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1 Introduction

Two tasks need to be solved when designing systems for safety-critical appli-
cation domains: firstly, the safety of the intended functionality (SoiF) must be
guaranteed. SoiF focuses on the ability of the system to sense its environment and
act safely. Achieving SoiF becomes a highly challenging task due to the rising
complexity of various safety-critical applications such as autonomous driving or
close robot–human interaction, which may require complex sensor data processing
and interpretation. Secondly, and no less important, the system must also always
remain or transit into a safe state given the occurrence of random hardware faults.
To achieve this requirement, the system must be capable of detecting as well as
handling or correcting possible errors. Safety standards such as ISO26262 for
road vehicles define thresholds on detection rates for different automotive safety
integration levels (ASIL) depending on the severity of a possible system failure,
the controllability by the driver, and the nominal usage time of the system. It
is commonly understood that safety-critical systems must be designed from the
beginning with the required error protection in mind [39] and that for general-
purpose computing systems, error protection is required to achieve dependable
computing [19, 21].
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Fig. 1 Main abstraction
layers of embedded systems
and this chapter’s major
(green, solid) and minor
(yellow, dashed) cross-layer
contributions

ap
pl
ica
tio
n

SW
/O
S

ar
ch
ite
ctu
re

cir
cu
it/
ga
te

ph
ys
ics

application

SW/OS

architecture

circuit/gate

physics

This requirement is becoming increasingly challenging as integrated systems—
following the continuous trend of Dennard scaling—become more susceptible to
fault sources due to smaller transistor dimensions and lower supply voltages. As
transistor dimensions scale down the charge stored in memory cells such as SRAM
or flip-flops decreases. Soft errors occur due to charge transfers when primary or
secondary particles from cosmic radiation hit the silicon [11]. This charge transfer
may lead to the corruption of the value stored in the cell. This is referred to as
a “soft error” as it does not permanently damage the cell. The vulnerability of
cells increases even further with shrinking supply voltage levels or sub-threshold
operation. Thus, for the design of safety-critical digital systems, the protection
against radiation-induced soft errors is a crucial factor to avoid unacceptable risks
to life or property.

This reality motivates methods that aim to increase the resilience of safety-
critical systems against radiation-induced soft errors in digital hardware. Common
protection techniques against soft errors either harden the memory elements to
reduce the probability of soft errors occurring or add redundancy at different layers
of the design (circuit, logic, architecture, OS/schedule, compiler, software, algo-
rithm) to detect data corruptions, which can subsequently be handled or corrected
by appropriate error handlers or recovery methods. Each protection technique adds
overheads and, hence, additional costs. Especially, adding protection techniques
on top of each other at all layers—not considering combined effects—may lead
to inefficient protection and non-required redundancy. The idea of cross-layer
resiliency is to systematically combine protection techniques that work collabo-
ratively across the layers of the system stack. The target is to find more efficient
protection schemes with the same soft error resilience at a lower cost than can be
reached by ignoring cross-layer effects. For this, cross-layer techniques combine
accurate evaluation of the soft error resilience with a broad cross-layer exploration
of different combinations of protection techniques. This work demonstrates how
to apply the cross-layer resilience principle on custom processors, fixed-hardware
processors, accelerators, and SRAM memories with a focus on soft errors. Its main
focus spans from application to circuit layer as illustrated in Fig 1. These works lead



Cross-Layer Resilience Against Soft Errors: Key Insights 251

to a range of key insights, important for realizing cross-layer soft error resilience for
a wide range of system components:

• accurate resilience evaluation is key, e.g., simulation-based fault injection at the
flip-flop level is required to accurately evaluate soft errors in logic,

• multi-level/mixed-mode simulation enables very efficient resilience evaluation
using fault injection,

• cross-layer resilience exploration must be customized for the component under
consideration such as a custom processor, uncore components, third-party pro-
cessor, accelerator, or SRAM,

• embedded applications such as control algorithms have inherent fault resilience
that can be exploited,

• circuit-level techniques are crucial for cost-effective error resilience solutions,
and

• existing architecture- and software-level techniques for hardware error resilience
are generally expensive or provide too little resilience when implemented using
their low-cost variants.

The chapter is structured as follows: first, evaluation methods using fault injection
are covered, followed by cross-layer resilience exploration. Finally, experimental
results are provided.

2 Evaluation of Soft Error Resilience Using Fault Injection

Fault injection is commonly used to evaluate soft error resilience. Radiation-induced
soft errors can be modeled as bit flips [23], which are injected into the system’s
memory cells such as flip-flops and SRAM cells. There exists a wide range of fault
injection methods, which will briefly be discussed in the following.

2.1 Overview on Fault Injection Methods

Hardware-based fault injection injects the fault in a hardware prototype of the
system. For example, a radiation beam experiment can be used to provoke faults
in an ASIC. This is a very expensive experimental setup, e.g., requiring a radiation
source such as used in [1]. The chip hardware can also be synthesized to an FPGA,
which is instrumented with additional logic to change bit values in the memory,
flip-flops, or combinational paths of the logic to inject a fault using emulation-
based fault injection [10, 13]. Embedded processors have a debug port to read out
their internal states such as architectural registers. These debug ports often also
enable the ability to change the internal states. This can be used to inject a fault
in the processor using debug-based fault injection [15, 41]. Software running on the
system can be used to mimic faults in software-implemented fault injection, e.g., as
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presented in [26, 30, 44]. The compiler can be used to instrument the binary with
fault injection code, for compiler-based fault injection, e.g., implemented in [18].
Simulation-based fault injection injects faults in a simulation model of the system.
It is commonly applied to investigate the error resilience of the system and, hence,
is the primary focus of this work.

2.2 Simulation-Based Fault Injection

Simulation-based fault injection provides very good properties in terms of par-
allelism, observability, and early availability during the design. Simulation-based
fault injection can be realized at different levels of abstraction. For gate-level fault
injection, the fault is injected into the gate Netlist of the system obtained after
logic synthesis. For flip-flop-level fault injection, the fault is injected into the RTL
implementation of the system. The fault impact is simulated using logic simulation,
e.g., as used in [12, 46]. In architectural-level fault injection, the fault is injected
either in a micro-architectural simulator or Instruction Set Simulator (ISS). Micro-
architectural simulators such as Gem5 [3] simulate all architectural and some micro-
architectural states such as pipeline registers of the processor, e.g., as presented
in [25], but usually do not accurately model the processor’s control logic. An ISS
usually only simulates the architectural registers, but not any micro-architectural
registers. ISSs are used for fault injection in [14, 24, 35]. In software-level fault
injection, the fault is directly injected into a variable of the executing program. The
software can then be executed to determine the impact of the corrupted variable on
the program outputs.

A key insight of previous work was that the evaluation of the soft error resilience
of logic circuits such as processor pipelines requires flip-flop-level fault injection,
e.g., using the RTL model [9, 38]. Architectural-level and software-level fault
injection may not yield accurate results as they do not include all details of the
logic implementation as will also be shown in the results in Sect. 4.1. In contrast,
soft errors in memories such as SRAM may be investigated at architectural level,
which models memory arrays in a bit-accurate fashion.

2.3 Fast Fault Injection for Processor Cores

A good estimation of soft error resilience requires simulating a large amount of
fault injection scenarios. This may become computationally infeasible when long-
running workloads are evaluated, e.g., for embedded applications. Such long test
cases arise in many applications. For example, in order to evaluate the impact
of a soft error on a robotic control application, the control behavior needs to
simulate several seconds real time, possibly simulating several billion cycles of the
digital hardware. An efficient analysis method called ETISS-ML for evaluating the
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resilience against soft errors in the logic of a processor sub-system is presented
in [37, 38]. A typical processor sub-system of a micro-controller consists of the
pipeline, control path, exception unit, timer, and interrupt controller. ETISS-ML is
especially efficient for evaluating the impact of soft errors for long software test
cases.

2.3.1 Multi-Level Fault Injection

ETISS-ML reduces the computational cost of each fault injection run by applying
a multi-level simulation approach, which was also applied in other fault injection
environments such as [16, 31, 45]. The key idea is to switch abstraction of the
processor model during the fault injection run and to minimize the number of cycles
simulated at flip-flop level. For this, an ISS is used in addition to the RTL model of
the processor at flip-flop level.

The proposed multi-level flow is illustrated in Fig. 2. First the system is booted
in ISS mode. This allows to quickly simulate close to the point of the fault injection,
at which point, the simulation switches to flip-flop-level. During the RTL warmup
phase, instructions are executed to fill the unknown micro-architectural states of the
processor sub-system. This is required as the architectural registers are not visible to
the ISS simulation. After this RTL warmup, the fault is injected as a bit flip. During
the following RTL cool-down phase, the propagation of the fault is tracked. Once
the initial impact of the fault propagates out of the processor’s micro-architecture or
is masked, the simulation can switch back to ISS mode. ETISS-ML reaches between
40x-100x speedup for embedded applications compared to pure flip-flop-level fault
injection while providing the same accuracy [37, 38].

Both the switch from ISS mode to RTL mode as well as the switch from RTL
to ISS mode require careful consideration. If a simulation artifact (wrong behavior)
is produced by the switching process, it may be wrongly classified as fault impact.

Fig. 2 Multi-level simulation flow of ETISS-ML
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Next, we will detail the state of the art approach used by ETISS-ML to solve these
challenges.

2.3.2 Switch from ISS Mode to Flip-Flop-Level Simulation

As shown in Fig. 2, a checkpoint is taken from the ISS to initialize the state in
the RTL processor model. This checkpoint only includes the architectural states,
the micro-architectural states such as pipeline registers are unknown. In the RTL
warmup phase instructions are executed to fill up these micro-architectural states.
In order to verify the RTL warmup phase, a (0, 1, X) logic simulation can be
applied [37]. All micro-architectural states are initialized to X (unknown), while
the values of architectural states are copied from the checkpoint. Additionally, the
inputs loaded from external devices such as instruction and data memories as well
as peripheral devices are also known from ISS simulation. Naturally, one expects
that the micro-architectural states take known values after a certain number of
instructions are executed. A key insight here was that this is not the case. Several
state machines in the control path and bus interfaces of the processor would start
from an unknown state. Hence, all following states remain unknown. One must
assume initial states for the RTL state machines, e.g., the reset state. Then one can
observe the removal of X values in the RTL model to derive a suitable RTL warmup
length for a given processor architecture.

2.3.3 Switch from Flip-Flop-Level Simulation Back to ISS Mode

After the fault has been injected into the RTL model, the flip-flop level simulation is
continued during the RTL cool-down phase. When switching back to ISS mode, all
micro-architectural states are lost, as only the architectural states are copied over.
Hence, one must ensure that one does not lose information about the impact of
the fault as this would result in an incorrect estimation. One can take a fixed, very
long cool-down phase as proposed in [45]. Yet, this leads to inefficient simulation
as many cycles need to be evaluated at flip-flop level. Additionally, one does not
gain information as to whether or not the soft error impact is still present in the
micro-architectural states. This can be improved by simulating two copies of the
RTL model, a faulty processor model and a tracking model [38]. The external state
of memories, peripherals, or the environment is not duplicated. The soft error is only
injected into the faulty model. In contrast, the tracking model simulates without the
error. Writes to the external devices (memories, peripherals) are only committed
from the faulty model. Reads from those devices are supplied to both models.
Hence, when the soft error is not masked, it may propagate from the faulty model to
the architectural state, external memories and devices and, then, be read back to the
faulty and tracking model. Whenever both models have the same micro-architectural
state, one can be sure that the error either has been masked or has propagated fully to
the architectural state or external devices and memories. At this point the simulation
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can switch to ISS mode as the architectural state and external devices and memories
are also modeled at ISS level. It turns out that some errors never propagate out of
the micro-architectural states, e.g., because a configuration is corrupted that is never
rewritten by the software. In this case the switch back to ISS mode is not possible
as it would cause inaccuracies, e.g., as would be observed with a fixed cool-down
length.

2.4 Fast Fault Injection in Uncore Components

In addition to errors impacting processor cores, it is equally important to consider
the impact of errors in uncore components, such as cache, memory, and I/O
controllers, as well. In SoCs, uncore components are comparable to processor cores
in terms of overall chip area and power [33], and can have significant impact on the
overall system reliability [8].

Mixed-mode simulation platforms are effective for studying the system-level
impact and behavior of soft errors in uncore components as well. As presented in [8],
such a platform would achieve a 20,000× speedup over RTL-only injection while
ensuring accurate modeling of soft errors. Full-length applications benchmarks
can be analyzed by simulating processor cores and uncore components using an
instruction-set simulator in an accelerated mode. At the time of injection, the
simulation platform would then enter a co-simulation mode, where the target
uncore component is simulated using accurate RTL simulation. Once co-simulation
is no longer needed (i.e., all states can be mapped back to high-level models),
the accelerated mode can resume, allowing application benchmarks to be run to
completion.

2.5 Fast Fault Injection for SRAM Memories Using Mixture
Importance Sampling

Memories such as on-chip SRAM or caches are already modeled bit-accurately at
micro-architectural and instruction-level. Hence, for the evaluation of soft errors
in memories, fault injection into faster instruction-level models is possible. Yet,
modern SRAMs are very dense such that the probability of multi-bit upsets (MBUs)
due to soft errors is not negligible. For MBU fault models, straightforward Monte
Carlo simulation requires a large sample size in the range of millions of sample
elements to obtain sufficient confidence bounds.

To address this challenge one can apply mixture importance sampling to connect
a technology-level fault model with a system-level fault simulation [29]. This
propagation of low-level information to the system level is motivated by the
Resilience Articulation Point (RAP) approach proposed in [23]. The key idea behind
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RAP is that errors in the system should be modeled by probabilistic functions
describing MBU’s bit flip probabilities including spatial and temporal correlations.
Thus, the impact of errors in the system can be evaluated, while maintaining a
direct connection to their root causes at the technology level. The sample size to
estimate the resilience of the system to soft errors in SRAMs can be massively
reduced by guiding the Monte Carlo simulation to important areas. As an illustrative
example, we assume that the SRAM is used to realize a data cache with 1-bit parity
protection. MBUs that alter an odd number of bits in a cache line are detected by
the parity checks and may be corrected by loading the correct value from the next
level of memory. MBUs that alter an even number of bits in a cache line remain
undetected and may cause silent data corruption. Additionally, MBUs may perturb
several neighboring cache lines due to different MBU mechanisms. This can lead to
mixed cases of recoverable errors and silent data corruption. For a cache with one
bit parity protection, MBUs with even number (2, 4, . . .) of bits in one cache line
are critical as they may provoke silent data corruption (SDC). The sampling strategy
can be biased towards these MBUs by mixture important sampling, which speeds up
the resilience evaluation significantly. It is shown that results with high confidence
can be obtained with sample sizes in the thousands instead of millions [29]. The
resulting fast evaluation enables the efficient exploration of the most efficient cross-
layer protection mechanisms for the SRAM memory for an overall optimized
reliable system.

3 Cross-Layer Exploration of Soft Error Resilience
Techniques

Most safety-critical systems already employ protection techniques against soft
errors at different layers. Yet often, possible combinations are not systematically
explored and evaluated to identify a low-cost solution. This may result in inefficient
redundancy and hardening, e.g., that certain types of faults are detected by multiple
techniques at different layers, or certain redundancy is not required, as the circuit is
adequately protected (e.g., by circuit-hardening techniques).

In this section several approaches are outlined that focus on cross-layer explo-
ration for finding low-cost soft error protection:

• the CLEAR approach can generate resilience solutions for custom processors
with selective hardening in combination with architectural and software-level
protection schemes.

• Using a similar approach, on-chip SRAM can be protected with a combination
of hardening and error detection codes.

• For third-party processors, hardening and hardware redundancy are not an option.
Hence, we show how application resilience can be used in combination with
software-level protection to achieve cross-layer resilience.
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• Finally, we also discuss how accelerators can be protected with cross-layer
resilience techniques.

3.1 CLEAR: Cross-Layer Resilience for Custom Processors

CLEAR (Cross-Layer Exploration for Architecting Resilience) is a first of its kind
framework to address the challenge of designing robust digital systems: given a
set of resilience techniques at various abstraction layers (circuit, logic, architecture,
software, algorithm), how does one protect a given design from radiation-induced
soft errors using (perhaps) a combination of these techniques, across multiple
abstraction layers, such that overall soft error resilience targets are met at minimal
costs (energy, power, execution time, area)?

CLEAR has broad applicability and is effective across a wide range of diverse
hardware designs ranging from in-order (InO-core) and out-of-order (OoO-core)
processor cores to uncore components such as cache controllers and memory
controllers to domain-specific hardware accelerators. CLEAR provides the ability
to perform extensive explorations of cross-layer combinations across a rich library
of resilience techniques and error sources.

Figure 3 gives an overview of the CLEAR framework. Individual components
are described briefly in the following:

3.1.1 Reliability Analysis

While the CLEAR framework provides the ability to analyze the reliability of
designs, this component does not comprise the entirety of the framework. The
modularity of the CLEAR framework enables one to make use of any number of
the accurate fault-injection simulation components described in detail in Sect. 2.2
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to perform reliability analysis. The analysis considered in this chapter encompasses
both Silent Data Corruption (SDC) and Detected but Uncorrected Errors (DUE).

3.1.2 Execution Time Evaluation

Execution time is measured using FPGA emulation and RTL simulation. Appli-
cations are run to completion to accurately capture the execution time of an
unprotected design. For resilience techniques at the circuit and logic levels, CLEAR
ensures that modifications incorporating such resilience techniques will maintain
the same clock speed as the unprotected design. For resilience techniques at the
architecture, software, and algorithm levels, the error-free execution time impact is
also reported.

3.1.3 Physical Design Evaluation

To accurately capture overheads associated with implementing resilience tech-
niques, it is crucial to have a means for running an entire physical design flow
to properly evaluate the resulting designs. To that end, the Synopsys design tools
(Design Compiler, IC compiler, PrimeTime, and PrimePower) with a commercial
28nm technology library (with corresponding SRAM compiler) are used to perform
synthesis, place-and-route, and power analysis. Synthesis and place-and-route
(SP&R) is run for all configurations of the design (before and after adding resilience
techniques) to ensure all constraints of the original design (e.g., timing and physical
design) are met for the resilient designs as well.

3.1.4 Resilience Library

For processor cores, ten error detection and correction techniques together with four
hardware error recovery techniques are carefully chosen for analysis. In the context
of soft error resilience, error detection and correction techniques include: Algorithm
Based Fault Tolerance (ABFT) correction, ABFT detection, Software assertions,
Control Flow Checking by Software Signatures (CFCSS), Error Detection by
Duplicated Instructions (EDDI), Data Flow Checking (DFC), Monitor cores, Parity
checking, flip-flop hardening using LEAP-DICE, and Error Detection Sequential
(EDS). These techniques largely cover the space of existing soft error resilience
techniques. The characteristics (e.g., costs, resilience improvement, etc.) of each
technique when used as a standalone solution (e.g., an error detection/correction
technique by itself or, optionally, in conjunction with a recovery technique) are
presented in Table 1. Additionally, four micro-architectural recovery techniques are
included: Instruction Replay (IR), Extended IR (EIR), flush, and Reorder Buffer
(RoB) recovery. Refer to [7] for an in-depth discussion of specific techniques and
their optimizations, including a detailed discussion of Table 1.



Cross-Layer Resilience Against Soft Errors: Key Insights 259

Ta
bl
e
1

In
di
vi
du
al
re
si
lie
nc
e
te
ch
ni
qu
es
:c
os
ts
an
d
im

pr
ov
em

en
ts
as

a
st
an
da
lo
ne

so
lu
tio

n

A
re
a

Po
w
er

E
ne
rg
y

E
xe
c.
tim

e
A
vg
.S

D
C

A
vg
.D

U
E

Fa
ls
e

D
et
ec
tio

n
L
ay
er

Te
ch
ni
qu
e

co
st

co
st

co
st

im
pa
ct

im
pr
ov
e

im
pr
ov
e

po
si
tiv

e
la
te
nc
y

γ

C
ir
cu
it

L
E
A
P-
D
IC
E

In
O

0–
9.
3%

0–
22
.4
%

0–
22
.4
%

0%
1
×

−5
00
0×

1
×

−5
00
0×

0%
N
/A

1

(n
o
ad
di
tio

na
l

O
oO

0–
6.
5%

0–
9.
4%

0–
9.
4%

re
co
ve
ry

ne
ed
ed
)

E
D
S
(w

ith
ou
t

In
O

0–
10
.7
%

0–
22
.9
%

0–
22
.9
%

0%
1
×

−>
10
0,
00
0×

0.
1
×

−1
×

0%
1
cy
cl
e

1

re
co
ve
ry
—

O
oO

0–
12
.2
%

0–
11
.5
%

0–
11
.5
%

un
co
ns
tr
ai
ne
d)

E
D
S
(w

ith
IR

In
O

0–
16
.7
%

0–
43
.9
%

0–
43
.9
%

0%
1
×

−>
10
0,
00
0×

1
×−

>
10
0,
00
0×

0%
1
cy
cl
e

1.
4

re
co
ve
ry
)

O
oO

0–
12
.3
%

0–
11
.6
%

0–
11
.6
%

1.
06

L
og
ic

Pa
ri
ty

(w
ith

ou
t

In
O

0–
10
.9
%

0–
23
.1
%

0–
23
.1
%

0%
1
×

−>
10
0,
00
0×

0.
1
×

−1
×

0%
1
cy
cl
e

1

re
co
ve
ry
—

O
oO

0–
14
.1
%

0–
13
.6
%

0–
13
.6
%

un
co
ns
tr
ai
ne
d)

Pa
ri
ty

(w
ith

In
O

0–
26
.9
%

0–
44
%

0–
44
%

0%
1
×

−>
10
0,
00
0×

1
×−

>
10
0,
00
0×

0%
1
cy
cl
e

1.
4

IR
re
co
ve
ry
)

O
oO

0–
14
.2
%

0–
13
.7
%

0–
13
.7
%

1.
06

A
rc
h.

D
FC

(w
ith

ou
t

In
O

3%
1%

7.
3%

6.
2%

1.
2×

0.
5×

0%
15

cy
cl
es

1.
28

re
co
ve
ry
—

O
oO

0.
2%

0.
1%

7.
2%

7.
1%

1.
09

un
co
ns
tr
ai
ne
d)

D
FC

(w
ith

In
O

37
%

33
%

41
.2
%

6.
2%

1.
2×

1.
4×

0%
15

cy
cl
es

1.
48

E
IR

re
co
ve
ry
)

O
oO

0.
4%

0.
2%

7.
3%

7.
1%

1.
14

M
on
ito

r
co
re

(w
ith

R
oB

re
co
ve
ry
)

O
oO

9%
16
.3
%

16
.3
%

0%
19
×

15
×

0%
12
8
cy
cl
es

1.
38

(c
on
tin

ue
d)



260 D. Mueller-Gritschneder et al.

Ta
bl
e
1

(c
on
tin

ue
d)

A
re
a

Po
w
er

E
ne
rg
y

E
xe
c.
tim

e
A
vg
.S

D
C

A
vg
.D

U
E

Fa
ls
e

D
et
ec
tio

n
L
ay
er

Te
ch
ni
qu
e

co
st

co
st

co
st

im
pa
ct

im
pr
ov
e

im
pr
ov
e

po
si
tiv

e
la
te
nc
y

γ

So
ft
w
ar
e

So
ft
w
ar
e
as
se
rt
io
ns

fo
r
ge
ne
ra
l-

pu
rp
os
e
pr
oc
es
so
rs

(w
ith

ou
tr
ec
ov
er
y—

un
co
ns
tr
ai
ne
d)

In
O

0%
0%

15
.6
%

15
.6
%

1.
5×

0.
6×

0.
00
3%

9.
3M

cy
cl
es

1.
16

C
FC

SS
(w

ith
ou
t

re
co
ve
ry
—

un
co
ns
tr
ai
ne
d)

In
O

0%
0%

40
.6
%

40
.6
%

1.
5×

0.
5×

0%
6.
2M

cy
cl
es

1.
41

E
D
D
I
(w

ith
ou
t

re
co
ve
ry
—

un
co
ns
tr
ai
ne
d)

In
O

0%
0%

11
0%

11
0%

37
.8
×

0.
3×

0%
28
7K

cy
cl
es

2.
1

A
lg
.

A
B
FT

co
rr
ec
tio

n
In
O

0%
0%

1.
4%

1.
4%

4.
3×

1.
2×

0%
N
/A

1.
01

(n
o
ad
di
tio

na
l

O
oO

re
co
ve
ry

ne
ed
ed
)

A
B
FT

de
te
ct
io
n

In
O

0%
0%

24
%

1–
56
.9
%

3.
5×

0.
5×

0%
9.
6M

1.
24

(w
ith

ou
tr
ec
ov
er
y—

O
oO

cy
cl
es

un
co
ns
tr
ai
ne
d)



Cross-Layer Resilience Against Soft Errors: Key Insights 261

3.1.5 Exploration

CLEAR approaches cross-layer exploration using a top-down approach: resilience
techniques from upper layers of the resilience stack (e.g., algorithm-level tech-
niques) are applied before incrementally moving to lower layers (e.g., circuit-
level techniques). This approach helps generate cost-effective solutions that lever-
age effective interactions between techniques across layers. In particular, while
resilience techniques from the algorithm, software, and architecture layers of the
stack generally protect multiple flip-flops, a designer typically has little control
over the specific subset of flip-flops that will be protected. Using multiple tech-
niques from these layers can lead to a situation where a given flip-flop may be
protected (sometimes unnecessarily) by multiple techniques. Conversely, resilience
techniques at the logic and circuit layers offer fine-grained protection since these
techniques can be applied selectively to individual flip-flops (i.e., flip-flops not
(sufficiently) protected by higher-level techniques).

3.2 Resilience Exploration for Custom Accelerators

Domain-specific hardware accelerators will increasingly be integrated into digital
systems due to their ability to provide more energy-efficient computation for specific
kernels. As a result of their application-specific nature, hardware accelerators have
the opportunity to leverage application space constraints when exploring cross-layer
resilience (i.e., resilience improvement targets only need to hold over a limited
subset of applications). Accelerators also benefit from the ability to create natural
checkpoints for recovery by protecting the memory storing the accelerator inputs
(e.g., using ECC), allowing for a simple means for re-execution on error detection.
Therefore, the cross-layer solutions that provide cost-effective resilience may differ
from those of processor cores and warrant further exploration.

3.3 Cross-Layer Resilience for Exploration for SRAM
Memories

In [28], a cross-layer approach for soft error resilience was applied to SRAM data
caches. Again, a systematic exploration requires having a good evaluation of the
cost and efficiency of the applied protection mechanisms. In this study, the available
protection mechanisms were the following: at circuit level, either (1) the supply
voltage could be raised by 10% or (2) the SRAM cells could be hardened by
doubling the area. At the architectural level, (3) 1-bit parity could be introduced
in the cache lines. The circuit-level hardening techniques require parameterizing
the statistical MBU fault model introduced in Sect. 2.5 considering cell area, supply
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voltage and temperature. For each configuration, the fault probabilities for MBU
patterns need to be evaluated to obtain a good estimate of soft error probabilities.
Additionally, the architecture and workload play a key role in the evaluation as not
all soft errors are read from the cache. Here again, architectural-level simulation
can be used to simulate the workload using fault injection into a bit-accurate cache
model.

3.4 Towards Cross-Layer Resiliency for Cyber-Physical
Systems (CPS)

In benchmark-type workloads, silent data corruption in a single program output
commonly leads to a failure, e.g., an encryption algorithm fails if its encrypted data
is corrupted such that it cannot be decrypted. Hence, cross-layer resiliency often
targets reducing the rate of silent data corruption.

For cyber-physical systems (CPS), however, many workloads can tolerate devi-
ations from the fault-free outcome, e.g., in an embedded control algorithm, noise,
e.g., in sensors, is present and considered in the control design. It will treat silent
data corruption as yet another noise source, that can, possibly, be tolerated for
minor deviations from the correct value. Another effect is that CPS workloads
are commonly scheduled as periodic tasks. Often, the outputs of one instance of a
certain task are overwritten by the next instance of a task. Hence, a corruption of the
output of a single task has an effect only for a certain duration in time. Subsequent
task executions might mitigate the effect of silent data corruption before the system
behavior becomes critical. For example for control applications, the sampling rate of
the controller is often higher than demanded, such that a single corrupted actuation
command will not lead to a failure within one control period. Following sensor
readouts will show a deviation from the desired control behavior that is corrected
by the controller in subsequent control periods.

In order to consider the inherent resilience of CPS workloads, a full system
simulation is required. CPS usually form a closed loop with their environment,
e.g., actuation will change the physical system behavior, which determines future
sensor readouts. Extensive fault injection for obtaining a good resiliency evaluation
is enabled by the fast simulation speed of ETISS-ML [38], while RTL level fault
injection would be prohibitively slow to evaluate system behavior over a long
system-level simulation scenario. ETISS-ML can be integrated into a full-system
virtual prototype (VP) that models the system and its physical environment such that
error impacts can be classified considering the inherent resilience of CPS workloads.
For this, the physical behavior is traced to determine the impact of the error. A
major question to be investigated is how this inherent application resilience can be
exploited in an efficient way to reduce cost of protection techniques towards cross-
layer resilience of CPS.
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4 Experimental Results

This section presents results for cross-layer exploration. First, we show results that
support our claim that flip-flop level fault injection is required for soft errors in logic.
Then we provide the results for cross-layer exploration with CLEAR and ETISS-
ML for processors. Finally, we show the results for the cross-layer exploration of
protection techniques for the data cache of a control system for a self-balancing
robot.

4.1 Accuracy of FI at Different Abstraction Levels

For radiation-induced soft errors, flip-flop soft error injection is considered to be
highly accurate. Radiation test results confirm that injection of single bit flips into
flip-flops closely models soft error behaviors in actual systems [4, 43]. On the
other hand, [9] has shown that naïve high-level error injections (e.g., injection
of a single-bit error into an architecture register, software-visible register-file, or
program variable) can be highly inaccurate.

Accurate fault-injection is crucial for cost-effective application of cross-layer
resilience. Inaccurate reliability characterization may lead to over- or underprotec-
tion of the system. Overprotection results in wasted cost (e.g., area, power, energy,
price) and underprotection may result in unmitigated system failures.

In order to observe the impact of soft errors in the data and control path of a
OR1K processor sub-system, the error propagation was tracked to the architectural-
visible states in [38] for four test cases. In total 70k fault injection scenarios were
run on each test case. The injection points were micro-architectural FFs in the RTL
implementation such as pipeline and control path registers, that are not visible at
the architectural level. First all soft errors were identified that had no impact on the
architectural state since they were either being masked or latent. On average these
were 67.51%.

On architectural level, we inject single bit flip fault scenarios as it is unclear what
multi-bit fault scenarios could really happen in HW. These scenarios will cover all
single bit flip soft errors in an architectural state as well as any soft error in a micro-
architectural state that propagates and corrupts just a single bit of an architectural
state. In this case it makes no difference whether we inject the single bit flip in
the micro-architectural state or architectural state. Yet, the distribution could be
different. We now observe the experimental results as given in Table 2: 25.09%
of the micro-architectural faults corrupted a single bit in the architectural state for a
single cycle. These faults would be covered by fault injection at architectural level.
But 7.40% of the soft errors corrupted several bits of the architectural state or lead to
several bit flips in subsequent cycles. Injecting single bit soft errors in architectural
states at architecture- or software level will not cover these micro-architectural fault



264 D. Mueller-Gritschneder et al.

Table 2 Impact of single bit flip in micro-arch FFs on architectural processor state

Test case Masked or latent [%] Single bit corruption [%] Multi-bit corruption [%]

JDCT 66.77 25.68 7.55

AES 66.36 26.13 7.51

IIR 68.88 23.83 7.29

EDGE 68.02 24.73 7.25

Average 67.51 25.09 7.40

Table 3 General-purpose processor core designs studied

Design Description Clk. freq. Error injections Instructions per cycle

InO LEON3 [17] Simple,
in-order
(1250
flip-flops)

2.0GHz 5.9 million 0.4

OoO IVM [46] Complex,
super-scalar,
out-of-order
(13,819
flip-flops)

600MHz 3.5 million 1.3

scenarios. Hence, one needs to look into RTL fault injection to obtain accurate
results for these faults.

4.2 Cross-Layer Resilience Exploration with CLEAR

The CLEAR framework is first used to explore a total of 586 cross-layer combina-
tions in the context of general-purpose processor cores. In particular, this extensive
exploration consists of over 9 million flip-flop soft error injections into two diverse
processor core architectures (Table 3): a simple, in-order SPARC LEON3 core
(InO-core) and a complex superscalar out-of-order Alpha IVM core (OoO-core).
Evaluation is performed across 18 application benchmarks from the SPECINT2000
[22] and DARPA PERFECT [2] suites.

Several insights resulted from this extensive exploration: accurate flip-flop level
injection and layout (i.e., physical design) evaluation reveal many individual tech-
niques provide minimal (less than 1.5×) SDC/DUE improvement (contrary to con-
clusions reported in the literature that were derived using inaccurate architecture- or
software-level injection [20, 36]), have high costs, or both. The consequence of this
revelation is that most cross-layer combinations have high cost.

Among the 586 cross-layer combinations explored using CLEAR, a highly
promising approach combines selective circuit-level hardening using LEAP-DICE,
logic parity, and micro-architectural recovery (flush recovery for InO-cores, reorder
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buffer (RoB) recovery for OoO-cores). Thorough error injection using application
benchmarks plays a critical role in selecting the flip-flops protected using these
techniques.

From Table 4, to achieve a 50× SDC improvement, the combination of LEAP-
DICE, logic parity, and micro-architectural recovery provides 1.5× and 1.2× energy
savings for the OoO- and InO-cores, respectively, compared to selective circuit
hardening using LEAP-DICE. This scenario is shown under “bounded latency
recovery.” The relative benefits are consistent across benchmarks and over the range
of SDC/DUE improvements.

If recovery hardware is not needed (i.e., there exist no recovery latency con-
straints and errors can be recovered using an external means once detected), minimal
(<0.2% energy) savings can be achieved when targeting SDC improvement. This
scenario is shown under “unconstrained recovery.” However, without recovery
hardware, DUEs increase since detected errors are now uncorrectable; thus, no DUE
improvement is achievable.

Additional cross-layer combinations spanning circuit, logic, architecture, and
software layers are presented in Table 4. In general, most cross-layer combinations
are not cost-effective. For general-purpose processors, a cross-layer combination of
LEAP-DICE, logic parity, and micro-architectural recovery provides the lowest cost
solution for InO- and OoO-cores for all improvements.

4.3 Resilience Exploration for Custom Accelerators

Utilizing a high-level synthesis (HLS) engine from UIUC [5], 12 accelerator
designs derived from the PolyBench benchmark suite [42] were evaluated with
protection using LEAP-DICE (circuit), logic parity (logic), modulo-3 shadow
datapaths (architecture), EDDI (software), and ABFT (algorithm) techniques. Note
that, software and algorithm techniques are converted into hardware checkers during
high-level synthesis.

Consistent with processor core results, cost-effective resilience solutions for
domain-specific hardware accelerators (Table 5) required the use of circuit-level
techniques (e.g., a 50× SDC improvement was achieved at less than 6% energy cost
using a combination of application-guided selective LEAP-DICE and logic parity).
However, even given the application-constrained context of accelerators, software-
level (and algorithm-level) resilience techniques were unable to provide additional
benefits.
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Table 5 Costs (area/energy) and improvements for resilience in 12 domain-specific accelerators

SDC improvement

Resilience technique(s) 2× 5× 50× 500×
Selective LEAP-DICE 0.9%/3.3% 1.2%/5% 1.7%/7% 2.2%/8.8%

Selective parity checking 1.4%/4.4% 2.2%/6.4% 3.1%/8.7% 3.4%/10.6%

LEAP-DICE + parity 0.6%/2.7% 1%/3.9% 1.3%/5.7% 1.7%/7.4%

Mod-3 + LEAP-DICE + parity 0.7%/3.6% 2.3%/4.7% 2.9%/6.5% 3.3%/8.1%

EDDI + LEAP-DICE + parity 27.6%/33% 27.6%/33.2% 27.6%/33.4% 28.3%/34%

ABFT + LEAP-DICE + parity 11.9%/23.8% 12.2%/24.1% 12.3%/24.2% 12.3%/24.8%

Table 6 Micro-controller (µC) design studied

Design Description Clk. freq. Error injections

μC OpenRISC [40] Simple, in-order (no caches), (1440
flip-flops) with timer and interrupt
controller

100MHz 500,000

4.4 Resilience Exploration for Fixed-hardware
Micro-Controller

The multi-level simulation was implemented for a fixed-hardware micro-controller
(μC) as shown in Table 6. The RTL implementation uses only the pipeline,
programmable interrupt controller, and timer but no caches in order to have a μC-
type processor similar to ARM’s CortexM family. We study a full system simulation
setup based on a SystemC VP, which models an μC used in a simplified adaptive
cruise control (ACC) system. Its goal is to maintain a constant distance between
two moving vehicles by controlling the speed of the rear vehicle via the throttle
value of the motor (actuator). The processor of the μC periodically executes a PI
control algorithm. The PI control algorithm’s inputs are sensor values measuring
the distance to the front vehicle and speed of the rear vehicle. Figure 4 shows the
SystemC/TLM model structure of the system with μC, actuator and sensors. The
sensor values are dynamically generated by a physics simulation of the two vehicles
based on the commands sent to the actuator. The system boots and then starts
execution from time zero. We define a simple safety specification to demonstrate
the evaluation. The desired distance between the vehicles is set to 40m. A fault
is classified to cause a system-level failure when the distance leaves the corridor
between 20m and 60m within a given driving scenario. For this scenario, both
vehicles have same speed and a distance of 50m at time zero.

Figure 5 shows the simulation results for four fault injection (FI) simulations.
The green curve shows a soft error that has no influence on the system outputs,
which results in the same curve visible in the fault-free run. The blue curve shows
the inherent fault tolerance of control algorithms. Even though the actuator output
is corrupted by the soft error, the control algorithm is able to recover from the
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Fig. 4 SystemC VP of control system
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disturbance. The distance does not leave the specified corridor. Finally, the pink
and red curves show faults leading to a system failure.

In order to test cross-layer resiliency, we apply the following error detection
and handling mechanisms. We concentrate on methods supported by fixed-hardware
μCs, for which we would not be able to modify the logic or circuit implementation.

Watchdog Timer (WDT) The control algorithm has to write a value to the actuator
every 10ms. If no actuator write is detected, the system is reset by the WDT.

Task Duplication The control task is executed twice and the results are compared
before the actuation.

EDDI EDDI is applied by the compiler to protect the data flow of the control
application.

CFCSS CFCSS is applied by the compiler to protect the control flow of the control
application.

The compiler can only apply EDDI and CFCSS on the software functions of the
PI control task, not on software functions coming from the pre-compiled OR1K C-
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Table 7 Comparison of resilience techniques for µC with watchdog timer (WDT) and external
recovery by system reset

Resilience WDT SW SDC Failure rate Exec. time
technique(s) Det. rate Det. rate rate due to SDC impact

WDT 8.562% 0% 0.674% 0.061% 0%

Task duplic.+WDT 11.429% 1.284% 0.026% 0.002% 146.21%

EDDI+WDT 11.926% 1.706% 0.014% 0.002% 155.86%

CFCSS+WDT 8.929% 2.028% 0.542% 0.047% 0.249%

EDDI+CFCSS+WDT 13.370% 2.169% 0.017% 0.001% 156.857%

libraries. When task duplication, EDDI or CFCSS detect a fault, the SW triggers a
reset.

Each method comes with a certain overhead and improvement in SDC rate as
shown in Table 7. The column “WDT Det. Rate” shows the percentage of faults
detected by the watchdog timer. The column “SW Det Rate” shows the percentage
of faults detected by EDDI, CFCSS and the comparison for Task Duplication
(depending on which protection is used). The SDC rate shows the percentage of
faults that lead to a corrupt actuation value without being detected by a protection
technique. Finally, the failure rate due to SDC shows the percentage of SDCs that
lead to a failure of the control algorithm. Exec. Time Impact shows the overhead due
to software redundancy inserted by the protection mechanisms. A WDT requires
additional area, which is usually available on modern μCs, hence, this is ignored.

The following conclusions can be derived from the results: overall, the WDT
detection rate is very high as it detects most DUEs, that result in incorrect timing
of the application. EDDI and task duplication increases the execution time of the
control task significantly at the cost of idle time of the processor. Yet, they also
lead to significant SDC reduction. EDDI is slightly better, as it works on the
intermediate representation (IR) and has a smaller vulnerability window. CFCSS
also increases the software detection rate. Upon closer inspection, CFCSS does not
lead to a significant reduction in SDC rate for both cases with and without EDDI.
The application has a simple control flow, hence, control flow errors are rare. Most
of the errors detected by CFCSS are due to errors during execution of the CFCSS
check codes themselves. Hence, they would not lead to SDC of the functional code,
yet, many errors are reported.

4.5 Resilience Exploration for SRAM Cache of Self-Balancing
Robot

The cross-layer exploration was applied to a self-balancing robot system in [28]
as shown in Fig. 6. The results are shown in Fig. 7. The figure shows the results
for nominal SRAM design (N), increased supply voltage (V), increased area (A)
and parity protection (P). The blue bar shows the rate of silent data corruption
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Fig. 7 Resilience exploration for cache of self-balancing robot

caused when a faulty cache line is read. The red bar shows those cases of silent data
corruption that significantly affect the system behavior, which we classify as failure.
The difference between the blue and red bar denotes the inherent resilience of the
system. For hardening the system, increasing the supply voltage (V) decreases the
silent data corruption rate (blue) and failure rate (red) but also increases the required
power per written cache bit (green). Increasing the area (A) decreases the silent data
corruption rate and failure rate more effectively compared to increasing the supply
voltage but at the cost of a larger increase in power. In contrast, the parity protection
(P) behaves differently to the hardening solutions. While parity also decreases the
rate of silent data corruption (blue), we see that those remaining errors that are read
from the cache (caused by an even number of upsets in the cache line) relatively
often influence the system behavior (red), which is classified as failure. In the case
of 1-bit parity protection the system is effectively protected from an odd number of
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errors in each cache line. Yet, compared to the nominal case the failure probability
of the system is only slightly reduced. The even number of upsets (mostly two bit
upsets) are causing more often a failure than the detected single bit upsets. Upsets
with three and more bits are not as relevant as they are very rare events. The key
insight is that decreasing silent data corruptions thus does not necessarily result in a
similar improvement in failure rate when considering the inherent resilience of the
CPS application.

5 Conclusions

This chapter covered the fast evaluation of resilience against radiation-induced
soft errors with multi-level/mixed-mode fault injection approaches as well as the
systematic exploration of protection techniques that collaborate in a cross-layer
fashion across the system stack. The methods were shown for case studies on custom
processors, accelerators, third-party micro-controllers, and an SRAM-based cache.

Although this chapter has focused on radiation-induced soft errors, our cross-
layer methodology and framework are equally effective at protecting against
additional error sources such as supply voltage variations, early-life failures, circuit
aging, and their combinations. For example, [6] demonstrates that cost-effective
protection against supply voltage variation is achieved using Critical Path Monitor
(CPM) circuit failure prediction and instruction throttling at 2.5% energy cost for a
64 in-order core design.

For error sources (such as early-life failures and circuit aging) that result from
system degradation over longer duration of time (days to years), periodic on-line
self-test and diagnostic are particularly effective at generating signatures to observe
such degradation [27, 32, 34]. Since many of the resilience techniques considered in
this chapter operate independently of the underlying error source, our conclusions
regarding these particular techniques are broadly applicable.

Finally, an open question that remains is how to efficiently exploit the inherent
resilience of CPS workloads. Full system simulation can help in a fast evaluation,
but it remains to be seen in future research how the cost of resilience can be reduced
by fully exploiting this potential in a cross-layer fashion.
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