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Montréal, Québec, Canada

youssef@ciise.concordia.ca

Abstract. Tweakable TWINE (T-TWINE) is a new lightweight tweak-
able block cipher family proposed by Sakamoto et al. at IWSEC 2019.
T-TWINE is the first Tweakable Block Cipher (TBC) that is built on
Generalized Feistel Structure (GFS). It is based on the TWINE block
cipher in addition to a simple tweak scheduling based on SKINNY’s
tweakey schedule. Similar to TWINE, it has two versions, namely, T-
TWINE-80 and T-TWINE-128, both have a block length of 64 bits and
employ keys of length 80 and 128 bits, respectively. In this paper, we
present impossible differential attacks against reduced-round versions of
T-TWINE-80 and T-TWINE-128. First, we present an 18-round impos-
sible differential distinguisher against T-TWINE. Then, using this distin-
guisher, we attack 25 and 27 rounds of T-TWINE-80 and T-TWINE-128,
respectively.

Keywords: Cryptanalysis · Impossible differential attacks ·
Tweakable · Block ciphers · TWINE · T-TWINE

1 Introduction

Tweakable Block Ciphers (TBCs) [11] differ from the conventional block ciphers
since they accept an additional input called a tweak. Different specific keyed
instances of the cipher can be generated by varying this tweak. TBCs allow new
interesting highly-secure modes of operation and applications to become possible
as they are designed to allow changing the tweak very efficiently compared to
the key setup operation.

Block ciphers can be used to build TBCs through modes of operation such
as LRW (Liskov, Rivest, and Wagner) and XEX (Xor-Encrypt-Xor) [14]. These
modes of operations, for one TBC encryption/decryption, require few cipher
calls. Therefore, they are efficient. However, their provable security guarantee,
which is 2n/2 for n-bit block cipher, is not enough, in particular, for TBCs
employed in modes of operation aiming to achieve “beyond-the-birthday-bound”
(BBB) security. As a result, less efficient modes of operations [9,10], compared
to LRW and XEX, are proposed to achieve BBB security guarantee.

Dedicated constructions is another approach to build efficient TBCs with an
acceptable level of security guarantee. HPC [16], one of the submission to the
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AES competition, is the first proposal, where the tweak is called “spice”. Three-
fish [4], Deoxys-BC [7], SKINNY [2] and QARMA [1] are examples of recently
proposed dedicated TBCs. Challenges such as designing efficient dedicated TBCs
while having sufficient security guarantee is solved by the tweakey flamework [6]
which is based on a Substitution Permutation Network (SPN).

Tweakable TWINE (T-TWINE) [15] is the first dedicated TBC that is based
on Generalized Feistel Structure (GFS) [13,20]. The only work on GFS-based
TBC, before the T-TWINE proposal, is done by Goldenberg et al. [5] and Mit-
suda and Iwata [12] who focused on studding the provable security of the round
functions that are instantiated by PRFs. TWINE, which is a GFS-based block
cipher, was proposed by Suzaki et al. [18] after a comprehensive study done
by Suzaki and Minematsu [17] showing the effect of the choice of sub-block
permutation on the diffusion, the number of differential/linear active S-boxes,
and the maximum numbers of rounds for impossible differential characteristics
and saturation characteristics. The choice of the permutation of TWINE was a
result of the work done in [17], it permutes over 16 nibbles to achieve the best
characteristics.

T-TWINE [15] is built with the goal of reducing the cost of design, security
evaluation, and implementation. As a result, TWINE was selected to be the basic
building block of T-TWINE with extremely simple tweak scheduling. This tweak
schedule is based on the SKINNY’s [2] tweakey schedule. Similar to TWINE, T-
TWINE has a block size of 64 bits and iterates using either 80-bit or 128-bit key
over 36 rounds. It accepts an additional 64-bit tweak. It also uses independent
key and tweak schedules where the tweak is mixed with the states by adding few
nibble XORs to TWINE. Therefore, it has the same hardware cost of TWINE
except for the additional tweak registers.

The designers of T-TWINE evaluated its security against differential, linear,
impossible differential, and integral attacks in the chosen-tweak setting. However,
they only presented distinguishers without converting any distinguisher to a key
recovery attack. For impossible differential, they utilized the miss-in-the-middle
approach to search the impossible differential characteristics that have one active
nibble in the 16 tweak nibbles and one active nibble in 16 ciphertext nibbles at
the decryption side. However, the 18-round impossible differential distinguisher
that was proposed by the designers does not seem to be correct as we will
illustrate in Sect. 31.

In this paper, we start by presenting an 18-round impossible differential dis-
tinguisher. Then, we use this distinguisher to launch a 25-round attack against
T-TWINE-80 by pre-appending and appending 4 and 3 rounds, respectively.
Finally, we launched a 27-round attack against T-TWINE-128, using the 18-
round distinguisher, by pre-appending and appending 6 and 3 rounds, respec-
tively. The data, time, and memory complexities of the 25-round (27-round)
against T-TWINE-80 (T-TWINE-128) are 261.5 (260) chosen plaintexts, 270.86

25-round (2120.83 27-round) encryptions, 266 (2118) 64-bit block, respectively.

1 This has also been confirmed through personal communications with the designers.
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The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of T-TWINE. In Sect. 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in Sects. 4 and 5. Finally, the paper is concluded in
Sect. 6.

2 Specifications of T-TWINE

The following notation will be used throughout the rest of the paper:

– K: The 80 or 128 bits master key.
– Kj : The jth nibble of K. The indices of the nibbles begin from 0.
– RKi: The 32-bit round key used in round i + 1.
– RKi

j : The jth nibble of RKi. The indices of the nibbles begin from 0.
– T : The 64-bit tweak.
– Ti: The ith nibble of the tweak T .
– RT i: The 24-bit round tweak used in round i + 1, where RT i ← ti0||ti1||

ti2||ti3||ti4||ti5, and tij is the jth nibble of RT i.
– Xi: The 16 4-bit nibbles output of round i.
– Xj

i: jth nibble of Xi.
– ΔXi,ΔXi

j : The difference at state Xi and nibble Xi
j , respectively.

– ⊕: The XOR operation.
– ||: The concatenation operation.
– Rotz(x): The z-bit left cyclic shift of x.

T-TWINE is based on TWINE [18]. T-TWINE-80/128 iterates 36 rounds
over 64-bit block using 80/128-bit key, respectively, and 64-bit tweak T . The
block cipher has three parts: data processing, key schedule, and tweak schedule.
Except for the tweaks addition, T-TWINE-80/128 has the same data process-
ing and key schedule of TWINE-80/128, respectively. Both T-TWINE-80 and
T-TWINE-128 employ the same generalized Feistel structure and tweak schedule
where the only difference between them is the key schedule.

Data Processing Part. As depicted in Fig. 1, the round function is based on
a variant of Type-2 GFS with 16 4-bit nibbles [17]. It has four operations: 4-bit
S-box (S, see Table 1), round key XOR, round tweak XOR, and a 16-nibble
shuffle operation (π, see Table 2). Both versions of T-TWINE have the same
number of rounds (36). The nibble shuffle operation in the last round is omitted.

Table 1. 4-bit S-box S in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

Key Schedule. A round key RKi of 8 nibbles is generated from the master key
K for each round i, where 0 ≤ i < 35. Each version of T-TWINE has its own key
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5 4 3 2 1 0

Fig. 1. The T-TWINE round function, for simplicity we use tj instead of ti
j . For exam-

ple t0 equivalent to ti
0

schedule. Algorithm 1 and 2 show the details of T-TWINE-80/128, respectively,
where CON i

H and CON i
L are predefined constants. For further details, the reader

is referred to [15,18].

Tweak Schedule. A round tweak RT i of 6 nibbles is generated from the tweak
T for each round i, where 0 ≤ i < 35. Both versions of T-TWINE have the same
tweak schedule, shown in Algorithm 3, where πt is a 6-nibble permutation s.t.
(0, 1, 2, 3, 4, 5) → (1, 0, 4, 2, 3, 5).

3 An Impossible Differential Distinguisher of T-TWINE

Impossible differential cryptanalysis was proposed independently by Knudsen [8]
and Biham, Biryukov and Shamir [3]. It exploits a (truncated) differential char-
acteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique
used to construct impossible differentials, where the cipher, E, is split such that
E = E2 ◦ E1, and we try to find two deterministic differentials, the first one
covers E1 and has the form Δδ → Δγ, and the second covers E−1

2 , and has the
form Δβ → Δζ. When the intermediate differences Δγ,Δζ do not match, the
differential Δδ → Δβ that covers the whole cipher E holds with zero probability.

Table 2. Nibble shuffle π

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12
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Algorithm 1: Key Schedule of T-TWINE-80
Data: The 80-bit master key K
Result: The round keys RK = RK0||RK1|| · · · ||RK35

k0||k1|| · · · ||k19 ← K;
for i ← 0 to 34 do

RKi ← k1||k3||k4||k6||k13||k14||k15||k16;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k19 ← Rot16(k0|| · · · ||k19);

RK35 ← k1||k3||k4||k6||k13||k14||k15||k16;
RK ← RK0||RK1|| · · · ||RK35;

Algorithm 2: Key Schedule of T-TWINE-128
Data: The 128-bit master key K
Result: The round keys RK = RK0||RK1|| · · · ||RK35

k0||k1|| · · · ||k31 ← K;
for i ← 0 to 34 do

RKi ← k2||k3||k12||k15||k17||k18||k28||k31;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);
k23 ← k23 ⊕ S(k30);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k31 ← Rot16(k0|| · · · ||k31);

RK35 ← k2||k3||k12||k15||k17||k18||k28||k31;
RK ← RK0||RK1|| · · · ||RK35;

Algorithm 3: Tweak Schedule of T-TWINE
Data: The 64-bit tweak T
Result: The round tweaks RT = RT 0||RT 1|| · · · ||RT 35

t00||t01|| · · · ||t016 ← T ;
for i ← 0 to 35 do

RT i ← ti
0||ti

1||ti
2||ti

3||ti
4||ti

5;
for h ← 0 to 5 do

ti
πt[h] ← ti

h;

for h ← 0 to 15 do
ti+1
(h−6) mod 16 ← ti

h;

RT ← RT 0||RT 1|| · · · ||RT 35;



96 M. Tolba et al.

The designers of T-TWINE in [15] presented an 18-round impossible differ-
ential distinguisher. They found this distinguisher using the Miss-in-the-Middle
approach. The distinguisher begins at “1R” with zero differences and the tweak
has a non-zero difference at the first nibble t0. As mentioned above, this 18-
round impossible differential distinguisher does not seem to be correct. In what
follows, we list some of the problems (mistakes) we identified in this distin-
guisher (See Fig. 5): i) the numbers of rounds involved in the distinguisher is
only 17 not 18 (as the plaintext is marked “1R” and the ciphertext is marked
“18R”), ii) the tweaks used in the distinguisher are wrong. For example, the
tweaks that are used in the seventh and ninth rounds are actually the tweaks
of the sixth and seventh rounds, respectively, and iii) this distinguisher assumes
that the tweak has difference at nibble “0” at the first round, then it appear
again at nibble “0” at the nineteenth round, while it should appear again at the
seventeenth round, after 16 rounds of the tweak schedule. Moreover, as shown
in Figure 8 of [15] (See Fig. 5), the zero difference at “1R” associated with a
non-zero difference at the first nibble t0 of the tweak gives, after being propa-
gated 7 rounds in the forward direction, the difference at “8R” in the form of
(1, 1, 1, 0, 0, ?, 0, 1, 1, ?, 0, 1, ?, ?, ?, ?). However, the correct difference should be in
the form of (?, 1, ?, 0, 1, ?, ?, 1, 1, ?, ?, 1, ?, ?, ?, ?).

In this section, we present an 18-round distinguisher that begins and ends
with zero difference and has a difference at t12 at the first round, see Fig. 2. To
the best of our knowledge, this is the first valid 18-round impossible differential
distinguisher. This distinguisher is found using the Miss-in-the-Middle approach,
where we propagate the difference in the tweak forward 8 rounds with probability
1 and propagate the difference in the tweak backward 10 rounds with probability
1, then match at the middle at the end of round 8. As seen in Fig. 2, there is
a contradiction at nibble “6”, where in the forward path, it should have a zero
difference, while in the backward path, it should have a non-zero difference.

3.1 Observations

In this section, we present some useful observations that will be utilized in our
attack.

Observation 1 [18,19]. For any input difference a(�= 0) and output difference
b(∈ ΔS[a]) of the S-box in TWINE, the average number of pairs that satisfy
the differential characteristic (a → b) is 16

7 . Given an 8-bit pair (Xi
2j ,X

i
2j+1)

and (Xi
2j ⊕ a,Xi

2j+1 ⊕ b), the probability that RKi
j leads to the S-box differential

characteristic (a → b) is 7−1.
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Fig. 2. An 18-round impossible differential distinguisher
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Observation 2. Given two nonzero differences Δi and Δo in F16, the equation:
S(x) + S(x + Δi) = Δo has one solution on average. This property also applies
to S−1.

Observation 3. If the impossible differential illustrated in Fig. 2 is extended 6
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 3: ΔX0

3 ∈ S[ΔX0
2 ], ΔX0

7 ∈ S[ΔX0
6 ], ΔX0

13 ∈ S[ΔX0
12], ΔX0

6 ∈ S[ΔX0
11],

ΔX0
11 ∈ S[ΔX0

2 ], ΔX27
1 ∈ S[ΔT2], ΔX27

15 ∈ S[ΔX27
14 ], ΔX27

14 ∈ S[ΔX27
11 ],

ΔX27
11 ∈ S[ΔT2] that hold with probability ( 7

16 )9 = 2−10.734.

Observation 4. If the impossible differential illustrated in Fig. 2 is extended 4
rounds forward and 3 rounds backward, then we have the following relations, see
Fig. 4: ΔX0

1 ∈ S[ΔX0
0 ], ΔX0

11 ∈ S[ΔX0
10], ΔX0

15 ∈ S[ΔX0
14], ΔX0

14 ∈ S[ΔT7],
ΔX0

0 ∈ S[ΔX0
3 ], ΔX0

3 ∈ S[ΔX0
10], ΔX0

10 ∈ S[ΔT7], ΔX25
1 ∈ S[ΔT7], ΔX25

15 ∈
S[ΔX25

14 ], ΔX25
14 ∈ S[ΔX25

11 ], ΔX25
11 ∈ S[ΔT7] that hold with probability ( 7

16 )11 =
2−13.119.

4 Impossible Differential Key-Recovery Attack
on 27-Round T-TWINE-128

In this section, we present the first attack on 27-round T-TWINE-128 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values of the 12 nibbles X0

2 , X0
3 , X0

4 , X0
5 , X0

6 , X0
7 , X0

8 , X0
9 , X0

11, X0
12, X0

13,
X0

15 while the remaining nibbles assume a fixed value. In addition, we choose
the tweak T2 such that it takes all its possible values. Thus, one structure gen-
erates 24×13 × (24×13 − 1)/2 ≈ 2103 possible pairs. Hence, we have 2103 possible
pairs of messages satisfying the plaintext differences. In addition, we utilize the
following pre-computation tables in order to efficiently extract/filter the round
keys involved in the analysis rounds:

– H1: For all the 220 possible values of X1
1 , ΔX1

1 , X1
4 , t04 and RK0

1 = K3,
compute X0

2 , ΔX0
2 , X0

3 , and ΔX0
3 . Then, store X1

1 , ΔX1
1 , X1

4 , and RK0
1 = K3

in H1 indexed by X0
2 , ΔX0

2 , X0
3 , ΔX0

3 , and t04. ΔX0
3 is chosen such that

ΔX0
3 ∈ S[ΔX0

2 ], see Observation 3. Therefore, H1 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H2: For all the 220 possible values of X1
3 , ΔX1

3 , X1
8 , t03, and RK0

3 = K15,
compute X0

6 , ΔX0
6 , X0

7 , and ΔX0
7 . Then, store X1

3 , ΔX1
3 , X1

8 , and RK0
3 = K15

in H1 indexed by X0
6 , ΔX0

6 , X0
7 , ΔX0

7 , and t03. ΔX0
7 is chosen such that

ΔX0
7 ∈ S[ΔX0

6 ], see Observation 3. Therefore, H2 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H3: For all the 216 possible values of X1
10, ΔX1

15, X1
15, and RK0

6 = K28,
compute X0

12, ΔX0
12, X0

13, and ΔX0
13. Then, store X1

10, ΔX1
15, X1

15, and
RK0

6 = K28 in H3 indexed by X0
12, ΔX0

12, X0
13, and ΔX0

13. ΔX0
13 is cho-

sen such that ΔX0
13 ∈ S[ΔX0

12], see Observation 3. Therefore, H3 has 7× 212

rows and on average about 216/(7 × 212) = 16/7 values in each row.
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Fig. 3. Impossible differential attack on 27-round T-TWINE-128
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Fig. 4. Impossible differential attack on 25-round T-TWINE-80
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– H4: For all the 232 possible values of X2
1 , ΔX2

1 , X2
4 , t14, RK1

1 = K7, X1
9 , t01,

and RK0
5 = K18, compute X1

3 = X0
6 , ΔX1

3 = ΔX0
6 , X0

10, X0
11, and ΔX0

11.
Then, store X2

1 , ΔX2
1 , X2

4 , RK1
1 = K7, X1

9 , and RK0
5 = K18 in H4 indexed

by X1
3 = X0

6 , ΔX1
3 = ΔX0

6 , X0
10, X0

11, ΔX0
11, t14, and t01. ΔX0

6 is chosen such
that ΔX0

6 ∈ S[ΔX0
11], see Observation 3. Therefore, H4 has 7 × 224 rows and

on average about 232/(7 × 224) = (16/7) × 24 values in each row.
– H5: For all the 240 possible values of X2

3 , ΔX2
3 , X2

8 , t13, RK1
3 = K19, X1

13,
ΔX1

13, t02, ΔT2, and RK0
4 = K17, compute X0

4 , ΔX0
4 , X0

8 , ΔX0
8 , X0

9 , and
ΔX0

9 . Then, store X2
3 , ΔX2

3 , X2
8 , RK1

3 = K19, X1
13, ΔX1

13, and RK0
4 = K17

in H5 indexed by X0
4 , ΔX0

4 , X0
8 , ΔX0

8 , X0
9 , ΔX0

9 , t13, t02, and ΔT2. H5 has
236 rows and on average about 240/236 = 24 values in each row.

– H6: For all the 244 possible values of X3
0 , X3

5 , ΔX3
5 , t25, RK2

0 = K10, X2
5 ,

t15, RK1
0 = K6, X1

5 , t05, and RK0
0 = K2, compute X2

1 , ΔX2
1 = ΔX0

11, X1
1 =

X0
2 , ΔX1

1 = ΔX0
2 , X0

0 , and X0
1 . Then, store X3

5 , ΔX3
5 , RK2

0 = K10, X2
5 ,

RK1
0 = K6, X1

5 , and RK0
0 = K2 in H6 indexed by X2

1 , ΔX2
1 = ΔX0

11,
X1

1 = X0
2 , ΔX1

1 = ΔX0
2 , X0

0 , X0
1 , t05, t15, and t25. ΔX0

11 is chosen such that
ΔX0

11 ∈ S[ΔX0
2 ], see Observation 3. Therefore, H6 has 7 × 232 rows and on

average about 244/(7 × 232) = (16/7) × 28 values in each row.
– H7: For all the 232 possible values of X2

10, ΔX2
10, X2

15, ΔX2
15, RK1

6 = K1 +
S(K0), X1

7 , ΔX1
7 , and RK0

2 = K12, compute X1
13, ΔX1

13, X0
4 , ΔX0

4 , X0
5 , and

ΔX0
5 . Then, store X2

10, ΔX2
10, X2

15, ΔX2
15, RK1

6 = K1 + S(K0), X1
7 , ΔX1

7 ,
and RK0

2 = K12 in H7 indexed by X1
13, ΔX1

13, X0
4 , ΔX0

4 , X0
5 , and ΔX0

5 . H7

has 224 rows and on average about 232/224 = 28 values in each row.
– H8: For all the 236 possible values of X2

11, ΔX2
11, X2

14, ΔX2
14, t10, RK1

7 = K0,
X1

11, t00, and RK0
7 = K31, compute X1

15, ΔX1
15, X0

14, X0
15, and ΔX0

15. Then,
store X2

11, ΔX2
11, X2

14, ΔX2
14, RK1

7 = K0, X1
11, and RK0

7 = K31 in H8 indexed
by X1

15, ΔX1
15, X0

14, X0
15, ΔX0

15, t10, and t00. H8 has 228 rows and on average
about 236/228 = 28 values in each row.

– H9: For all the 220 possible values of X3
2 , X3

9 , ΔX3
9 , t21, and RK2

5 = K26,
compute X2

10, ΔX2
10, X2

11, and ΔX2
11. Then, store X3

9 , ΔX3
9 , and RK2

5 = K26

in H9 indexed by X2
10, ΔX2

10, X2
11, ΔX2

11, and t21. H9 has 220 rows and on
average about 220/220 = 1 value in each row.

– H10: For all the 220 possible values of X3
11, ΔX3

11, X3
14, t20, and RK2

7 =
K4 + S(K16), compute X2

14, ΔX2
14, X2

15, and ΔX2
15. Then, store X3

11, ΔX3
11,

X3
14, and RK2

7 = K4 + S(K16) in H10 indexed by X2
14, ΔX2

14, X2
15, ΔX2

15,
and t20. H10 has 220 rows and on average about 220/220 = 1 value in each row.

– H11: For all the 240 possible values of X4
7 , ΔX4

7 , X4
12, RK3

2 = K24, X3
1 , t24,

RK2
1 = K11, X2

9 , t11, and RK1
5 = K22, compute X3

5 , ΔX3
5 , X2

3 , ΔX2
3 , X1

10,
and X1

11. Then, store X4
7 , ΔX4

7 , RK3
2 = K24, RK2

1 = K11, and RK1
5 = K22

in H11 indexed by X3
5 , ΔX3

5 , X2
3 , ΔX2

3 , X1
10, X1

11, t24, and t11. H11 has 232

rows and on average about 240/232 = 28 values in each row.
– H12: For all the 212 possible values of X2

7 , X2
12, and RK1

2 = K16, compute
X1

4 , and X1
5 . Then, store X2

7 , X2
12, and RK1

2 = K16 in H12 indexed by X1
4 ,

and X1
5 . H12 has 28 rows and on average about 212/28 = 24 value in each

row.
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– H13: For all the 216 possible values of X2
6 , X2

13, t12, and RK1
4 = K21, compute

X1
8 , and X1

9 . Then, store X2
6 , X2

13, and RK1
4 = K21 in H13 indexed by X1

8 ,
X1

9 , and t12. H13 has 212 rows and on average about 216/212 = 24 value in
each row.

– H14: For all the 228 possible values of X4
2 , X4

9 , t31, ΔT2, RK3
5 = K30, X3

15,
and RK2

6 = K5 +S(K4 +S(K16)), compute X3
11, ΔX3

11, X2
12, and X2

13. Then,
store RK3

5 = K30, and RK2
6 = K5 + S(K4 + S(K16)) in H14 indexed by X3

11,
ΔX3

11, X2
12, t31, ΔT2, and X2

13. H14 has 224 rows and on average about 228/224

= 24 values in each row.
– H15: For all the 244 possible values of X5

3 , ΔX5
3 , X5

8 , t43, RK4
3 = K31+S(K7),

X4
13, t32, RK3

4 = K29, X3
3 , t23, and RK2

3 = K23 + S(K30), compute X4
7 , ΔX4

7 ,
X3

9 , ΔX3
9 , X2

6 , and X2
7 . Then, store X5

3 , ΔX5
3 , RK3

4 = K29, and RK2
3 =

K23 +S(K30) in H15 indexed by X4
7 , ΔX4

7 , X3
9 , ΔX3

9 , X2
6 , X2

7 , t43, t32, t23, and
RK4

3 = K31 + S(K7). H15 has 240 rows and on average about 244/240 = 24

values in each row.
– H16: For all the 248 possible values of X6

1 , X6
4 , t54, ΔT2, RK5

1 = K23+S(K30),
X5

9 , t41, RK4
5 = K3, X4

15, RK3
6 = K9 +S(K8 +S(K20)), X3

7 , and RK2
2 = K20,

compute X5
3 , ΔX5

3 , X3
14, X2

8 , X2
4 , and X2

5 . Then, store RK4
5 = K3, RK3

6 =
K9 + S(K8 + S(K20)), and RK2

2 = K20 in H16 indexed by X5
3 , ΔX5

3 , X3
14,

X2
8 , X2

4 , X2
5 , RK5

1 = K23 +S(K30), RK4
5 = K3, t54, ΔT2, and t41. H16 has 244

rows and on average about 248/244 = 24 values in each row.
– H17: For all the 220 possible values of X26

14 , ΔX26
14 , X26

15 , t260 , and
RK26

7 = f1(K0,K1,K4,K5,K6,K7, RK3
6 ,K10,K16,K17,K18,K19,K20,K21,

K28,K29,K30), compute X27
14 , ΔX27

14 , X27
15 , and ΔX27

15 . Then, store X26
14 and

ΔX26
14 in H17 indexed by X27

14 , ΔX27
14 , X27

15 , ΔX27
15 , RK26

7 , and t260 . ΔX27
15 is

chosen such that ΔX27
15 ∈ S[ΔX27

14 ], see Observation 3. Therefore, H17 has
7 × 220 rows and on average about 220/(7 × 220) = (16/7) × 2−4 values in
each row.

– H18: For all the 220 possible values of X26
0 , X26

1 , t265 , ΔT2, and RK26
0 =

f2(K0,K1,K3,K16,K20,K21, RK3
6 ,K27,K28), compute X27

0 , ΔX27
1 , and

X27
1 . Then, store RK26

0 in H18 indexed by X27
0 , ΔX27

1 , X27
1 , t265 , and ΔT2.

ΔX27
1 is chosen such that ΔX27

1 ∈ S[ΔT2], see Observation 3. Therefore, H18

has 7 × 216 rows and on average about 220/(7 × 216) = 16/7 values in each
row.

– H19: For all the 228 possible values of X25
10 , X25

11 , t251 , RK25
5 =

f3(K0,K1,K2,K4,K12,K13, RK3
6 ,K15,K16,K20,K21,K24,K28), X26

8 , t262 ,
and RK26

4 = f4(K0,K4,K5,K11,K16,K24), compute X27
2 , X27

9 , and X27
8 .

Then, store X25
11 and RK25

5 in H19 indexed by X27
2 , X27

9 , X27
8 , RK26

4 , t251 , and
t262 . H19 has 224 rows and on average about 228/224 = 24 values in each row.

– H20: For all the 244 possible values of X24
14 , X24

15 , t240 , ΔT2, RK24
7 = f5(K0,

K1,K2,K10,K11,K12,K13, RK3
6 ,K20,K21,K22,K24,K28,K29,K30), X25

15 ,
t250 ,RK25

7 = f6(K0,K1,K2,K3,K4,K5,K6,K12,K13,K14,K15,K16,K17,
K24,K25,K26,K28), X26

10 , t261 ,and RK26
5 = f7(0,K1,K4,K5,K6,K8,K12,

K13,K16,K17,K19,K20,K24,K25,K28), compute X25
11 , X27

14 = X26
14 , ΔX27

14 =
ΔX26

14 , X27
11 , ΔX27

11 , and X27
10 . Then, store RK25

7 , RK26
5 in H20 indexed by

X25
11 , X26

14 , ΔX26
14 , X27

11 , ΔX27
11 , X27

10 , t240 , ΔT2, RK24
7 , t250 , and t261 . ΔX27

14 and
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ΔX27
11 are chosen such that ΔX27

14 ∈ S[ΔX27
11 ] and ΔX27

11 ∈ S[ΔT2], recep-
tively, see Observation 3. Therefore, H19 has 72 × 236 rows and on average
about 244/(72 × 236) = (16/7)2 values in each row.

In the general approach, the round keys involved in the analysis rounds are
guessed and the plaintext/ciphertext pairs are filtered to satisfy the differen-
tial path leading to the impossible differential distinguisher. Here, we use the
above proposed pre-computation tables to deduce the round keys that lead
a specific pair of plaintext/ciphertext to the impossible differential. Then, we
exclude the deduced keys as they are wrong keys. Our attack proceeds as fol-
lows. We initialize an array H of 231×4=124 entries to “0”, where each entry
is 1-bit and the index of the array is 31 key nibbles involved in the attack, as
we will see later. Then we generate 2m structures as described above. There-
fore, we have 2m+103 pairs of plaintext/ciphertext pairs generated using 2m+48

chosen plaintexts. Then, we ask the encryption oracle for their correspond-
ing ciphertexts. The plaintext/ciphertext pairs that satisfy Observation 3 are
2m+103 × 2−10.734 = 2m+92.266 pairs. After the ciphertext filtration, we have
only 2m+92.266 × 2−12×4 = 2m+44.266 remaining pairs. For each remaining pair,
we access the pre-computation tables in sequential order from table H1 to H20

one by one in order to deduce 31 key nibbles that lead each remaining pair of
plaintext/ciphertext to the impossible differential. Then, we mark them in H as
invalid “1”. Table 3 summarize these steps by identifying which table will be used
and which key nibble is involved in this step in addition to the time complexity
of each step.

Remarks on the analysis steps:

1. During steps 1–14 and step 18, we directly access the corresponding table
to obtain the values of the involved key nibbles. For example, in step 1, we
determine the number of possible values of RK0

1 = K3 that satisfy the path to
the impassible differential by accessing H1. Therefore, we have (16/7) possible
values for K3.

2. During steps 15, 16, 17, 19, and 20, and because some combinations of the
key nibbles determined during the previous steps are used in the indexing
of the tables H15 to H20, we firstly deduce these indices and then access
the corresponding table. For example, during step 15, we deduce the value of
RK4

3 = K31+S(K7) that is used in the indexing of table H15, then determine
the number of possible values of RK3

4 = K29 and RK2
3 = K23 + S(K30) that

satisfy the path by accessing H15. After that, the value of RK2
3 = K23 +

S(K30) is used to deduce the value of K23 using the determined value of K30

from Step 14.
3. During steps 7 and 8, we determine the possible values of RK1

6 = K1+S(K0)
and RK1

7 = K0, respectively. Therefore, after step 8, we can deduce the values
of K1. In the same manner, we can deduce the values of K4 and K5 after steps
10, 12 and 14 where we determine the values of RK2

7 = K4 + S(K16) and
RK1

2 = K16, and RK2
6 = K5 + S(K4 + S(K16)), respectively.
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4. During step 17, we deduce the value of RK26
7 = f1(K0,K1,K4,K5,K6,K7,

RK3
6 ,K10,K16,K17,K18,K19,K20,K21,K28,K29,K30), then determine the

values of X26
14 and ΔX26

14 that satisfy the path by accessing H17. Therefore,
no new key nibbles are involved during this step but there is a filtration of
some keys.

5. During steps 18 and 19, we can determine the values of RK26
0 = f2(K0,

K1,K3,K16,K20,K21, RK6
3,K27,K28) and RK25

5 = f3(K0,K1,K2,K4,
K12,K13, RK3

6 ,K15,K16,K20,K21,K24,K28), respectively. Therefore, we can
deduce the values of K27 and K13, respectively, since all the other key nibbles
in f2 and f3 are determined during the previous steps.

6. After step 20, we have 260 × (16/7)9 possible values for K0,K1,K2,K3,
K4,K5,K6,K7,K9+S(K8+S(K20)),K10,K11,K12,K13,K15,K16,K17,K18,
K19,K20,K21,K22,K23,K24,K26,K27,K28,K29,K30,K31, RK25

7 = f6(K14,
K25), RK26

5 = f7(K8,K25). Hence, we marks them in H as invalid “1” in
step 21.

Attack Complexity. As depicted in Fig. 3, we have 37 round keys involved in
the analysis rounds. According to the key schedule, these 37 round keys take
only 2124 possible values (see step 21 in Table 3). As mentioned in step 21, we
remove on average 260 × (16/7)9 = 270.734 out of 2124 possible values of these
37 round keys involved in the attack for each pair of the 2m+44.266 remaining
pairs. Hence, a wrong key is not discarded using one pair with probability 1 −
270.734−124 = 1 − 2−53.266. Therefore, we have 2124 × (1 − 2−53.266)2

m+44.266 ≈
2124 × (e−1)2

m+44.266−53.266 ≈ 2124 × 2−1.4×2m−9
remaining candidates for 124-

bit of the key, after processing all the 2m+44.266 remaining pairs. We evaluated
the computational complexity of the attack as a function of m, as illustrated in
Table 3, to determine the optimal value of m that leads to the best computational
complexity. As steps 20 and 21 dominate the time complexity of the attack, see
Table 3, we choose m = 12 in order to optimize the time complexity of the
attack. Therefore, we have 2124 × 2−1.4×212−9=3

= 2124−11.2 = 2112.8 remaining
candidates for 124-bit of the key. The remaining key nibbles can be retrieved
by guessing K8 and exhaustively searching the 2112.8 remaining key candidates
using 2 plaintext/ciphertext pairs. This step requires 2 × 24 × 2112.8 = 2117.8

encryptions. Therefore, the time complexity of the attack is 2120.245 + 2119.245 +
2117.8 ≈ 2120.83 encryptions. The data complexity of the attack is 2m+4×13 = 264

chosen tweak/plaintext combinations that can be generated using 2m+48 = 260

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 2124 ×
2−6 = 2118 64-bit blocks.
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5 Impossible Differential Key-Recovery Attack
on 25-Round T-TWINE-80

In this section, we present the first attack on 25-round T-TWINE-80 in the
chosen-tweak model. We use the notion of data structures to generate enough
pairs of messages to launch the attack. Our utilized structure takes all the pos-
sible values in 7 nibbles X0

0 , X0
1 , X0

3 , X0
10, X0

11, X0
14, X0

15 while the remaining
nibbles take a fixed value. In addition, we choose the tweak T7 such that it takes
all the values. Thus, one structure generates 24×8 × (24×8 − 1)/2 ≈ 263 possi-
ble pairs. Hence, we have 263 possible pairs of messages satisfying the plaintext
differences. In addition, we utilize the following pre-computation tables in order

Table 3. Time complexity of the different steps of the attack on 27-round T-TWINE-
128, where NK denotes the number of keys to be excluded.

StepTableKey nibbles Time complexity (in 27-round encryptions) NK m = 12

1 H1 K3 2m+44.266 × (16/7) × 4

8 × 27
≈ 2m+39.704 (16/7) 251.704

2 H2 K15 2m+44.266 × (16/7)2 × 4

8 × 27
≈ 2m+40.896 (16/7)2 252.896

3 H3 K28 2m+44.266 × (16/7)3 × 4

8 × 27
≈ 2m+42.089 (16/7)3 254.089

4 H4 K7, K18 2m+44.266 × 24 × (16/7)4 × 6

8 × 27
≈ 2m+47.867 24 × (16/7)4 259.867

5 H5 K17, K19 2m+44.266 × 28 × (16/7)4 × 7

8 × 27
≈ 2m+52.089 28 × (16/7)4 264.089

6 H6 K2, K6, K10 2m+44.266 × 216 × (16/7)5 × 7

8 × 27
≈ 2m+61.282 216 × (16/7)5 273.282

7 H7 K1 + S(K0), K12 2m+44.266 × 224 × (16/7)5 × 8

8 × 27
≈ 2m+69.474 224 × (16/7)5 281.474

8 H8 K0, K1, K31 2m+44.266 × 232 × (16/7)5 × 7

8 × 27
≈ 2m+77.282 232 × (16/7)5 289.282

9 H9 K26 2m+44.266 × 232 × (16/7)5 × 3

8 × 27
≈ 2m+76.059 232 × (16/7)5 288.059

10 H10 K4 + S(K16) 2m+44.266 × 232 × (16/7)5 × 4

8 × 27
≈ 2m+76.474 232 × (16/7)5 288.474

11 H11 K11, K22, K24 2m+44.266 × 240 × (16/7)5 × 5

8 × 27
≈ 2m+84.796 240 × (16/7)5 296.796

12 H12 K4, K16 2m+44.266 × 244 × (16/7)5 × 3

8 × 27
≈ 2m+88.059 244 × (16/7)5 2100.059

13 H13 K21 2m+44.266 × 248 × (16/7)5 × 3

8 × 27
≈ 2m+92.059 248 × (16/7)5 2104.059

14 H14 K5, K30 2m+44.266 × 252 × (16/7)5 × 2

8 × 27
≈ 2m+95.474 252 × (16/7)5 2107.474

15 H15 K23, K29 2m+44.266 × 256 × (16/7)5 × 4

8 × 27
≈ 2m+100.474 256 × (16/7)5 2112.474

16 H16 RK3
6 = K9 + S(K8 +

S(K20)), K20

2m+44.266 × 260 × (16/7)5 × 3

8 × 27
≈ 2m+104.059 260 × (16/7)5 2116.059

17 H17 – 2m+44.266 × 256 × (16/7)6 × 2

8 × 27
≈ 2m+100.667 256 × (16/7)6 2112.667

18 H18 K27 2m+44.266 × 256 × (16/7)7 × 1

8 × 27
≈ 2m+100.860 256 × (16/7)7 2112.860

19 H19 K13 2m+44.266 × 260 × (16/7)7 × 2

8 × 27
≈ 2m+105.860 260 × (16/7)7 2117.860

20 H20 RK25
7 = f6(K14,

K25), RK26
5 =

f7(K8, K25)

2m+44.266 × 260 × (16/7)9 × 2

8 × 27
≈ 2m+108.245 260 × (16/7)9 2120.245

21 H – 2m+44.266 × 260 × (16/7)9 × 1

8 × 27
≈ 2m+107.245 260 × (16/7)9 2119.245
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to efficiently extract/filter the round keys involved in the analysis rounds. Note
that, for the 7 round keys that are involved in the 3 rounds below the distin-
guisher, we wrote them as 7 functions f1, f2, f3, f4, f5, f6, f7 of the key nibbles
that are not involved in the above analysis rounds, K0,K2,K5,K7,K9,K10,K11,
K12,K13, and ignored the other key nibbles as they are known.

– H1: For all the 220 possible values of X1
0 , X1

5 , ΔX1
5 , t05 and RK0

0 = K1,
compute X0

0 , ΔX0
0 , X0

1 , and ΔX0
1 . Then, store X1

5 , ΔX1
5 , and RK0

0 = K1

in H1 indexed by X0
0 , ΔX0

0 , X0
1 , ΔX0

1 , and t05. ΔX0
1 is chosen such that

ΔX0
1 ∈ S[ΔX0

0 ], see Observation 4. Therefore, H1 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H2: For all the 220 possible values of X1
2 , X1

9 , ΔX1
9 , t01, and RK0

5 = K14,
compute X0

10, ΔX0
10, X0

11, and ΔX0
11. Then, store X1

9 , ΔX1
9 , and RK0

5 = K14

in H2 indexed by X0
10, ΔX0

10, X0
11, ΔX0

11, and t01. ΔX0
11 is chosen such that

ΔX0
11 ∈ S[ΔX0

10], see Observation 4. Therefore, H2 has 7 × 216 rows and on
average about 220/(7 × 216) = 16/7 values in each row.

– H3: For all the 220 possible values of X1
11, ΔX1

11, X1
14, t00, and RK0

7 = K16,
compute X0

14, ΔX0
14, X0

15, and ΔX0
15. Then, store X1

11, ΔX1
11, X1

14, and
RK0

7 = K16 in H3 indexed by X0
14, ΔX0

14, X0
15, ΔX0

15, and t00. ΔX0
15 is

chosen such that ΔX0
15 ∈ S[ΔX0

14], see Observation 4. Therefore, H3 has
7 × 216 rows and on average about 220/(7 × 216) = 16/7 values in each row.

– H4: For all the 228 possible values of X2
7 , ΔX2

7 , X2
12, RK1

2 = K8, X1
1 , t04, and

RK0
1 = K3, compute X1

5 = X0
0 , ΔX1

5 = ΔX0
0 , X0

2 , X0
3 , and ΔX0

3 . Then, store
X2

7 , ΔX2
7 , RK1

2 = K8, and RK0
1 = K3 in H4 indexed by X1

5 = X0
0 , ΔX1

5 =
ΔX0

0 , X0
2 , X0

3 , ΔX0
3 , and t04. ΔX0

0 is chosen such that ΔX0
0 ∈ S[ΔX0

3 ],
see Observation 4. Therefore, H4 has 7 × 220 rows and on average about
228/(7 × 220) = (16/7) × 24 values in each row.

– H5: For all the 228 possible values of X2
2 , X2

9 , t11, ΔT7, RK1
5 = K18, X1

15, and
RK0

6 = K15, compute X0
14 = X1

11, ΔX0
14 = ΔX1

11, X0
12, and X0

13. Then, store
RK1

5 = K18 and RK0
6 = K15 in H5 indexed by X1

11, ΔX1
11, X0

12, X0
13, t11, and

ΔT7. ΔX0
14 is chosen such that ΔX0

14 ∈ S[ΔT7], see Observation 4. Therefore,
H5 has 7 × 220 rows and on average about 228/(7 × 220) = (16/7) × 24 values
in each row.

– H6: For all the 244 possible values of X3
3 , ΔX3

3 , X3
8 , t23, RK2

3 = K14, X2
13,

t12, RK1
4 = K17, X1

3 , t03, and RK0
3 = K6, compute X2

7 , ΔX2
7 = ΔX0

3 , X1
9 ,

ΔX1
9 = ΔX0

10, X0
6 , and X0

7 . Then, store X3
3 , ΔX3

3 , RK2
3 = K14, RK1

4 = K17,
and RK0

3 = K6 in H6 indexed by X2
7 , ΔX2

7 = ΔX0
3 , X1

9 , ΔX1
9 = ΔX0

10, X0
6 ,

X0
7 , t23, t12, t03, and RK2

3 = K14. ΔX0
3 is chosen such that ΔX0

3 ∈ S[ΔX0
10],

see Observation 4. Therefore, H6 has 7 × 236 rows and on average about
244/(7 × 236) = (16/7) × 24 values in each row.

– H7: For all the 248 possible values of X4
1 , X4

4 , t34, ΔT7, RK3
1 = K15, X3

9 , t21,
RK2

5 = K3, X2
15, RK1

6 = K19, X1
7 , and RK0

2 = K4, compute X3
3 , ΔX0

10 =
ΔX3

3 , X1
14, X0

8 , X0
4 , and X0

5 . Then, store RK3
1 = K15, RK2

5 = K3, RK1
6 =

K19, and RK0
2 = K4 in H7 indexed by X3

3 , ΔX0
10 = ΔX3

3 , X1
14, X0

8 , X0
4 ,

X0
5 , RK3

1 = K15, RK2
5 = K3, t34, ΔT7, and t21. ΔX0

10 is chosen such that
ΔX0

10 ∈ S[ΔT7], see Observation 4. Therefore, H7 has 7 × 240 rows and on
average about 248/(7 × 240) = (16/7) × 24 values in each row.
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– H8: For all the 220 possible values of X24
0 , X24

1 , t245 , ΔT7, and RK24
0 =

f1(K0,K2,K5,K9,K10,K12,K13), compute X25
0 , ΔX25

1 , and X25
1 . Then,

store RK24
0 in H8 indexed by X25

0 , ΔX25
1 , X25

1 , t245 , and ΔT7. ΔX25
1 is chosen

such that ΔX25
1 ∈ S[ΔT7], see Observation 4. Therefore, H8 has 7× 216 rows

and on average about 220/(7 × 216) = 16/7 values in each row.
– H9: For all the 220 possible values of X24

14 , ΔX24
14 , X24

15 , t240 , and RK24
7 = f2(K0,

K2,K5,K7,K9,K10,K11,K12,K13), compute X25
14 , ΔX25

14 , X25
15 , and ΔX25

15 .
Then, store X24

14 , ΔX24
14 , and RK24

7 = f2(K0,K2,K5,K7,K9,K10,K11,K12,
K13) in H9 indexed by X25

14 , ΔX25
14 , X25

15 , ΔX25
15 , and t240 . ΔX25

15 is chosen such
that ΔX25

15 ∈ S[ΔX25
14 ], see Observation 4. Therefore, H9 has 7 × 216 rows

and on average about 220/(7 × 216) = 16/7 values in each row.
– H10: For all the 232 possible values of X23

14 , ΔX23
14 , X23

15 , t230 , RK23
7 = f3(K0,

K2,K5,K7,K9,K10,K11,K12,K13), X24
10 , t241 , and RK24

5 = f4(K0,K2,K5,
K7,K9,K10,K11,K12,K13), compute X25

14 = X24
14 , ΔX25

14 = ΔX24
14 , X25

11 ,
ΔX25

11 , and X25
10 . Then, store X23

14 , ΔX23
14 , RK23

7 = f3(K0,K2,K5,K7,K9,
K10,K11,K12,K13), and RK24

5 = f4(K0,K2,K5,K7,K9,K10,K11,K12,K13)
in H10 indexed by X25

14 = X24
14 , ΔX25

14 = ΔX24
14 , X25

11 , ΔX25
11 , X25

10 , t230 , and t241 .
ΔX25

14 is chosen such that ΔX25
14 ∈ S[ΔX25

11 ], see Observation 4. Therefore,
H10 has 7×224 rows and on average about 232/(7×224) = (16/7)×24 values
in each row.

– H11: For all the 244 possible values of X22
14 , X22

15 , t220 , ΔT7, RK22
7 = f5(K0,

K2,K5,K7,K9,K10,K11,K12,K13), X23
10 , t231 ,RK23

5 = f6(K0,K2,K5,K7,
K9,K10,K11,K12,K13), X24

8 , t242 , and RK24
4 = f7(K0,K2,K5,K9,K10,K12,

K13), compute X23
14 , ΔX25

11 = ΔX23
14 , X25

2 , X25
9 , and X25

8 . Then, store
RK22

7 = f5(K0,K2,K5,K7,K9,K10,K11,K12,K13), RK23
5 = f6(K0,K2,K5,

K7,K9,K10,K11,K12,K13), and RK24
4 = f7(K0,K2,K5,K9,K10,K12,K13)

in H11 indexed by X23
14 , ΔX25

11 = ΔX23
14 , X25

2 , X25
9 , X25

8 , t220 , ΔT7, t231 , and
t242 . ΔX25

11 is chosen such that ΔX25
11 ∈ S[ΔT7], see Observation 4. Therefore,

H11 has 7×232 rows and on average about 244/(7×232) = (16/7)×28 values
in each row.

Our attack proceeds as follows. We initialize an array H of 218×4=72 entries
to “0”, where each entry is 1-bit and the index of the array is 18 key nibbles
involved in the attack, as we will see later. Then, we generate 2m structures as
described above. Therefore, we have 2m+63 pairs of plaintext/ciphertext pairs
generated using 2m+28 chosen plaintexts. Next, we ask the encryption oracle
for their corresponding ciphertexts. The plaintext/ciphertext pairs that satisfy
Observation 4 are 2m+63 × 2−13.119 = 2m+49.881 pairs. After the ciphertext fil-
tration, we have only 2m+49.881 × 2−12×4 = 2m+1.881 remaining pairs. For each
remaining pair, we perform the following steps:

1. Determine the number of possible values of RK0
0 = K1 that satisfy the path

by accessing H1. Therefore, we have (16/7) possible values for K1.
2. Determine the number of possible values of RK0

5 = K14 that satisfy the path
by accessing H2. Therefore, we have (16/7)2 possible values for K1,K14.

3. Determine the number of possible values of RK0
7 = K16 that satisfy the path

by accessing H3. Therefore, we have (16/7)3 possible values for K1,K14,K16.
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4. Determine the number of possible values of RK1
2 = K8, RK0

1 = K3 that
satisfy the path by accessing H4. Therefore, we have 24 × (16/7)4 possible
values for K1,K3,K8,K14,K16.

5. Determine the number of possible values of RK1
5 = K18, RK0

6 = K15 that
satisfy the path by accessing H5. Therefore, we have 28 × (16/7)5 possible
values for K1,K3,K8,K14,K15,K16,K18.

6. Determine the number of possible values of RK2
3 = K14, RK1

4 = K17, RK0
3

= K6 that satisfy the path by accessing H6. Therefore, we have 212×(16/7)6

possible values for K1,K3,K6,K8,K14,K15,K16,K17,K18.
7. Determine the number of possible values of RK3

1 = K15, RK2
5 = K3, RK1

6

= K19, RK0
2 = K4 that satisfy the path by accessing H7. Therefore, we have

216×(16/7)7 possible values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,
K19.

8. Determine the number of possible values of RK24
0 that satisfy the path by

accessing H8. Therefore, we have 216×(16/7)8 possible values for K1,K3,K4,
K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 .
9. Determine the number of possible values of RK24

7 that satisfy the path by
accessing H9. Therefore, we have 216×(16/7)9 possible values for K1,K3,K4,
K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 .

10. Determine the number of possible values of RK23
7 , RK24

5 that sat-
isfy the path by accessing H10. Therefore, we have 220 × (16/7)10

possible values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,K19, RK24
0 ,

RK24
7 , RK23

7 , RK24
5 .

11. Determine the number of possible values of RK22
7 , RK23

5 , RK24
4 that sat-

isfy the path by accessing H11. Therefore, we have 228 × (16/7)11 possible
values for K1,K3,K4,K6,K8,K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 ,

RK23
7 , RK24

5 , RK22
7 , RK23

5 , RK24
4 .

12. The deduced 228 × (16/7)11 values for 18 key nibbles, K1,K3,K4,K6,K8,
K14,K15,K16,K17,K18,K19, RK24

0 , RK24
7 , RK23

7 , RK24
5 , RK22

7 ,K23
5 , RK24

4 ,
involved in the attack are wrong keys. Hence, mark them in H invalid “1”.

Attack Complexity. As depicted in Fig. 4, we have 22 round keys involved in
the analysis rounds. According to the key schedule, these 22 round keys take
only 272 possible values (see step 12 in Table 4). As mentioned in step 12, we
remove on average 228 × (16/7)11 = 241.119 out of 272 possible values of these
22 round keys involved in the attack for each pair of the 2m+1.881 remaining
pairs. Hence, a wrong key is not discarded using one pair with probability 1 −
241.119−72 = 1 − 2−30.881. Therefore, we have 272 × (1 − 2−30.881)2

m+1.881 ≈
272 × (e−1)2

m+1.881−30.881 ≈ 272 × 2−1.4×2m−29
remaining candidates for 72-bit
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of the key, after processing all the 2m+1.881 remaining pairs. We evaluated the
computational complexity of the attack as a function of m, as illustrated in
Table 4, to determine the optimal value of m that leads to the best computational
complexity. As steps 11 and 12 dominate the time complexity of the attack,
see Table 4, we choose m = 33.5 in order to optimize the time complexity of
the attack. Therefore, we have 272 × 2−1.4×233.5−29=4.5

= 272−31.678 = 240.322

remaining candidates for 72-bit of the key. These 72-bit of the key include 11
master key nibbles and 7 round key nibbles. To retrieve the whole master key,
we perform the following steps:

1. Retrieve K10 from RK24
4 by guessing the 6 key nibbles K0,K2,K5,K9,

K12,K13. Since this step includes 18 S-box operations, it requires
240.322+24=64.322 × 18

8× 25 ≈ 260.848 encryptions. Since RK24
4 and RK24

0 are
functions in the same nibbles of the master key, we can compute RK24

0 using
the retrieved K10 and then match the computed value with its value in the
remaining candidate key. As a result, we have 4-bit filtration. Hence, we
have only 240.322+24−4=60.322 remaining key candidates. This step requires
240.322+24=64.322 × 37

8× 25 ≈ 261.888 encryptions.
2. Using the same technique, retrieve K7 from RK23

5 by guessing K11. This step
requires 260.322+4=64.322 × 90

8× 25 ≈ 263.167 encryptions. Since RK24
5 is also

a function in the same nibbles of the master key, we can compute it using
the retrieved K7 and compare it with its value in the remaining candidate.
As a result, we have 4-bit filtration. Hence, we have only 260.322+4−4=60.322

80-bit remaining key candidates. This step requires 260.322+4=64.322× 112
8× 25 ≈

263.485. Then, we perform the previous filtration to the following round key
nibbles RK22

7 , RK23
7 , and RK24

7 . Finally, we have another 3 4-bit filtrations.
Therefore, we have only 260.322−12 = 248.322 remaining candidates for the
whole master key. The time complexity of this step is dominated by 264.335

encryptions.

The right master key can be retrieved by exhaustively searching the 248.322

remaining key candidates using 2 plaintext/ciphertext pairs. This step requires
2× 248.322 = 249.322 encryptions. Therefore, the time complexity of the attack is
dominated by steps 11 and 12 in Table 4 which requires 270.441 +268.856 ≈ 270.86

encryptions, see Table 4. The data complexity of the attack is 2m+4×8 = 265.5

chosen tweak/plaintext combinations that can be generated using 2m+28 = 261.5

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store H. Hence, the memory complexity is 272×2−6 =
266 64-bit blocks.
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6 Conclusion

In this work, we presented two impossible differential attacks against reduced-
round versions of T-TWINE. Both attacks use our proposed 18-round impossible
differential distinguisher. To the best of our knowledge, this distinguisher is the
first valid 18-round distinguisher. Utilizing this distinguisher, we launched 25-
round and 27-round attacks on T-WINE-80 and T-TWINE-128, respectively.
The presented attacks are the first published attacks against both versions of
T-TWINE.

Table 4. Time complexity of the different steps of the attack on 25-round T-TWINE-
80, where NK denotes the number of keys to be excluded.

Step Time complexity (in 25-round encryptions) NK m = 33.5

1 2m+1.881 × (16/7) × 3

8 × 25
≈ 2m−2.985 (16/7) 230.515

2 2m+1.881 × (16/7)2 × 3

8 × 25
≈ 2m−1.793 (16/7)2 231.707

3 2m+1.881 × (16/7)3 × 4

8 × 25
≈ 2m−0.185 (16/7)3 233.315

4 2m+1.881 × 24 × (16/7)4 × 4

8 × 25
≈ 2m+5.008 24 × (16/7)4 238.508

5 2m+1.881 × 28 × (16/7)5 × 2

8 × 25
≈ 2m+9.200 28 × (16/7)5 242.700

6 2m+1.881 × 212 × (16/7)6 × 5

8 × 25
≈ 2m+15.715 212 × (16/7)6 249.215

7 2m+1.881 × 216 × (16/7)7 × 4

8 × 25
≈ 2m+20.586 216 × (16/7)7 254.086

8 2m+1.881 × 216 × (16/7)8 × 1

8 × 25
≈ 2m+19.778 216 × (16/7)8 253.278

9 2m+1.881 × 216 × (16/7)9 × 3

8 × 25
≈ 2m+22.556 216 × (16/7)9 256.056

10 2m+1.881 × 220 × (16/7)10 × 4

8 × 25
≈ 2m+28.164 220 × (16/7)11 261.664

11 2m+1.881 × 228 × (16/7)11 × 3

8 × 25
≈ 2m+36.941 228 × (16/7)11 270.441

12 2m+1.881 × 228 × (16/7)11 × 1

8 × 25
≈ 2m+35.356 228 × (16/7)11 268.856
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A 18-round Impossible Differential Characteristic
as Depicted in Figure 8 of [15]

→ 6R

→ 7R

→ 17R

→ 16R

→ 15R

Input of Round #1

Ouput of Round #1 
Input of Round #2

Ouput of Round #17 
Input of Round #18

17
 R

ou
nd

s

Fig. 5. 18-round impossible differential characteristic as depicted in Figure 8 of [15]
with our comments.

References

1. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency S-boxes. IACR Trans. Sym-
metric Cryptol. 4–44 (2017)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2


112 M. Tolba et al.

4. Ferguson, N., et al.: The SKEIN hash function family (2010). http://www.
skeinhash.info

5. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2 21
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