + Anew // update CLB score
21. C := C ∪ {Anew}
22. end while

288 L. Bauer et al.

for each CLB the number of available diversified configurations in C that use
the respective CLB resources. The new configuration matrix Anew is initialized
by A1 and modified in the inner loop (Lines 8–16) by swapping zero- and
one-elements. The loop iterates over each element in Anew and swaps all zero-
elements with one-elements in an order given by the score matrix (Line 7). If a
CLB has a higher score, it is used more often in the diversified configurations.
Thus the corresponding one-element in Anew will be swapped first. If CLBs have
the same score, the distance-wise farthest one from the current zero-element is
swapped first (Lines 9–11) so that the used CLBs are located near each other in
the resulting configuration. The first wmin generated configurations correspond to
the minimal set of configurations [21]. More configurations can be generated to
achieve higher reliability or more alternatives during stress balancing (see Sect. 4).
Random swapping in Line 18 allows to shuffle CLBs with different stress profiles.
The algorithm terminates when either the desired number of configurations or all
possible configurations have been generated.

3.3 Experimental Evaluation

To evaluate the reliability improvement and timing costs, the presented method is
applied to a set of functional modules from the MCNC benchmark suite [20] and
OpenCores.1 The dimensions of the reconfigurable regions were chosen as 20 CLBs
in height (80 CLBs for large modules) and 3–13 CLBs in width, which provides
different degrees of CLB redundancy. For each module and region size the minimal
set of configurations is generated using the proposed module diversification method.
Since the design method applies additional constraints to prohibit certain CLB
placements (PROHIBIT commands in Xilinx tools), additional routing effort is
introduced that can affect the maximum clock frequency. To assess the impact on the
system performance, the maximum frequency of diversified modules was compared
to the original configuration. Initially, the clock frequencies of the modules ranged
from 122.4MHz (apex2) to 150.8MHz (pdc). Experiments show that the timing
penalty of the diversified configurations ranges from 0.04% (aes_core) to 9.7%
(misex3). While the maximal frequency is given by the slowest configuration of
a module, the original implementation also belongs to the configuration set and can
be used when full performance is required. Also, if the system frequency is lower
than the maximal frequency of the diversified modules, there are no timing penalties
at all. Thus, module diversification is a promising approach to obtain fault tolerance
without additional area overhead and little to no cost in system performance.

The reliability of an entity is the probability that the entity can operate without
failure over a time period t . Without any fault-tolerance techniques applied, the
overall reliability of a module with U CLBs depends on the reliability RCLB(t) of
each individual CLB (Eq. (5)). With module diversification, the reliability of the

1https://www.opencores.org.

https://www.opencores.org

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 289

module changes, as shown in Eq. (6). The first term states the probability that all
CLBs are fault free. The second term aggregates all possible scenarios of multiple
fault occurrences until all CLBs become faulty. The fault coverage Cf ∈ [0, 1] is
the fraction of f -CLB faults which are detected by an online test or concurrent error
detection scheme such that reconfiguration with a diversified configuration allows
to continue the operation. The fraction of f -CLB faults which can be tolerated with
the set of available configurations is denoted by αf ∈ [0, 1].

RNo_FT (t) = (RCLB (t))U (5)

RDiv (t) = RCLB (t)XY +
XY∑
f =1

Cf αf

(
XY

f

)
(1−RCLB(t))f RCLB(t)(XY−f)

Probability that f -fold CLB failures can be tolerated

(6)

We use the module apex4 for the reliability analysis. Without fault-tolerance
measures, the module has a very low reliability (≈0.91). Figure 6 shows the
module reliability for a varying number of configurations and region sizes with
CLB reliability RCLB(t) = 0.999 and Cf = 1.0. The region size varies from
20 × 6 to 20 × 9 CLBs and corresponds to CLB redundancies from 22.4% to
111.8%. Larger region sizes reduce the overall module reliability since they have
increased probability of a faulty CLB. By using diversified configurations, the
module reliability increases dramatically. As shown, the tolerance of f -CLB faults
rises with increasing number of configurations and very high module reliability is
achieved (>0.999).

5
10

15
20

0
20

40
60

80
100

0.992

0.994

0.996

0.998

1

0.994

0.995

0.996

0.997

0.998

0.999

Number of configurations
CLB redundancy [%]

Re
lia

bi
lit

y
of

 M
od

ul
e

Fig. 6 Module reliability of apex4 for different ratios of CLB redundancy and number of
configurations with CLB reliability 0.999 (based on [21])

290 L. Bauer et al.

3

6

12

24

48

96

192

384

0,9990 0,9992 0,9994 0,9996 0,9998

Re
lia

bi
lit

y
Im

pr
ov

em
en

t
Fa

ct
or

 (
lo

g
sc

al
e)

CLB Reliability

pdc
misex3
alu4
apex4
apex2
aes_core
des_perf

Fig. 7 Reliability improvement factor after module diversification (based on [21])

To estimate the effectiveness of the module diversification, the reliability
improvement factor (RIF) is used [15]. The RIF is the ratio of the failure probability
of the original system and the failure probability of the fault tolerant system using
diversified module configurations (Eq. (7)). Figure 7 plots the RIF for the five
investigated modules and CLB reliabilities ranging from 0.9990 to 0.9999. As
shown, the proposed design method achieves reliability improvement factors of up
to 330×.

RIF := 1 − RNo FT

1 − RDiv

(7)

4 Prolonging Lifetime via Stress Balancing

In addition to reacting on detected faulty CLBs (e.g., by using diversified modules as
in Sect. 3), it is of crucial importance to proactively delay the occurrence of perma-
nent faults (or increasing transistor switching delay) by aging mitigation via stress
balancing. Different aging mechanisms have been reported for the current genera-
tion of CMOS designs, as discussed in Sect. 1. The main causes of these effects are
environmental and electrical stress. Stress can be induced in different ways, e.g.,
through the presence of strong electrical fields or high current density [17, 18].
We propose the novel STRess-Aware Placement method STRAP that reduces
the peak stress by aging mitigation. It combines complex offline optimizations
at synthesis time with situation-dependent adaptation at runtime to optimize the
intra- and inter-region stress distribution simultaneously. At runtime, STRAP places
accelerators to different reconfigurable regions (i.e., it decides to which region they
shall be reconfigured) while considering the induced intra- and inter-region stress
distribution simultaneously. At synthesis time, STRAP diversifies stress during

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 291

place-and-route by preventing overlapping of high stress CLBs from different
accelerators, which further improves the intra-region stress distribution at runtime.

4.1 Overview of the Stress-Aware Placement Method STRAP

The MTTF of a system is constrained by the component with the highest stress
[17]. In order to prolong the MTTF of a reconfigurable fabric, stress accumulation
on individual resources need to be avoid to reduce the peak stress. Figure 8a shows
a typical reconfigurable fabric with 8 reconfigurable regions and 4 × 20 CLBs per
region. The figure visualizes the distribution of HCI stress after running an H.264
video encoder. Higher HCI stress corresponds to more toggles per second of a
transistor (see Sect. 1). For each CLB, the highest toggle rate of any transistor is
identified and plotted in a color-scale from 0 (low stress, bright gray) to 20 million
toggles per second (high stress, dark red). It is noticeable that several CLBs are
not used (e.g., most parts of region 5), whereas some CLBs in region 1 contain
transistors that are highly stressed. The latter represent stress hotspots where high
stress accumulates in some of the components in the fabric which have a higher
chance to fail much earlier than others, hence reducing the MTTF of the system.

The basic idea of STRAP is to place accelerators such that the maximal stress
is minimized. Our method abstracts stress to the granularity of CLBs, whereas the
evaluation of our method in Sect. 4.6 considers stress at transistor granularity. If the
stress from a stress hotspot can be distributed to less stressed CLBs (like in region 5

Reconfigurable region ID

Maximal transistor toggle rate of the CLBs

1 2 5 6 7 8

One reconfig.
region

- 20

- 0

- 10

- 5

- 15

◄

Low stress

18.8--

High stress

[m
ill

io
n

to
gg

le
s/

s]

Internal struc-
ture of a CLB

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

...

One CLB

(a) without stress balancing

Reconfigurable region ID

Max. trans. toggle rate of the CLBs

1 2 7 8

◄-- 2.8

- 20

- 0

- 10

- 5

- 15

Low stress

[m
ill

io
n

to
gg

le
s/

s]
High stress

(b) with STRAP

Fig. 8 Transistor stress distribution in a reconf. fabric with eight regions; each region consists of
4 × 20 CLBs with 8 LUTs each (same setup as for evaluation); the color of a CLB corresponds
to the highest toggle rate of any of its transistors; the symbol “filled triangle right” on the scale
denotes the maximum stress over all regions (based on [22]). (a) Conventional execution without
stress balancing. (b) Stress-aware placement in STRAP

292 L. Bauer et al.

...

Online Monitoring

Reconfigurable Regions

Applica�on

Accelerator
exec. profiles

Accelerator
stress profiles

Accelerator
configura�ons

Profiling Stress
es�ma�on

Synthesis (offline)

Logic
placement

Accelerator
database

Accelerator
exec. & stress

profiles

Accelerator
execu�on &
idle cycles

Reconfigura�on

Run�me (online)

Accelerator
placement

Hardware Architecture

Fig. 9 Overview of the stress-aware placement method (based on [23])

in Fig. 8a), then the maximum stress in the reconfigurable regions is reduced (like
in Fig. 8b), leading to increased MTTF.

Figure 9 provides an overview of the stress-aware placement method STRAP,
showing the synthesis time techniques, the runtime techniques, and how they
interact with the hardware architecture of a reconfigurable system. For logic
placement at synthesis time, the challenge is to place-and-route accelerators in a way
that supports stress balancing at runtime, but without having runtime information.
STRAP first performs an offline application profiling of each application kernel to
obtain estimates on (1) how often accelerators will be executed relative to each
other and (2) how long each accelerator executes to finish its task. This information
is used to steer runtime accelerator placement (Sect. 4.3) and synthesis time logic
placement (Sect. 4.4).

Based on the accelerator configuration after place-and-route, the stress estimation
process in Fig. 9 analyzes the signal activities in all CLBs used by the accelerator
to obtain the information how much stress it induces to a reconfigurable region.
Accelerator execution and stress profiles are stored together with the accelerator
bitstreams in main memory for runtime decision making.

At runtime, STRAP decides into which reconfigurable region an accelerator shall
be reconfigured, whenever the application demands different accelerators. It per-
forms online monitoring of each region to track when the region was reconfigured
last and how often the currently reconfigured accelerator was executed. Whenever
a region is reconfigured, the execution counter and reconfiguration timestamp are
read and reset. Together with the accelerator stress profile created at synthesis
time, STRAP then calculates the exact stress state for all CLBs of the region. This
information is used to decide the runtime accelerator placement.

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 293

4.2 Representation of Stress

Stress Granularity In order to handle the transistor stress in an algorithmic way,
it needs to be represented compactly to allow an efficient runtime computation for
the stress states of regions and the placement decision making. The transistors of
a reconfigurable region are stressed by the reconfigured accelerator in a way that
is determined by its logic functionality and input signal patterns. As the number of
transistors in a region may be huge, the stress experienced by individual transistors
is lumped to CLB granularity for the stress-aware placement method. CLB stress is
defined as the sum of the stress experienced by all transistors in a CLB. With this
definition, CLB stress preserves the additive property of transistor stress, i.e., the
total stress a CLB experienced from different accelerators is the sum of the induced
stress from individual accelerators.

Stress Accumulation With the established stress properties (see Sect. 1), the stress
in the reconfigurable fabric can be described in a formal way. The stress state of
a reconfigurable region (as it is visualized in Fig. 8) is denoted as matrix S, where
each entry represents the stress experienced by the corresponding CLB in the region.
The stress that a particular accelerator induces per clock cycle is obtained from
offline stress estimation and called unit stress, denoted by a matrix of the same
size as S. In general, the stress increase due to the work done by an accelerator
is shown in Eq. (8). Matrices sunitexec and sunitidle denote the unit stress induced by the
accelerator during execution or idle time and Sect. 4.6 explains how we use aging
models to obtain these values by power/temperature analysis of placed-and-routed
accelerators. Scalars τexec and τidle denote the number of clock cycles when the
accelerator is executing or idle.

s := τexecsunitexec + τidlesunitidle (8)

The values for τexec and τidle are obtained from offline application profiling to
construct the stress matrices (Eq. (8)) for every accelerator. The runtime system
uses them to determine how much stress an accelerator would induce to a region
before actually placing it. It also uses online monitoring (see Sect. 4.1) that provides
the actual number of accelerator executions and idle times for each region after
a computational kernel finished execution. This allows to keep track of the actual
stress that a region experienced, which is the starting point for the next placement
decision.

4.3 Runtime Accelerator Placement

The reconfigurable fabric consists of N equally sized rectangular regions. During
runtime, the application requests to configure M ≤ N accelerators to speed up
its computational kernels. The runtime system has to decide to which regions the
M accelerators shall be configured, by first deciding which N −M regions shall

294 L. Bauer et al.

not be reconfigured, e.g., by using a least recently used replacement policy. The
decision to which of the remaining regions an accelerator is placed does not affect
the application performance, but it affects the stress applied to the regions.

Each region contains X × Y CLBs with an (x, y) coordinate. The stress
experienced so far by the CLBs in region k is denoted as [Sk]xy and the stress that
will be induced by an accelerator j is denoted as [sj]xy (see Eq. (8)). It depends on
how often the accelerator will be executed, as determined by offline profiling (see
Sect. 4.1). If an accelerator j is placed into region k, then the accelerator executions
increase the stress state of the region to S′

k = Sk + sj. The challenge is to place
each accelerator to a region, such that upon completion of the application kernel
the maximum CLB stress over the N regions is minimized, i.e., maxk,x,y [S′

k]xy is
minimized. It can be easily seen that the strict lower bound of the maximum CLB
stress is given by Eq. (9), which is reached if and only if the stress is uniformly
distributed over all CLBs. To achieve this at runtime, we propose a heuristic that
follows these two rules: (1) maximal utilization of under-stressed CLBs within one
region, i.e., the stress shall be evenly distributed among different CLBs within the
region (intra-region distribution) and (2) avoid placing high stress accelerators into
highly stressed regions, i.e. the stress shall be evenly distributed among different
regions (inter-region distribution). The heuristic uses a profit function (Eq. (10)) for
placing accelerator j into region k that considers the stress distribution within one
region and across all regions, respectively.

1

NXY

⎛
⎝

N∑
k

∑
x,y

[Sk]xy +
M∑
j

∑
x,y

[
sj

]
xy

⎞
⎠ (9)

Profitjk = Profitintra
jk + Profitinter

jk (10)

To calculate Profitintra
jk , the average CLB stress in region k is determined as

AvgStressk and then used to calculate the absolute deviation of the stress of CLBxy

in region k from AvgStressk . The sum over all CLBs in region k denotes the
intra-region stress imbalance. It is calculated (1) before placing accelerator j to
region k and (2) after hypothetically placing it. The difference of these two values
corresponds to the degree of increased stress imbalance if placing accelerator j to
region k and is used as Profitintra

jk . The idea for Profitinter
jk is very similar. There, the

stress of region k is compared with the average stress of all regions before and after
hypothetically placing accelerator j to region k [22].

The stress-aware runtime accelerator placement iterates over all required accel-
erators. In each iteration, it calculates the profits of placing the accelerator into all
available regions and then places the accelerator into the region that provides the
highest profit. The complexity of this algorithm is O (

M2XY
)
. If the application

does not reconfigure a region for a longer time, then this region would be constantly
stressed by one accelerator without stress redistribution. As a solution, the runtime
accelerator placement forces that region to be reconfigured after a user-defined time
period that should not be too short to prevent increased reconfiguration overhead

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 295

and also not too long to avoid stress accumulation. For instance, a time period of
100 million cycles (1 s at 100MHz) is short enough to avoid aging accumulation
and the induced application performance degradation is only 0.21%.

4.4 Synthesis Time Logic Placement

Our runtime accelerator placement uniformly distributes the stress over all reconfig-
urable regions, compared to the stress-unaware placement. The maximal transistor
toggle rate is reduced by more than 73% from 18.8 million toggles/s (see Fig. 8a)
down to 5.0. However, when high stress CLBs of different accelerators overlap
at the same relative (x, y) location, the runtime accelerator placement cannot
achieve intra-region stress distribution. STRAP addresses this problem by applying
placement constraints at synthesis time to diversify (similar to Sect. 3.1) the CLB
usage among different accelerators, which reduces the overlapping of high stress
CLBs. To minimize the timing impact on accelerators, STRAP only constrains
which CLBs shall be used and leaves everything else to the vendor place-and-route
algorithm.

The logic placement algorithm (Algorithm 2) diversifies the high stress CLBs of
different accelerators to different CLB locations in the regions. First, unconstrained
configurations of all accelerators are generated (Lines 1–5). For each accelerator

Algorithm 2 Stress-diversifying logic placement
Input: List of accelerators Acc.
1. for j := 1 to len(Acc) do
2. Place-and-route Acc[j] without any placement constraints
3. sj := get_stress(Acc[j])
4. Acc[j].max_freq := get_max_freq(Acc[j])
5. end for
6. Acc := sort_ascending(Acc, key=max_freq)
7. R := s1
8. for j := 2 to len(Acc) do
9. prohibit_xy := ∅
10. for x := 1 to Acc[j].n_cols do
11. for y := 1 to Acc[j].n_rows do
12. if Condition Eq. (11) is satisfied for (x,y) then
13. prohibit_xy.add((x,y))
14. end if
15. end for
16. end for
17. Place-and-route Acc[j] with prohibited CLB locations listed in prohibit_xy
18. if Place-and-route failed then

19. prohibit_xy.remove

(
argminxy∈prohibit_xy

{[
R̂ + ŝj

]
xy

})

20. goto Line 17
21. end if
22. R := R + get_stress(Acc[j])
23. end for

296 L. Bauer et al.

configuration the CLB stress is estimated (see Sect. 4.2), and the maximal achievable
frequency is extracted from the place-and-route log files (Lines 3–4). The generated
initial configurations are then sorted in ascending order of their maximal achievable
frequencies (Line 6). The fabric typically runs at the frequency of the slowest
accelerator fmin. In order to minimize the impact on system performance, it is
placed and routed without stress-diversifying placement constraints. Its CLB stress
distribution is taken as the initial reference distribution (Line 7). As long as the
proposed logic placement does not reduce the frequency of an accelerator below
fmin, there is no performance impact/penalty for the whole system. During the
generation of other accelerator configurations, R keeps track of the sum of the stress
distribution of all j−1 previously generated accelerators, i.e., R = ∑j−1

i=1 si.
The remaining accelerators will be placed-and-routed again in ascending order

of their maximal frequencies (Lines 8–23). To avoid that high stress CLBs of
the currently placed accelerator Acc[j] overlap with those in previously placed
accelerators Acc[1],...,Acc[j-1], we prohibit the placement to specific
CLB locations for Acc[j] (Lines 9–17) if Eq. (11) is satisfied, where Lj is the
number of used CLBs by the currently place-and-routed accelerator Acc[j]. R̂
and ŝj are normalized stress matrices of R and sj. In earlier iterations, the reference
distribution is less even, which implies that few CLB locations in the reference
distribution have much higher values than the others, and therefore it is less likely
that the condition in Eq. (11) is satisfied. In turn, fewer locations are prohibited
for placement in earlier iterations, which implies less timing impact on slower
accelerators. If place-and-route fails due to too many prohibited CLB locations,
the locations xy where the stress overlapping [R̂ + ŝj]xy is lowest are removed
from prohibit_xy (Line 19), and place-and-route is re-executed with the relaxed
constraints.

[
R̂

]
xy

>
1

Lj

∑
uv

[ŝj]uv

with R̂ = R
maxuv [R]uv

and ŝj = sj
maxuv

[
sj

]
uv

(11)

With synthesis time stress diversification, high stress CLBs from different
accelerators are placed to different CLB locations, and thus better intra-region
stress distribution can be achieved during runtime placement. After applying both
stress-aware runtime placement and synthesis time stress diversification for dynamic
stress, the maximal transistor toggle rate is further reduced by additional 44% from
5.0 million toggles/s down to 2.8 (see Fig. 8b).

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 297

4.5 Extended Accelerator Placement with Module
Diversification

The module diversification method (see Sect. 3) generates a set of configurations for
each accelerator that are diversified in terms of CLB usage. This not only allows to
tolerate any single-CLB fault in a region but can also improve the stress distribution
with the extra CLB diversity. When faults are detected in the reconfigurable fabric,
the placement freedom of accelerators is reduced. The placement freedom of an
accelerator corresponds to the number of regions for which the accelerator has
at least one diversified configuration that can be placed into that region (i.e., that
tolerates the permanent faults in that region). Such a region is called a compatible
region. If the available regions (i.e., those into which no accelerators are placed by
the placement algorithm so far) have rather many permanent faults, it can happen
that no configuration of the accelerator can be placed into any of them. If an
accelerator cannot be placed, then its hardware functionality has to be emulated in
software on the processor pipeline, which comes at a significant performance loss.

To avoid such situations, the runtime accelerator placement (see Sect. 4.3) is
modified to place the accelerators one after the other in ascending order of their
number of compatible regions. If it comes to the situation that some accelerator
cannot be placed into the available regions, then the algorithm re-evaluates some
of its previous placement decisions (note that the actual reconfigurations are just
started after all placements are finally decided). It tries whether it can swap one
of the already placed accelerators into one of the still available regions such that
accelerator can be placed into the region that became free due to swapping. When
calculating the placement profit (see Eq. (10)), the algorithm also iterates through all
diversified configurations to find out which configuration of the accelerator produces
the highest placement profits.

4.6 Experimental Evaluation

For prototyping purposes, we have integrated STRAP into the Xilinx tool-chain
and the runtime system of the target reconfigurable architecture. In our evaluation
platform, each region consists of 4 × 20 CLBs with eight 6-input LUTs per CLB.
STRAP performs optimizations on CLB granularity. To evaluate the actual stress
for each transistor, a transistor-level model of LUTs using NMOS pass transistors
for multiplexers is used [22]. To evaluate the threshold voltage shift due to stress,
state-of-the-art aging models are employed (detailed equations and used parameters
are given in [22]). The resource usage of each accelerator within one region for the
H.264 application ranges from 8.8% to 66.3%. Our architectural simulator is used to
evaluate the STRAP method for systems that differ in the number of reconfigurable
regions and runtime strategies, and to compare it with related work.

298 L. Bauer et al.

Evaluation Flow The placed-and-routed accelerators are fed to Xilinx XPower
analyzer to obtain the signal activities and power consumption of logic elements and
nets. The power consumption is then aggregated to CLB granularity by summing
up the power consumed by LUTs and their fan-in nets in one CLB. The leakage
power of a region is proportional to its size. Architectural simulation produces the
accelerator execution trace, i.e., the complete execution and idle history of each
accelerator in each region. Together with the power profile of each accelerator, we
obtain the power trace of each CLB. The power trace and the fabric floorplan of
the FPGA2 are then fed into Hotspot3 [14] to obtain the temperature trace of each
CLB, which will be used to evaluate the threshold voltage shift. The accelerator
execution trace and the LUT signal activities of each accelerator are combined to
calculate the LUT signal activities for the regions. This is then used to evaluate the
stress of individual transistors by using the before-mentioned LUT transistor model.

The number of regions is varied from 5 to 12 and separate evaluation is performed
for dynamic and static stress mitigation, since STRAP optimizes either for dynamic
or for static stress. The baseline system does not use any stress distribution
method. For comparison, two state-of-the-art stress distribution methods [3, 21]
were implemented. Zhang et al. [21] use three different configurations for each
accelerator and switch between them to migrate stress, whereas Angermeier et al.
[3] consider the peak stress of regions to place an accelerator. As proposed for
STRAP, Angermeier et al. [3] and Zhang et al. [21] were extended to replace an
accelerator if its reconfigurable region has not been reconfigured for 100 million
cycles (see Sect. 4.3). This improvement reduces the peak stress of [3, 21] and
thus makes the comparison with state-of-the-art more competitive. Regarding
temperature variation, a conservative comparison is performed. To calculate the
threshold voltage shift for [3, 21], the lowest temperature that was observed for
any CLB at any time in the obtained temperature trace is used as the constant
temperature for all CLBs, while the highest observed temperature is applied for
STRAP. Thus, the threshold voltage shift reported for [3, 21] is a lower limit,
whereas the one for STRAP is a conservative upper limit.

Timing Overhead STRAP’s stress-diversifying logic placement at synthesis time
may affect the accelerator frequency. The place-and-route tool is given a target
frequency of 250MHz as timing constraint to obtain the maximum operating
frequency of each accelerator. On average, the maximum accelerator frequency
decreases by 7%. Since accelerators with longer critical path (lower maximum
frequency) are imposed with fewer constraints (see Sect. 4.4), their maximum
frequencies are less affected. The maximum system frequency is however limited by
the accelerator with the longest critical path (in our case the PointFilter accelerator,
which runs at fmin = 89MHz). Therefore, STRAP has no negative timing impact
on the system.

2Based on a high-resolution die image acquired from https://chipworks.com (now https://
techinsights.com).
3Smallest possible heat spreader and heat sink with 10 µm thickness, ambient temperature 50 ◦C.

https://chipworks.com
https://techinsights.com
https://techinsights.com

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 299

Number of reconfigurable regions

Tr
an

sis
to

r t
og

gl
e

ra
te

 [m
ill

io
n

to
gg

le
s/

s]

5 6 7 8 9 10 11 12
0.1

1

10

100 Lighter color:
max. stress

Darker color:
avg stress

STRAPZhang et alAngermeier et al.Baseline .

Fig. 10 The dynamic stress in systems with different number of reconfigurable regions when using
our STRAP approach compared to the baseline, Angermeier et al. [3] and Zhang et al. [21] (based
on [22])

Stress Reduction andMTTF Improvement Figure 10 shows the maximal (lighter
color) and average (darker color; arithmetic mean) dynamic transistor stress,
measured in million toggles/s, in the whole reconfigurable fabric for systems with
different number of regions. It shows that all methods reduce the average stress
compared to the baseline because they all distribute the stress to more transistors.
While the reduction of the average stress is similar for all three methods, the
reduction of the maximal stress (i.e., the critical part for system mean time to
failure (MTTF)) differs significantly and requires both runtime and synthesis time
optimization. The reason is that Angermeier et al. [3] perform only runtime inter-
region stress distribution, while Zhang et al. [21] perform only synthesis time
intra-region stress distribution for individual accelerators. In contrast, STRAP
performs cross-layer stress-aware placement at runtime and synthesis time, which
leads to the highest reduction of maximal stress in all evaluated cases. The reduction
of the maximum stress by STRAP is up to 64% and 35% higher than the closest
competitors w.r.t. dynamic and static stress, respectively. Table 3 summarizes the
stress reduction.

Although during optimization only one type of stress is considered, actually both
types of stress are reduced simultaneously. With STRAP targeting the static stress
distribution, a reduction of 52% in dynamic and 38% in static stress is observed.
When targeting dynamic stress, STRAP delivers 82% reduction in dynamic stress
and 21% reduction in static stress. The reason behind the reduction of both stress
types is that STRAP implicitly distributes the transistor usage as well, which reduces
the individual static and dynamic transistor stress.

300 L. Bauer et al.

Table 3 Reduction of avg./max. stress and MTTF increase of STRAP and state-of-the-art [3, 21]
compared to the baseline; averaged over all numbers of reconfigurable regions (based on [22])

Reduction of avg.
stress [%]

Reduction of max.
stress [%] MTTF improvement [%]

Strategy Dyn. Stat. Dyn. Stat. HCI BTI

Angermeier et
al. [3]

60.6 47.4 61.2 0.02 157.7 0.0

Zhang et al.
[21]

62.6 49.6 39.9 4.5 66.4 2.3

STRAP 67.9 59.6 80.5 33.1 413.0 13.4

The MTTF improvement due to the stress reduction is calculated by assuming
that a device fails when �Vth of any transistor exceeds 50% of its original value
(Vth0). The MTTF improvement due to dynamic and static stress reduction is
shown in the last two columns in Table 3. With the STRAP method, the MTTF
improvement relative to the baseline is 413% and 13% in average for HCI and BTI
aging, respectively. Relative to the closest competitors, STRAP achieves up to 177%
and 14% MTTF improvement w.r.t. HCI and BTI aging, respectively.

5 Conclusion

The dependable operation of runtime-reconfigurable architectures is threatened by
aging. This chapter presented novel methods to ensure reliable reconfiguration,
mitigate aging, and tolerate emerging faults in the reconfigurable fabric. The pre-
configuration online tests (PRET) and post-configuration online tests (PORT) check
with minor application performance loss, if the reconfigurable fabric is faulty
and if the reconfiguration process completed without errors during runtime. The
module diversification design method generates the minimal number of diversified
configurations required to tolerate at least any single CLB-fault in a reconfigurable
region. The cross-layer stress-aware placement method STRAP mitigates aging
by balancing stress both within a reconfigurable region as well as across all
reconfigurable regions in the system. Relative to the closest competitors, STRAP
achieves up to 177% and 14% MTTF improvement w.r.t. HCI and BTI aging. This
shows that intelligently considering and managing aging threats during runtime can
significantly improve the system dependability at limited overheads.

Acknowledgments This work is supported in parts by the German Research Foundation (DFG)
as part of the priority program “Dependable Embedded Systems” (SPP 1500—http://spp1500.itec.
kit.edu).

http://spp1500.itec.kit.edu
http://spp1500.itec.kit.edu

Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures 301

References

1. Abdelfattah, M.S., Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Zhang, H., Henkel, J.,
Wunderlich, H.-J.: Transparent structural online test for reconfigurable systems. In: IEEE
International On-Line Testing Symposium (IOLTS), pp. 37–42 (2012)

2. Amrouch, H., van Santen, V.M., Ebi, T., Wenzel, V., Henkel, J.: Towards interdependencies
of aging mechanisms. In: IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 478–485 (2014)

3. Angermeier, J., Ziener, D., Glaß, M., Teich, J.: Stress-aware module placement on reconfig-
urable devices. In: International Conference on Field Programmable Logic and Applications
(FPL), pp. 277–281 (2011)

4. Bauer, L., Shafique, M., Henkel, J.: Concepts, architectures, and run-time systems for efficient
and adaptive reconfigurable processors. In: NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pp. 80–87 (2011)

5. Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Zhang, H., Wunderlich, H.-J., Henkel,
J.: OTERA: Online test strategies for reliable reconfigurable architectures. In: NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp. 38–45 (2012)

6. Bauer, L., Braun, C., Imhof, M.E., Kochte, M.A., Schneider, E., Zhang, H., Henkel, J.,
Wunderlich, H.-J.: Test strategies for reliable runtime reconfigurable architectures. IEEE Trans.
Comput. (TC) 62(8), 1494–1507 (2013)

7. Bauer, L., Zhang, H., Kochte, M.A., Schneider, E., Wunderlich, H.-J., Henkel, J.: Advances
in hardware reliability of reconfigurable many-core embedded systems. In: Many-Core
Computing: Hardware and Software, pp. 395–416. Institution of Engineering and Technology
(IET) (2019)

8. Cao, Y., Velamala, J., Sutaria, K., Chen, M.S.-W., Ahlbin, J., Esqueda, I.S., Bajura, M., Fritze,
M.: Cross-layer modeling and simulation of circuit reliability. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. (TCAD) 33(1), 8–23 (2014)

9. Gaisler, A.: Homepage of the Leon Processor. Online available: https://www.gaisler.com/index.
php/products/processors/leon3. Accessed 13 Mar 2019

10. Guo, X., Burleson, W., Stan, M.: Modeling and experimental demonstration of accelerated self-
healing techniques. In: IEEE/ACM Design Automation Conference (DAC), pp. 1–6 (2014)

11. Gupta, P., Agarwal, Y., Dolecek, L., Dutt, N., Gupta, R.K., Kumar, R., Mitra, S., Nicolau, A.,
Rosing, T.S., Srivastava, M.B., Swanson, S., Sylvester, D.: Underdesigned and opportunistic
computing in presence of hardware variability. IEEE Trans. Comput. Aided Des. Integr. Circ.
Syst. (TCAD) 32(1), 8–23 (2013)

12. Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte, U., Chakraborty, S., Engel, M.,
Ernst, R., Härtig, H., Hedrich, L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel, P.,
Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O., Tahoori, M., Teich, J., Wehn,
N., Wunderlich, H.-J.: Design and architectures for dependable embedded systems. In: Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pp. 69–78 (2011)

13. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: lessons learnt and future trends. In: IEEE/ACM
Design Automation Conference (DAC), pp. 1–10 (2013)

14. Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.R.: HotSpot:
a compact thermal modeling methodology for early-stage VLSI design. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)

15. Lala, P.K.: Self-checking and Fault-Tolerant Digital Design. Morgan Kaufmann, San Francisco
(2001)

16. Mahapatra, S.: Fundamentals of Bias Temperature Instability in MOS Transistors: Charac-
terization Methods, Process and Materials Impact, DC and AC Modeling. Springer Series in
Advanced Microelectronics, vol. 52. Springer, New Delhi (2015)

https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3

302 L. Bauer et al.

17. Srinivasan, S., Krishnan, R., Mangalagiri, P., Xie, Y., Narayanan, V., Irwin, M.J., Sarpatwari,
K.: Toward increasing FPGA lifetime. IEEE Trans. Depend. Sec. Comput. (TDSC) 5(2), 115–
127 (2008)

18. Stott, E.A., Wong, J.S., Sedcole, P., Cheung, P.Y.: Degradation in FPGAs: measurement and
modelling. In: ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA), pp. 229–238 (2010)

19. Xilinx: Partial Reconfiguration User Guide, UG702 (v14.1) (2012)
20. Yang, S.: Logic synthesis and optimization benchmarks user guide: version 3.0. MCNC

Technical Report, Microelectronics Center of North Carolina (MCNC). https://ddd.fit.cvut.cz/
prj/Benchmarks/

21. Zhang, H., Bauer, L., Kochte, M.A., Schneider, E., Braun, C., Imhof, M.E., Wunderlich,
H.-J., Henkel, J.: Module diversification: fault tolerance and aging mitigation for runtime
reconfigurable architectures. In: IEEE International Test Conference (ITC), pp. 1–10 (2013)

22. Zhang, H., Kochte, M.A., Schneider, E., Bauer, L., Wunderlich, H.-J., Henkel, J.: STRAP:
stress-aware placement for aging mitigation in runtime reconfigurable architectures. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 38–45 (2015)

23. Zhang, H., Bauer, L., Kochte, M.A., Schneider, E., Wunderlich, H.J., Henkel, J.: Aging
resilience and fault tolerance in runtime reconfigurable architectures. IEEE Trans. Comput.
(TC) 66(6), 957–970 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://ddd.fit.cvut.cz/prj/Benchmarks/
https://ddd.fit.cvut.cz/prj/Benchmarks/
http://creativecommons.org/licenses/by/4.0/

	Online Test Strategies and Optimizations for Reliable Reconfigurable Architectures
	1 Introduction and Motivation
	1.1 Application Model
	1.2 Runtime-Reconfigurable Architectures

	2 Fault Detection Through Strategic Online Testing
	2.1 Generation and Runtime Scheduling of Online Tests
	2.2 Online Test Integration
	2.3 Experimental Evaluation

	3 Self-Repair by Module Diversification
	3.1 Diversified Configurations
	3.2 Generation Algorithm
	3.3 Experimental Evaluation

	4 Prolonging Lifetime via Stress Balancing
	4.1 Overview of the Stress-Aware Placement Method STRAP
	4.2 Representation of Stress
	4.3 Runtime Accelerator Placement
	4.4 Synthesis Time Logic Placement
	4.5 Extended Accelerator Placement with Module Diversification
	4.6 Experimental Evaluation

	5 Conclusion
	References

