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Abstract. Tweakable TWINE (T-TWINE) is a new lightweight tweak-
able block cipher family proposed by Sakamoto et al. at IWSEC 2019.
T-TWINE is the first Tweakable Block Cipher (TBC) that is built on
Generalized Feistel Structure (GFS). It is based on the TWINE block
cipher in addition to a simple tweak scheduling based on SKINNY’s
tweakey schedule. Similar to TWINE, it has two versions, namely, T-
TWINE-80 and T-TWINE-128, both have a block length of 64 bits and
employ keys of length 80 and 128 bits, respectively. In this paper, we
present impossible differential attacks against reduced-round versions of
T-TWINE-80 and T-TWINE-128. First, we present an 18-round impos-
sible differential distinguisher against T-TWINE. Then, using this distin-
guisher, we attack 25 and 27 rounds of T-TWINE-80 and T-TWINE-128,
respectively.
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1 Introduction

Tweakable Block Ciphers (TBCs) [11] differ from the conventional block ciphers
since they accept an additional input called a tweak. Different specific keyed
instances of the cipher can be generated by varying this tweak. TBCs allow new
interesting highly-secure modes of operation and applications to become possible
as they are designed to allow changing the tweak very efficiently compared to
the key setup operation.

Block ciphers can be used to build TBCs through modes of operation such
as LRW (Liskov, Rivest, and Wagner) and XEX (Xor-Encrypt-Xor) [14]. These
modes of operations, for one TBC encryption/decryption, require few cipher
calls. Therefore, they are efficient. However, their provable security guarantee,
which is 2"/2 for n-bit block cipher, is not enough, in particular, for TBCs
employed in modes of operation aiming to achieve “beyond-the-birthday-bound”
(BBB) security. As a result, less efficient modes of operations [9,10], compared
to LRW and XEX, are proposed to achieve BBB security guarantee.

Dedicated constructions is another approach to build efficient TBCs with an
acceptable level of security guarantee. HPC [16], one of the submission to the
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AES competition, is the first proposal, where the tweak is called “spice”. Three-
fish [4], Deoxys-BC [7], SKINNY [2] and QARMA [1] are examples of recently
proposed dedicated TBCs. Challenges such as designing efficient dedicated TBCs
while having sufficient security guarantee is solved by the tweakey flamework [6]
which is based on a Substitution Permutation Network (SPN).

Tweakable TWINE (T-TWINE) [15] is the first dedicated TBC that is based
on Generalized Feistel Structure (GFS) [13,20]. The only work on GFS-based
TBC, before the T-TWINE proposal, is done by Goldenberg et al. [5] and Mit-
suda and Iwata [12] who focused on studding the provable security of the round
functions that are instantiated by PRFs. TWINE, which is a GFS-based block
cipher, was proposed by Suzaki et al. [18] after a comprehensive study done
by Suzaki and Minematsu [17] showing the effect of the choice of sub-block
permutation on the diffusion, the number of differential/linear active S-boxes,
and the maximum numbers of rounds for impossible differential characteristics
and saturation characteristics. The choice of the permutation of TWINE was a
result of the work done in [17], it permutes over 16 nibbles to achieve the best
characteristics.

T-TWINE [15] is built with the goal of reducing the cost of design, security
evaluation, and implementation. As a result, TWINE was selected to be the basic
building block of T-TWINE with extremely simple tweak scheduling. This tweak
schedule is based on the SKINNY’s [2] tweakey schedule. Similar to TWINE, T-
TWINE has a block size of 64 bits and iterates using either 80-bit or 128-bit key
over 36 rounds. It accepts an additional 64-bit tweak. It also uses independent
key and tweak schedules where the tweak is mixed with the states by adding few
nibble XORs to TWINE. Therefore, it has the same hardware cost of TWINE
except for the additional tweak registers.

The designers of T-TWINE evaluated its security against differential, linear,
impossible differential, and integral attacks in the chosen-tweak setting. However,
they only presented distinguishers without converting any distinguisher to a key
recovery attack. For impossible differential, they utilized the miss-in-the-middle
approach to search the impossible differential characteristics that have one active
nibble in the 16 tweak nibbles and one active nibble in 16 ciphertext nibbles at
the decryption side. However, the 18-round impossible differential distinguisher
that was proposed by the designers does not seem to be correct as we will
illustrate in Sect. 31.

In this paper, we start by presenting an 18-round impossible differential dis-
tinguisher. Then, we use this distinguisher to launch a 25-round attack against
T-TWINE-80 by pre-appending and appending 4 and 3 rounds, respectively.
Finally, we launched a 27-round attack against T-TWINE-128, using the 18-
round distinguisher, by pre-appending and appending 6 and 3 rounds, respec-
tively. The data, time, and memory complexities of the 25-round (27-round)
against T-TWINE-80 (T-TWINE-128) are 261% (260) chosen plaintexts, 27086
25-round (220-83 27-round) encryptions, 206 (211%) 64-bit block, respectively.

! This has also been confirmed through personal communications with the designers.
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The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of T-TWINE. In Sect. 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in Sects. 4 and 5. Finally, the paper is concluded in
Sect. 6.

2 Specifications of T-TWINE

The following notation will be used throughout the rest of the paper:

— K: The 80 or 128 bits master key.

— Kj: The 4t nibble of K. The indices of the nibbles begin from 0.

— RK": The 32-bit round key used in round ¢ + 1.

- RK;: The j*" nibble of RK*. The indices of the nibbles begin from 0.

— T: The 64-bit tweak.

— T;: The i*" nibble of the tweak 7. 4

— RT%: The 24-bit round tweak used in round i + 1, where RT" « t{||t!||
5I[t4]1t4][t5, and ¢} is the j'" nibble of RT".

— X': The 16 4-bit nibbles output of round .

— X,*: 7' nibble of X*.

~ AX', AX}: The difference at state X’ and nibble X7, respectively.

— @: The XOR operation.

— ||: The concatenation operation.

— Rotz(x): The z-bit left cyclic shift of x.

T-TWINE is based on TWINE [18]. T-TWINE-80/128 iterates 36 rounds
over 64-bit block using 80/128-bit key, respectively, and 64-bit tweak T. The
block cipher has three parts: data processing, key schedule, and tweak schedule.
Except for the tweaks addition, T-TWINE-80/128 has the same data process-
ing and key schedule of TWINE-80/128, respectively. Both T-TWINE-80 and
T-TWINE-128 employ the same generalized Feistel structure and tweak schedule
where the only difference between them is the key schedule.

Data Processing Part. As depicted in Fig. 1, the round function is based on
a variant of Type-2 GFS with 16 4-bit nibbles [17]. It has four operations: 4-bit
S-box (S, see Tablel), round key XOR, round tweak XOR, and a 16-nibble
shuffle operation (7w, see Table2). Both versions of T-TWINE have the same
number of rounds (36). The nibble shuffle operation in the last round is omitted.

Table 1. 4-bit S-box S in hexadecimal form

T 0/1/2/3/4/5/6 789 al/bljcdlelf
S(z)|c|0/fla|2|b|9[5|8 3|d|T7|1l]|e |64

Key Schedule. A round key RK® of 8 nibbles is generated from the master key
K for each round 4, where 0 < i < 35. Each version of T-TWINE has its own key
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RK"

i+1 i+ yp i+l i+l i+1 i+1 y, i1 i+1 i+l i1y, i1 i1y, i+l i1y, i+l i+1
X0 Xl XZ X3 X4 XS XG X7 XS XS XlD X11 XIZ X13 X14 Xl5

Fig. 1. The T-TWINE round function, for simplicity we use ¢; instead of t; For exam-
ple to equivalent to t;

schedule. Algorithm 1 and 2 show the details of T-TWINE-80/128, respectively,
where CON}; and CON'} are predefined constants. For further details, the reader
is referred to [15,18].

Tweak Schedule. A round tweak RT* of 6 nibbles is generated from the tweak
T for each round ¢, where 0 < ¢ < 35. Both versions of T-TWINE have the same
tweak schedule, shown in Algorithm 3, where 7t is a 6-nibble permutation s.t.
(0,1,2,3,4,5) — (1,0,4,2,3,5).

3 An Impossible Differential Distinguisher of T-TWINE

Impossible differential cryptanalysis was proposed independently by Knudsen [§]
and Biham, Biryukov and Shamir [3]. It exploits a (truncated) differential char-
acteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique
used to construct impossible differentials, where the cipher, F, is split such that
E = FE5 o Fq, and we try to find two deterministic differentials, the first one
covers E; and has the form Aj — A+, and the second covers E5 ! and has the
form A — A(. When the intermediate differences Ay, AC do not match, the
differential Aé — A that covers the whole cipher E holds with zero probability.

Table 2. Nibble shuffle m

h 012 [3/45|6/7/8 9 1011 12 1314 15
7[h) 7/12/3/8/13| 6, 9 2|15 10 11|14
7 'R 1/2/11 6 3 094 71013 14 5 8 15 12

t
o
—
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Algorithm 1: Key Schedule of T-TWINE-80

Data: The 80-bit master key K

Result: The round keys RK = RK°||RK!||---||[RK?®
kol [kl - - - |[k1o — K;

for i — 0 to 34 do

REK" — ka|ks|kal[ke||k1s|[kral[k1s] k16
k1 — k1 ® S(ko);

ky — ks ® S(k16);

k7 «— k7 @ (0]|CONg);

k1g «— k19 @ (0[[CONL);

kol - - - |[ks < Rotd(koll - - - [|ks);
koll---||kio <= Rot16(kol| - - - [|k10);

RK® «— ki||ks||ka||ke||k1s|| k14| [k15 || F16;
RK « RK°||RK!||---||RK?®;

Algorithm 2: Key Schedule of T-TWINE-128

Data: The 128-bit master key K

Result: The round keys RK = RK°||RK"||---||RK?>®
kollkll -+ - [|ks1 < K

for i — 0 to 34 do

RK" « ka|[ks||k12||k15] k17| [k1s||k2s| k51
k1 — k1 & S(ko);

ka — ks ® S(k16);

kog «— kas @ S(kso);

k7 «— kr @ (0||CON});

kig «— k19 @ (OHCONEI);

kol -+ - [|ks < Rotd(kol|- - -||ks);

L kol| -+ ||ks1 «— Rot16(kol|- - ||ks1);
RE®  ko||ks||k12||k1s| k17| k1s] | kas| | ka1
RK «— RK°||RK!||---||RK?®;

Algorithm 3: Tweak Schedule of T-TWINE

Data: The 64-bit tweak T'
Result: The round tweaks RT = RT°||RT"||---||RT*
QI[e1] - - - [t36 — T;
fori<—0t035‘d0 ‘ ‘
RT" — to[t1|[ta|[t5][ta][ts;
for h «— 0 to 5 do
| e < th
for h — 0 to 15 do
i+1 i,
L t(}L*6) mod 16 th;

RT «— RT°||RT"||---||RT®;
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The designers of T-TWINE in [15] presented an 18-round impossible differ-
ential distinguisher. They found this distinguisher using the Miss-in-the-Middle
approach. The distinguisher begins at “1R” with zero differences and the tweak
has a non-zero difference at the first nibble ¢3. As mentioned above, this 18-
round impossible differential distinguisher does not seem to be correct. In what
follows, we list some of the problems (mistakes) we identified in this distin-
guisher (See Fig.5): i) the numbers of rounds involved in the distinguisher is
only 17 not 18 (as the plaintext is marked “1R” and the ciphertext is marked
“18R”), ii) the tweaks used in the distinguisher are wrong. For example, the
tweaks that are used in the seventh and ninth rounds are actually the tweaks
of the sixth and seventh rounds, respectively, and iii) this distinguisher assumes
that the tweak has difference at nibble “0” at the first round, then it appear
again at nibble “0” at the nineteenth round, while it should appear again at the
seventeenth round, after 16 rounds of the tweak schedule. Moreover, as shown
in Figure8 of [15] (See Fig.5), the zero difference at “1R” associated with a
non-zero difference at the first nibble ¢y of the tweak gives, after being propa-
gated 7 rounds in the forward direction, the difference at “8R” in the form of
(1,1,1,0,0,7,0,1,1,7,0,1,?,7,7, 7). However, the correct difference should be in
the form of (7,1,7,0,1,7,7,1,1,2,2,1,7,7,7,7).

In this section, we present an 18-round distinguisher that begins and ends
with zero difference and has a difference at t15 at the first round, see Fig. 2. To
the best of our knowledge, this is the first valid 18-round impossible differential
distinguisher. This distinguisher is found using the Miss-in-the-Middle approach,
where we propagate the difference in the tweak forward 8 rounds with probability
1 and propagate the difference in the tweak backward 10 rounds with probability
1, then match at the middle at the end of round 8. As seen in Fig. 2, there is
a contradiction at nibble “6”, where in the forward path, it should have a zero
difference, while in the backward path, it should have a non-zero difference.

3.1 Observations

In this section, we present some useful observations that will be utilized in our
attack.

Observation 1 [18,19]. For any input difference a(#£ 0) and output difference
b(e AS|a]) of the S-box in TWINE, the average number of pairs that satisfy
the differential characteristic (a — b) is X2, Given an 8-bit pair (Xi;, X5, )
and (X5; ® a, X5, ®b), the probability that RK’ leads to the S-box differential

characteristic (a — b) is 771
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Observation 2. Given two nonzero differences Ai and Ao in F16, the equation:
S(x) + S(xz + Ai) = Ao has one solution on average. This property also applies
to S7L.

Observation 3. If the impossible differential illustrated in Fig. 2 is extended 6
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 3: AXY € S[AXY], AX? € S[AX]], AXY, € S[AXY,)], AXY € S[AXY,],
AXY, € S[AXY], AX?T € S[ATy], AX#H € S[AXE], AX?] € S[AXE],
AXZ € S[AT] that hold with probability ()" = 2710734,

Observation 4. If the impossible differential illustrated in Fig. 2 is extended /
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 4: AXY € S[AX{], AXY, € S[AXY)], AXY; € S[AXY,], AXY, € S[AT],
AXY € S|AXY], AXY € S[AXY)], AXYy € S[AT], AX? € S[ATy], AX% €

SIAXZ], AX2Z € S[AXZ), AXZ € S[ATy] that hold with probability ()" =
2713.119'

4 Impossible Differential Key-Recovery Attack
on 27-Round T-TWINE-128

In this section, we present the first attack on 27-round T-TWINE-128 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values of the 12 nibbles X3, X9, X9 X9 X X2 X0 X8, X{,, X9, XV,
X7 while the remaining nibbles assume a fixed value. In addition, we choose
the tweak T5 such that it takes all its possible values. Thus, one structure gen-
erates 24%13 x (24%13 — 1) /2 &~ 2103 possible pairs. Hence, we have 2193 possible
pairs of messages satisfying the plaintext differences. In addition, we utilize the
following pre-computation tables in order to efficiently extract/filter the round
keys involved in the analysis rounds:

— Hj: For all the 220 possible values of X1, AX], X}, ¢} and RK) = K,
compute X9, AXY, X{, and AXJ. Then, store X{, AX{, X}, and RKY = K3
in H; indexed by X9, AXY, X9, AXY, and t. AXY is chosen such that
AXYS € S[AXY], see Observation 3. Therefore, H; has 7 x 2!¢ rows and on
average about 220/(7 x 216) = 16/7 values in each row.

— Hy: For all the 220 possible values of X1, AX:, X, ¢), and RK) = Kis,
compute X0, AX{, X2, and AX?. Then, store X3, AX1 X{ and RKY = K5
in H; indexed by X2, AX§, X9, AX? and tJ. AX? is chosen such that
AXY? € S[AXY)], see Observation 3. Therefore, Hy has 7 x 21¢ rows and on
average about 220/(7 x 216) = 16/7 values in each row.

— Hj: For all the 216 possible values of X{,, AX{;, X{;, and RKJ = Kas,
compute X¥, AXY X0, and AXJ,. Then, store Xi,, AX{, Xi5, and
RKQ = Kss in Hj indexed by X%, AXD, X0, and AXY{;. AXY; is cho-
sen such that AX), € S|AXY,], see Observation 3. Therefore, Hz has 7 x 212
rows and on average about 2'¢/(7 x 2'2) = 16/7 values in each row.
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— Hy: For all the 232 possible values of X7, AX?, X3, ti, RK{ = K;, X4, 19,
and RKY = Kis, compute X3 = X0, AX3 = AXQ, X{), XD, and AXY,.
Then, store X?, AX?, X2, RK{ = K7, X4, and RKY = K;5 in H, indexed
by Xi=X{, AX}=AXQ, X0, X0, AXY,, ¢}, and t9. AX{ is chosen such
that AXQ € S[AXY,], see Observation 3. Therefore, Hy has 7 x 224 rows and
on average about 232 /(7 x 22%) = (16/7) x 2% values in each row.

~ Hj: For all the 249 possible values of X2, AX2, X2, ti RK} = K9, Xi3,
AX{5, 19, ATy, and RK) = K7, compute X9, AX), X9, AXQ, X9, and
AXJQ. Then, store X3, AX2, X2, RK} = K19, X{3, AX{;, and RK}] = K7
in Hs indexed by X9, AXY, X9, AX?, X9, AXY, t}, 19, and ATy. Hj has
236 rows and on average about 240/236 = 24 values in each row.

— Hg: For all the 244 possible values of X3, X3, AX3, t2, RKZ = K1, X7,
tl, RK} = Kg, X2, t2, and RK§ = Ks, compute X7, AX? = AXY,, X| =
X9, AX{ = AXY, X§, and X{. Then, store X3, AX3, RK2 = Kjo, X2,
RK} = Kg, X2, and RK{ = K» in Hg indexed by X7, AX? = AXYD,
X1 = X9, AX] = AXS, X9, XD, 9, tl, and t3. AXY, is chosen such that
AXY, € S[AXY)], see Observation 3. Therefore, Hg has 7 x 232 rows and on
average about 244 /(7 x 232) = (16/7) x 28 values in each row.

~ Hz: For all the 232 possible values of X%, AXZ,, X, AX%, RK; = K1 +
S(Kop), X}, AX} and RKY = Kja, compute Xi;, AX{;, X?, AXY, X2, and
AXY. Then, store X3, AX?), X3, AX?, RK} = K1 + S(Ky), X2, AX3,
and RKS = Kj5 in Hy indexed by X{5, AX{;, XJ, AXY, X2, and AXY. H
has 224 rows and on average about 232 /224 = 28 values in each row.

— Hg: For all the 236 possible values of X2, AX?, X3, AX?,, t}, RK} = K,
X1, 3, and RK? = K3y, compute X5, AX{5, X9, X, and AXY. Then,
store X?,, AX?, X3, AX?,, RK} = Ko, X{;, and RK? = K3; in Hg indexed
by Xis, AX{s, X9, XD, AXY. ), and 3. Hg has 228 rows and on average
about 236/228 = 28 values in each row.

~ Hy: For all the 220 possible values of X3, X3, AXJ, 3, and RK? = Kag,
compute X3,, AXZ,, X%, and AX? . Then, store X3, AX3, and RK2 = Kag
in Hy indexed by X3,, AX?,, X3, AX?, and 3. Hy has 22 rows and on
average about 22Y/220 = 1 value in each row.

— Hyo: For all the 220 possible values of X7, AX3,, X3, t2, and RK? =
Ky + S(Kig), compute X2, AXZ,, X% and AXZ%. Then, store X3, AX{,,
X3,, and RK? = K4 + S(Ki6) in Hyg indexed by X3, AX?,, XZ&, AXE,
and t2. Hyp has 22° rows and on average about 220/220 = 1 value in each row.

— Hyy: For all the 240 possible values of X7, AX2, X1y, RK3 = Ka4, X3, 13,
RK? = Ki1, X2, t1, and RK} = Kao, compute X3, AX3, X3, AX2, Xi,,
and Xlll Then, store X?, AX?, RK3 = K24, RK12 = Klla and RK51 = K22
in Hy; indexed by X3, AX3, X3, AX3, X{,, X{;, t3, and t}. Hy; has 232
rows and on average about 240 /232 = 28 values in each row.

— Hyy: For all the 22 possible values of X2, X%, and RK3 = K6, compute
Xi, and Xé. Then, store X%, X1227 and RK21 = Kig in Hi2 indexed by Xi,
and X2. Hio has 2% rows and on average about 2'2/28 = 2% value in each
row.
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— Hi3: For all the 216 possible values of X3, X%, t3, and RK} = Ka1, compute
X3, and XJ. Then, store X2, X#;, and RK} = Kb in H3 indexed by X},
X¢, and t}. Hiz has 2'2 rows and on average about 2'¢/212 = 2% value in
each row.

— Hyy: For all the 228 possible values of X3, X§, t3, ATy, RK3 = Ko, X3,
and RKZ = K5+ S(K4+ S(K1)), compute X3, AX3,, X3, and XZ;. Then,
store RK3 = K3, and RKZ = K5+ S(K4+ S(K16)) in Hy4 indexed by X3,
AX3, X3, 13, ATy, and XZ5. Hyg has 224 rows and on average about 228 /224
= 24 values in each row.

— Hys: For all the 24 possible values of X5, AX3, X3, t3, RK§ = K31+ S(K7),
Xt t3, RK3 = Koo, X3, t3, and RK3 = Koz + S(K30), compute X7, AXF,
X3, AX3, X2, and XZ. Then, store X3, AX3, RK} = Ksg, and RK3 =
Koz +S(K30) in Hys indexed by X2, AX#, X3, AXS, X2, X2 3 3 12 and
RKj = K31 + S(K7). Hys has 2%0 rows and on average about 244/240 = 24
values in each row.

— Hig: For all the 248 possible values of X¢, X% 3, ATy, RK} = Kaz+S(K3p),
)(957 ti& .R}'{gl = Kg, Xils, RKg = K9+S(K8+S(K20)), X?, and RK22 = Kgo,
compute X3, AX3, X3,, X2, X7, and X?2. Then, store RK2 = K3, RK? =
Kg + S(Kg + S(Kgo)), and RK% = KQQ in H16 indexed by Xg, AX??, X?4,
X2, X2, X2, RKD = Kos + S(Kxo), RK2 = K3, t3, ATy, and t4. Hyg has 2%
rows and on average about 248 /244 = 2% values in each row.

~ Hy7: For all the 220 possible values of X7, AX?S, X378 25 and
RKZ° = f1(Ko, K1, K4, K5, K¢, K7, RKE, K19, K16, K17, K15, K19, K29, Ko1,
Koag, Kag, K30), compute X377, AX2] X2 and AXZ!. Then, store X2 and
AX? in Hy7 indexed by X377, AXZ] X% AXZ RK26 and t36. AX? is
chosen such that AXZ € S[AX?]], see Observation 3. Therefore, Hy7 has
7 x 229 rows and on average about 22Y/(7 x 22°) = (16/7) x 27* values in
each row.

— Hig: For all the 229 possible values of X325, X376 26 ATy, and RK3® =
fg(Ko, Kl, K3, Klﬁ, K207 Kgl, RKg, I(277 Kgg), compute X027, AX127, and
X27. Then, store RK2% in Hyg indexed by X27, AX27 X?7 126 and ATy,
AX?7 is chosen such that AXZ7 € S[ATy], see Observation 3. Therefore, Hig
has 7 x 216 rows and on average about 220/(7 x 21¢) = 16/7 values in each
row.

— Hiyg: For all the 228 possible values of X325, X%, ¢35, RKZ?® =
[3(Ko, K1, Ko, Ky, K12, K13, RK§, K15, K16, Koo, Ko1, Koa, Kog), X329, 3°,
and RKEG = f4(K0,K4,K5,K11,K16,K24), compute X227, Xg7, and X827
Then, store X2} and RK2 in Hg indexed by X327, X27, X27 RK?® 2% and
t25. Hyg has 22* rows and on average about 228 /224 = 2% values in each row.

— Hag: For all the 24* possible values of X2¢, X% 24 ATy, RK?* = f5(Ko,
K1, Ky, K19, K11, K12, K13, RK, Koo, Ko1, Koo, Koa, Kog, Kog, K30), X312,
t§°, RK?> = fe(Ko, K1, K2, K3, Ky, K5, Ko, K12, K13, K14, K15, K16, K17,
Kos, Kos, Koe, Kag), X35, 13%and RK3Z® = fr(0, K1, Ky, K5, K¢, Kg, K12,
Kis, K16, K17, K19, K20, K24, Ko5, Kog), compute X{7, X7 = X9, AX{ =
AXE, X, AXZ, and X3 Then, store RK25, RK2® in Hyo indexed by
X2 X2 AXZ X2 AXE XF 134, ATy, RK?4, 12°, and 26, AX?] and
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AX? are chosen such that AXZ] € S[AX?]] and AXZ € S[ATy], recep-
tively, see Observation 3. Therefore, Hyg has 72 x 236 rows and on average
about 244 /(72 x 236) = (16/7)” values in each row.

In the general approach, the round keys involved in the analysis rounds are
guessed and the plaintext/ciphertext pairs are filtered to satisfy the differen-
tial path leading to the impossible differential distinguisher. Here, we use the
above proposed pre-computation tables to deduce the round keys that lead
a specific pair of plaintext/ciphertext to the impossible differential. Then, we
exclude the deduced keys as they are wrong keys. Our attack proceeds as fol-
lows. We initialize an array H of 231*4=124 entries to “0”, where each entry
is 1-bit and the index of the array is 31 key nibbles involved in the attack, as
we will see later. Then we generate 2™ structures as described above. There-
fore, we have 2" %193 pairs of plaintext/ciphertext pairs generated using 2m+48
chosen plaintexts. Then, we ask the encryption oracle for their correspond-
ing ciphertexts. The plaintext/ciphertext pairs that satisfy Observation 3 are
QmH103 5 9—10.734 — 9m+92.266 pairs. After the ciphertext filtration, we have
only 2m+92:266 5 9—12x4 — 9m+44.266 yemaining pairs. For each remaining pair,
we access the pre-computation tables in sequential order from table Hy to Hog
one by one in order to deduce 31 key nibbles that lead each remaining pair of
plaintext/ciphertext to the impossible differential. Then, we mark them in H as
invalid “1”. Table 3 summarize these steps by identifying which table will be used
and which key nibble is involved in this step in addition to the time complexity
of each step.

Remarks on the analysis steps:

1. During steps 1-14 and step 18, we directly access the corresponding table
to obtain the values of the involved key nibbles. For example, in step 1, we
determine the number of possible values of RKY = K3 that satisfy the path to
the impassible differential by accessing H;. Therefore, we have (16/7) possible
values for K3.

2. During steps 15, 16, 17, 19, and 20, and because some combinations of the
key nibbles determined during the previous steps are used in the indexing
of the tables Hys to Hoy, we firstly deduce these indices and then access
the corresponding table. For example, during step 15, we deduce the value of
RK3 = K31+ S(K7) that is used in the indexing of table His, then determine
the number of possible values of RK} = Kag and RK3 = Ka3 + S(K30) that
satisfy the path by accessing His. After that, the value of RK3 = Koz +
S(K3p) is used to deduce the value of Koz using the determined value of K3sg
from Step 14.

3. During steps 7 and 8, we determine the possible values of RK} = K7+ S(Kj)
and RK} = Ky, respectively. Therefore, after step 8, we can deduce the values
of Ki. In the same manner, we can deduce the values of K, and K35 after steps
10, 12 and 14 where we determine the values of RK? = K, + S(Kj6) and
RK} = Ky, and RKZ = K5 + S(K4 + S(Ki6)), respectively.
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4. During step 17, we deduce the value of RK?® = f,(Ko, K1, K4, K5, K¢, K7,
RKg, Klo, K16, K17, K187 Klg, Kzo, K21, K28, Kgg, Kgo), then determine the
values of X2J and AX?$ that satisfy the path by accessing Hi7. Therefore,
no new key nibbles are involved during this step but there is a filtration of
some keys.

5. During steps 18 and 19, we can determine the values of RK2% = fa(Ko,
K1, K3, K16, K20, K21, RK6®, Ko7, K2s) and RK2 = f5(Ko, K1, Ko, Ky,
Ko, Ki3, RKS, K5, K16, K20, K21, Koy, Kos), respectively. Therefore, we can
deduce the values of K57 and K3, respectively, since all the other key nibbles
in fo and f3 are determined during the previous steps.

6. After step 20, we have 260 x (16/7)° possible values for Ko, K, Ko, K3,
Ky, K5, K¢, K7, Ko+ S(Ks+S(Ka)), K10, K11, K12, K13, K15, K16, K17, K18,
K9, Koo, Ko1, Koo, Ko, Koa, Kog, Koz, Kos, Kog, K30, K31, RK? = fo(Kia,
Kas), RK3% = f7(Ks, Kas). Hence, we marks them in H as invalid “1” in
step 21.

Attack Complexity. As depicted in Fig. 3, we have 37 round keys involved in
the analysis rounds. According to the key schedule, these 37 round keys take
only 2'24 possible values (see step 21 in Table3). As mentioned in step 21, we
remove on average 200 x (16/7)° = 270734 out of 2124 possible values of these
37 round keys involved in the attack for each pair of the 2m+44-266 yremaining
pairs. Hence, a wrong key is not discarded using one pair with probability 1 —

_ _ _ m+444.266
970.734—124 _ 1 _ 9—53.266 Therefore, we have 2124 x (1 —9 53.266)2 ~

2124 5 (gm1)2TTHIOTIO o 9124 o 9-14x2™" pemaining candidates for 124-
bit of the key, after processing all the 2m+44:266 remaining pairs. We evaluated
the computational complexity of the attack as a function of m, as illustrated in
Table 3, to determine the optimal value of m that leads to the best computational
complexity. As steps 20 and 21 dominate the time complexity of the attack, see
Table 3, we choose m = 12 in order to optimize the time complexity of the
attack. Therefore, we have 2124 x 9—14x2V797 _ 9124-11.2 _ 91128 remaining
candidates for 124-bit of the key. The remaining key nibbles can be retrieved
by guessing Ky and exhaustively searching the 228 remaining key candidates
using 2 plaintext/ciphertext pairs. This step requires 2 x 2% x 21128 = 21178
encryptions. Therefore, the time complexity of the attack is 2120-245 4 2119.245
QT8 ~y 912083 epcryptions. The data complexity of the attack is 2m+4x13 = 264
chosen tweak /plaintext combinations that can be generated using 2m+48 = 260
chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 224 x
276 = 2118 64-bit blocks.
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5 Impossible Differential Key-Recovery Attack
on 25-Round T-TWINE-80

In this section, we present the first attack on 25-round T-TWINE-80 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values in 7 nibbles X7, X?, X9, X7, X¥;, X?,, X¥; while the remaining
nibbles take a fixed value. In addition, we choose the tweak T such that it takes
all the values. Thus, one structure generates 24*® x (24*8 — 1)/2 ~ 253 possi-
ble pairs. Hence, we have 253 possible pairs of messages satisfying the plaintext
differences. In addition, we utilize the following pre-computation tables in order

Table 3. Time complexity of the different steps of the attack on 27-round T-TWINE-
128, where NK denotes the number of keys to be excluded.

Step|TableKey nibbles Time complexity (in 27-round encryptions) NK m =12
4
1 |Hi |K3 2mF44.266 5 (16/7) x s M +89.704 (16/7) 551.704
8 x 27
2 Ho Kis 2m,+44.266 % (16/7)2 % ~ 2m+40.896 (16/7)2 252.896
8 >§127
3 |Hy |Kog om+44.266 o (16,/7)3 x s gm+42.089 (16/7)3 554.089
8 X 27 -
4 |Hy |Kq7,Kis om+44.266 o 94 o (16/7)4 T ~ 24T 86T lod o (16/7)4 [259.867
X
7
5 |Hs |Ki7,Kig 2200 5 2% o (16/T) X A 2RO 98 (16/7)1 1204089
X
7
6 |He |Ka, K¢, K10 pm+44.266 o 916 o (16/7)5 x — o oM H61.282 516 o (16 /7)5|273.282
X
8
7 |H; |Ki+ S(Ko), K12 gm+44.266 o 924 (16/7)5 x — A 269474 924 (16 /7)5/981.474
X
7
8 |Hs |Ko, K1, K31 gm+44.266 o 932 (16/7)5 x T o 2mHTT 282 932 (16 /7)5|289-282
X
9 |Hy |Kag gm+44.266 o 932 (16/7)5 x . 327  2MHT6.059 932 (16 /7)5|288.059
X
4
10 |Hio |[Ka+ S(K1g) om+44.266 932 . (16/7)5 x T o 2MHT6.4TA 932 (16 /7)5/88.474
X
5
11 |Hi1 K11, Koz, K24 2 H44.266 5 940 o (16/7)5 x o 2m+84.796 1940 o (16/7)5[296:796
X
3
12 |Hyis |K4, Kig om+44.266 o 944 o (16/7)5 x T 288059 9dd o (14 /7)5|3100.059
X
5 3 5 5
13 |Hyiz |Ko1 om+44.266 o 948 o (16/7)5 x T ~ 292,059 948 o (16 /7)5|9104.059
X
5 5 2 5
14 |Hi4 |Ks, K30 2m+44.266 5 952 » (16/7)% x <z~ 2m+95.474 1952 o (16 /7)5[107.474
X
4
15 |His K23, Kag om+44.266 o 956  (16/7)5 x T o 2MH100.4741956 o (16 /7)5/p112.474
X
3
16 |Hig |RKE = Ko + S(Kg +2m1T44:266 960  (16/7)5 x ~ 2M+104.059960 o (16 /7)5/5116.059
S(K20)), K20 8 x 27
2
17 |Hy7 |- om+44.266 o 956 . (16/7)6 x T ~ 2M+100.667956 o (16 /7)6/9112.667
X
s ! -
18 |His |Kar om+44.266 o 956 . (16/7)7 x T ~ 2M+100.860956 o (16 /7)7|o112.860
X
2
19 |Hyg9 |Ki3 2m+44.266 960 o (16/7)7 x T ~ 27 +105.860/960 o (16 /7)7|2117-860
X
2
20 |Hoo |[RK2% = fo(K14, om+44.266 1 960 . (16/7)9 x ~ 2M+108.245/560 o (16 /7)9/5120.245
Kys), RKZ = 8 x 27
f7(Ks, Ko5)
o1 |l L gm+44.266 o 960  (16,7)0 x . 127 v 2MH107.245/960 o (16 /7)9/9119.245
X
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to efficiently extract/filter the round keys involved in the analysis rounds. Note
that, for the 7 round keys that are involved in the 3 rounds below the distin-
guisher, we wrote them as 7 functions f1, f2, f3, f4, f5, fs, f7 of the key nibbles
that are not involved in the above analysis rounds, Ky, Ko, K5, K7, K9, K19, K11,
K1, K13, and ignored the other key nibbles as they are known.

— Hj: For all the 220 possible values of X}, X2, AX2, t2 and RK{ = K,
compute XJ, AX{, X?, and AXY?. Then, store X3, AX}, and RK) = K;
in H; indexed by X{, AX{, X?, AX?, and 2. AX? is chosen such that
AXY € S[AX]], see Observation 4. Therefore, H; has 7 x 2'¢ rows and on
average about 220 /(7 x 216) = 16/7 values in each row.

— Hs: For all the 220 possible values of X4, Xd, AX{, 19, and RK? = K4,
compute X5, AXD), XV;, and AXY,. Then, store X3, AXJ, and RKY = K4
in Hy indexed by X{,, AXY), X{;, AXY,, and 9. AXY, is chosen such that
AXY € S|[AXY], see Observation 4. Therefore, Hy has 7 x 2'¢ rows and on
average about 220/(7 x 216) = 16/7 values in each row.

— Hj: For all the 220 possible values of X{,, AX{,, X{,, t§, and RK?Y = Kjg,
compute X9,, AXY,, X).. and AXJ.. Then, store Xi;, AX{, X{,, and
RK? = K in Hj indexed by X?,, AXY,, XV AXY and t§. AXY; is
chosen such that AXY, € S[AXY,], see Observation 4. Therefore, Hs has
7 x 2%6 rows and on average about 22°/(7 x 216) = 16/7 values in each row.

— Hy: For all the 228 possible values of X2, AX2?, X%,, RK3 = Kg, X1, t$, and
RKY = K3, compute X3 = X0, AXd = AX{, X9, X9, and AXY. Then, store
X2, AX2, RK} = Kg, and RK? = K3 in Hy indexed by X} = X{, AX} =
AXS, X9, X9, AXY, and t9. AXY is chosen such that AX{ € S[AXY)],
see Observation 4. Therefore, Hy has 7 x 22° rows and on average about
228 /(7 x 220) = (16/7) x 2* values in each row.

— Hsj: For all the 228 possible values of X2, X2, t}, ATy, RK} = Kig, X{5, and
RK{ = K5, compute X), = X{;, AXY, = AX},, X{,, and X),. Then, store
RK} = Kj3 and RK{ = K;5 in Hs indexed by X{;, AX{;, X¥5, X%5, ¢, and
AT;. AXY, is chosen such that AXY), € S[AT], see Observation 4. Therefore,
Hs has 7 x 22° rows and on average about 228 /(7 x 220) = (16/7) x 2% values
in each row.

— Hg: For all the 2% possible values of X3, AX3, X3, t2, RK? = K4, X%,
t, RK} = K7, X1, t3, and RKY = Kg, compute X2, AX? = AX?, X},
AXY = AXY), X0, and X2. Then, store X3, AX3, RK3 = K14, RK} = K7,
and RK9 = K¢ in Hg indexed by X2, AX2 = AX?, X}, AX} = AXY,, X,
X9 42,43, 9, and RK2 = Ky4. AXY is chosen such that AX{ € S[AXY],
see Observation 4. Therefore, Hg has 7 x 23% rows and on average about
244 /(7 x 236) = (16/7) x 2* values in each row.

— Hy: For all the 248 possible values of X{, X1, t3, ATy, RK} = K5, X§, 13,
RK?2 = K3, X%, RK} = Ki9, X2, and RKY = Ky, compute X3, AXY, =
AX3, X1, X0, X9, and X9. Then, store RK? = K5, RK2 = K3, RK} =
Kig, and RKY = K, in Hy; indexed by X3, AXY, = AX3Z, X1,, X2, X9,
X2, RK3} = Ki5, RK2 = K3, t3, ATy, and t3. AXJ, is chosen such that
AXY, € S[ATy], see Observation 4. Therefore, H; has 7 x 2%° rows and on
average about 248 /(7 x 240) = (16/7) x 2% values in each row.
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— Hg: For all the 220 possible values of X24, X?4 24 ATy and RKZ' =
fl(Ko,K27K5,Kg,Klo,Klg,Klg), compute Xg57 AXIQS, and X125 Then,
store RK2* in Hg indexed by X3°, AX#, X2° 124 and AT;. AX? is chosen
such that AX?® € S[ATv], see Observation 4. Therefore, Hg has 7 x 216 rows
and on average about 220 /(7 x 216) = 16/7 values in each row.

— Hy: For all the 229 possible values of X2}, AX?{, Xlo, 4 and RK74 = fo(Ko,
KQ,K57K7,K97K10,K11,K12,Klg) compute X14, AX%E, X15, and AX%SE)
Then store Xlzil, AX%ZL, and RK fg(Kg, KQ, K57 K7, Kg, Klo, Klla Klg,
Ki3) in Hy indexed by X27, AX%;E, X2 AXZ2 and t3*. AX?E is chosen such
that AX? € S[AXZ]], see Observation 4. Therefore, Hy has 7 x 216 rows
and on average about 220 /(7 x 216) = 16/7 values in each row.

— Hyg: For all the 232 possible values of X147 AX%E’, X323 133, RK23 = f3(Ko,
KQ,K57K7,K97K10,K11,K12,Klg) X107 t 5 and RK524 = f4(K0,K27K5,
K7, K9, K19, K11, K12, K13), compute X77 = X7, AX{} = AX{{, X7,
AX#, and X%. Then, store Xﬁ’, AXE, RK® = f3(Ko, K2, K5, K7, Ko,
Ko, K11, K12, K13), and RK2* f4(K0,K27Ks,K7,K97K107K117K12,K13)
in Hyo indexed by X% = X%ff, AX1245 = AX3, XH, AXE, X35, 133, and 34
AXZ) is chosen such that AX? € S[AX?], see Observation 4. Therefore
Hip has 7 x 2% rows and on average about 232 /(7 x 224) = (16/7) x 2* values
in each row.

— Hyy: For all the 24 possible values of X?2, X372 22, ATy, RK2? = f5(K,
K2,K57K77K97K10,K11,K127K13)7 X7, P RK2 = fo(Ko, Ky, Ks, K7,
Ky, K10, K11, K12, K13), X3, t3*, and RK3* = f7(Ko, K2, K5, Ko, K19, K12,
Ki3), compute X%, AXE = AXE, X25 X2° and X25. Then, store
RK?* = f5(K0,K27K5,K7,K97K107K11,K12,K13) RKZ® = f¢(Ko, Ka, K,
K7,K97K10,K11,K12,K13), and RK3* = f7(Ko, K3, K5, Ko, K10, K12, K13)
in Hy; indexed by X2, AX% = AX%E;’, X325 X35, X35, 3%, ATy, t33, and
t34. AXZ) is chosen such that AX? € S[ATx], see Observation 4. Therefore,
Hi; has 7 x 232 rows and on average about 244 /(7 x 232) = (16/7) x 2% values
in each row.

Our attack proceeds as follows. We initialize an array H of 2'8%4=72 entries
to “0”, where each entry is 1-bit and the index of the array is 18 key nibbles
involved in the attack, as we will see later. Then, we generate 2™ structures as
described above. Therefore, we have 2163 pairs of plaintext/ciphertext pairs
generated using 2™12® chosen plaintexts. Next, we ask the encryption oracle
for their corresponding ciphertexts. The plaintext/ciphertext pairs that satisfy
Observation 4 are 2m163 x 2713119 — gm+49.881 pajrg After the ciphertext fil-
tration, we have only 2m+49-881 5 9=12x4 — om+1.881 remaining pairs. For each
remaining pair, we perform the following steps:

1. Determine the number of possible values of RK{ = K; that satisfy the path
by accessing H;. Therefore, we have (16/7) possible values for Kj.

2. Determine the number of possible values of RKY = K14 that satisfy the path
by accessing Hs. Therefore, we have (16/7)2 possible values for K7, K14.

3. Determine the number of possible values of RKY = K that satisfy the path
by accessing Hj. Therefore, we have (16/7)3 possible values for K1, K14, K16.
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4. Determine the number of possible values of RK3 = Kg, RKY = Kj3 that
satisfy the path by accessing Hy. Therefore, we have 2* x (16/7)* possible
values for Kl, Kg, Kg, K14, K16~

5. Determine the number of possible values of RK% = Kis, RKg = K5 that
satisfy the path by accessing Hs. Therefore, we have 28 x (16/7) possible
values for Kl, [(37 Kg, I(147 I(157 K16, Klg.

6. Determine the number of possible values of RK? = K14, RK} = K17, RKY
= Kg that satisfy the path by accessing Hg. Therefore, we have 212 x (16/7)°
possible values for Kl, .[{37 Kg, Kg, K14, K15, K16, K17, Klg.

7. Determine the number of possible values of RK} = K5, RK? = K3, RK}
= Kig, RKY = K, that satisfy the path by accessing H7. Therefore, we have
216 X (16/7)7 possible values for Kl, I(37 K4, KG, Kg, K14, K15, Klﬁ, K17, Klg,
Klg.

8. Determine the number of possible values of RK3* that satisfy the path by
accessing Hg. Therefore, we have 216x (16/7)® possible values for K1, K3, Ky,
K, Ks, K14, K15, K16, K17, K18, K19, RK3*.

9. Determine the number of possible values of RK2? that satisfy the path by
accessing Hy. Therefore, we have 216 x (16/7)? possible values for K, K3, K4,
Ke, Ks, K14, K15, K16, K17, K18, K19, RK3*, RK?*.

10. Determine the number of possible values of RKZ3, RK2* that sat-
isfy the path by accessing Hijg. Therefore, we have 220 x (16/7)!°
possible values for K17 Kg, K4, I(67 Kg, K14, K157 K167 K17, Klg, Klg, RK34,
RK2?* RK23 RKZ.

11. Determine the number of possible values of RK2?, RK23 RK3?* that sat-
isfy the path by accessing Hj;. Therefore, we have 228 x (16/7)!! possible
values for Kl, Kg, f(—47 Kg, Kg, K14, K15, K16, l(v177 K187 Klg, RK84, RK$4,
RK2 RK2* RK22 RK23 RK?%.

12. The deduced 2% x (16/7)!! values for 18 key nibbles, K1, K3, K4, K¢, Ks,
K14, K15, K16, K17, K13, K19, RK24, RK24 RK23, RK24, RK22, K23, RK2*,
involved in the attack are wrong keys. Hence, mark them in H invalid “1”.

Attack Complexity. As depicted in Fig. 4, we have 22 round keys involved in
the analysis rounds. According to the key schedule, these 22 round keys take
only 272 possible values (see step 12 in Table4). As mentioned in step 12, we
remove on average 228 x (16/7)"" = 241119 out of 272 possible values of these
22 round keys involved in the attack for each pair of the 2™*1-#81 remaining
pairs. Hence, a wrong key is not discarded using one pair with probabﬂitg/g 11 —

_ _ _ m+1.
Q4L 119=72 — 1 _ 9—30.881  Therefore, we have 272 x (1 -2 30'881)2 ~

_ m+1.881—-30.881 _ m—29 .. . .
272 x (e71)? ~ 272 x 27 l4x2 remaining candidates for 72-bit
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of the key, after processing all the 21881 remaining pairs. We evaluated the
computational complexity of the attack as a function of m, as illustrated in
Table 4, to determine the optimal value of m that leads to the best computational
complexity. As steps 11 and 12 dominate the time complexity of the attack,
see Table4, we choose m = 33.5 in order to optimize the time complexity of
the attack. Therefore, we have 272 x 2~ 1:4x277#74% _ 97231678 _ 940.322
remaining candidates for 72-bit of the key. These 72-bit of the key include 11
master key nibbles and 7 round key nibbles. To retrieve the whole master key,
we perform the following steps:

1. Retrieve Kjo from RK2* by guessing the 6 key nibbles Ky, K», K5, Kg,
K9, K13. Since this step includes 18 S-box operations, it requires

210-322+24=64.322 o I8 ig% ~ 200848 encryptions. Since RK7* and RKZ* are

functions in the same nibbles of the master key, we can compute RK2* using
the retrieved K719 and then match the computed value with its value in the
remaining candidate key. As a result, we have 4-bit filtration. Hence, we

have only 20-322+24-4=60.322 yemaining key candidates. This step requires

240.322+24=64.322 % 85725 ~ 261.888 encryptions.

2. Using the same technique, retrieve K from RK23 by guessing K1;. This step
requires 200-322+4=64.322 o 90~ 963167 epcryptions. Since RK2* is also
a function in the same nibbles of the master key, we can compute it using
the retrieved K7 and compare it with its value in the remaining candidate.
As a result, we have 4-bit filtration. Hence, we have only 260-322+4—-4=60.322
80-bit remaining key candidates. This step requires 260-322+4=64.322 , 112
263485 Then, we perform the previous filtration to the following round key
nibbles RK??, RK?3, and RK?*. Finally, we have another 3 4-bit filtrations.
Therefore, we have only 260322712 —= 9248:322 remaining candidates for the
whole master key. The time complexity of this step is dominated by 264335

encryptions.

The right master key can be retrieved by exhaustively searching the 248-322
remaining key candidates using 2 plaintext/ciphertext pairs. This step requires

2 x 248:322 — 949322 opcryptions. Therefore, the time complexity of the attack is
970.441 | 968.856 o, 970.86

— 965.5

dominated by steps 11 and 12 in Table 4 which requires
encryptions, see Table4. The data complexity of the attack is 2m+4x8
chosen tweak /plaintext combinations that can be generated using 2m+28 = 2615
chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 272 x276 =
266 64-bit blocks.
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6 Conclusion

In this work, we presented two impossible differential attacks against reduced-
round versions of T-TWINE. Both attacks use our proposed 18-round impossible
differential distinguisher. To the best of our knowledge, this distinguisher is the
first valid 18-round distinguisher. Utilizing this distinguisher, we launched 25-
round and 27-round attacks on T-WINE-80 and T-TWINE-128, respectively.
The presented attacks are the first published attacks against both versions of
T-TWINE.

Table 4. Time complexity of the different steps of the attack on 25-round T-TWINE-
80, where NK denotes the number of keys to be excluded.

Step | Time complexity (in 25-round encryptions) NK m = 33.5
3

1 om+1.881 o (1 A~ Qm—2.985 1 930.515

X (16/7) x 5o (16/7)
9 omF1.881 o (16 /7)2 ~ gm—1.793 16/7)2 931.707

X (16/7) x o (16/7)
3 om+1.881 o (16/7)3 ~ Qm—0.185 16/7)3 933.315

x (16/7)° x oo (16/7)
4 2m+1.881 % 24 % (16/7)4 % ~ 2m+5.008 24 % (16/7)4 2384508

8 ><225

5 2m+1.881 x 28 x (16/7)5 x ~ 2m+9.200 28 x (16/7)5 2424700

8 X 25
6 2m+1.881 % 212 X (16/7)6 % S 525 ~ 2m+15.715 212 % (16/7)6 249.215
7 2m+1.881 % 216 X (16/7)7 X S 325 ~ 2m+204586 216 X (16/7)7 2544086
8 2m+1.881 X 216 x (16/7)8 x S ><125 ~ 2m+19‘778 216 X (16/7)8 253‘278
9 2m+1.881 X 216 x (16/7)9 % S ><325 ~ 2m+22.556 216 X (16/7)9 256.056
10 27 2% (16/7)"0 x X425 A 2641920 5 (16/7) 1| 201664
11 2m+1.881 x 228 x (16/7)11 % S ><325 ~ 2m+36.941 228 x (16/7)11 2704441
12 2m+1.881 X 228 % (16/7)11 % 1 ~ 2m+35.356 228 X (16/7)11 268‘856
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A

17 Rounds

18-round Impossible Differential Characteristic
as Depicted in Figure 8 of [15]

Encryption side
Round function

Input of Round #1 1R [o]oJoJoJoJoJoJo oJo o oo o o o] Tweak schedule function

<|100000|00000000001R

2R [ofoJoJoJoJoJoJo o oo oo o a]o]

<|0 ojojojo 0|0 ofjofofof1fofofo0|0| 2R

3R [o]oJoJoJoJoJoJo oo o a]o o] 0]

Ouput of Round #1
Input of Round #2

ecccse

ecee

[oToToTaToToJoJoJo oJo]oJo o oo] 7R — 6R

vI[R[a[r[o[1]r[R[1]1]R[R]1]R[R]R]R]
SRX[1]1]xlo o [R] o [a]a]R] o [1]2[R][R]R]

I contradiction

8R [R[R[R[R[R[R[1[R[1][R[R[R[1[R]R]R]
<lofofofolofoJoJofoTo o oo o aT0] 9R — 7R

ecesee

eescos

16R [0]oJoJoJoJoJoooJo]o oJo]o]o]0]
<[oToToToToToJoloJoTo o oa o o 0] 17R —> [5R
17R [0]oJoJoJoJoJoooJo]o oJo]o]o]0]
N <[oToToToToToJxJoJoJoJooJo]o]o]0] 18R—> 16R
‘f};}g‘g{g}&g;‘ggzllglsn|o|o|o|o|«|o|«|o|o|«|o|o|o|o|o|o|
<[iToToToJoToJo[o o o]0 o o o o]0 19r — 17R

r

Decryption side

[0] : Non-active [A] : Active : Random

Fig. 5. 18-round impossible differential characteristic as depicted in Figure8 of [15]
with our comments.

References

1.

Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency S-boxes. IACR Trans. Sym-
metric Cryptol. 4-44 (2017)

Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123-153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5.5

Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12-23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X_2


https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2

112

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Tolba et al.

Ferguson, N., et al.: The SKEIN hash function family (2010). http://www.
skeinhash.info

Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342-356. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2_21

Jean, J., Nikoli¢, 1., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol. 8374, pp.
274-288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
815

Jean, J., Nikoli¢, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submitted to CAESAR
Competition (2016). https://competitions.cr.yp.to/round3/deoxysv141.pdf
Knudsen, L.: DEAL: a 128-bit block cipher. Complexity 258(2), 216 (1998). NIST
AES Proposal

Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133-151. SPringer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3_8

Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14-30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5_2

Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588-613 (2010)

Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22-37. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88733-1_2

Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91-104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS, vol. 3329,
pp- 16-31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2.2

Sakamoto, K., et al.: Tweakable TWINE: building a tweakable block cipher on
generalized feistel structure. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019.
LNCS, vol. 11689, pp. 129-145. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26834-3_8

Schroeppel, R.: An overview of the hasty pudding cipher (1998). http://www.cs.
arizona.edu/rcs/hpe

Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19-39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4_2

Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339-354. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6_22


http://www.skeinhash.info
http://www.skeinhash.info
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-030-26834-3_8
https://doi.org/10.1007/978-3-030-26834-3_8
http://www.cs.arizona.edu/rcs/hpc
http://www.cs.arizona.edu/rcs/hpc
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22

Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE 113

19.

20.

Zheng, X., Jia, K.: Impossible differential attack on reduced-round TWINE. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 123-143. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_8

Zheng, Y., Matsumoto, T., Imai, H.: Impossibility and optimality results on con-
structing pseudorandom permutations. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 412-422. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-46885-4_41


https://doi.org/10.1007/978-3-319-12160-4_8
https://doi.org/10.1007/3-540-46885-4_41

	Impossible Differential Cryptanalysis of Reduced-Round Tweakable TWINE
	1 Introduction
	2 Specifications of T-TWINE
	3 An Impossible Differential Distinguisher of T-TWINE
	3.1 Observations

	4 Impossible Differential Key-Recovery Attack on 27-Round T-TWINE-128
	5 Impossible Differential Key-Recovery Attack on 25-Round T-TWINE-80
	6 Conclusion
	A 18-round Impossible Differential Characteristic as Depicted in Figure8 of ch510.1007sps978sps3sps030sps26834sps3sps8
	References




