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Abstract. This paper constructs unbounded simulation sound proofs
for boolean circuit satisfiability under standard assumptions with proof
size O(n + d) bilinear group elements, where d is the depth and n is the
input size of the circuit. Our technical contribution is to add unbounded
simulation soundness to a recent NIZK of González and Ràfols (ASI-
ACRYPT’19) with very small overhead. Our new scheme can be used to
construct the most efficient Signature-of-Knowledge based on standard
assumptions that also can be composed universally with other crypto-
graphic protocols/primitives.
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1 Introduction

As one of the essential tools in modern cryptography, Non-Interactive Zero-
Knowledge (NIZK) proof systems allow a party to prove that for a public state-
ment �x, she knows a witness �w such that (�x, �w) ∈ R, for some relation R, without
leaking any information about �w and without interaction with the verifier. Due
to their impressive advantages and functionalities, NIZK proof systems are used
ubiquitously to build larger cryptographic protocols and systems [2,16]. Among
the various constructions of NIZK arguments, there is usually a trade-off between
several performance measures, in particular, between efficiency, generality and
the strength of the assumptions used in the security proof.

Zero-knowledge Succinct Argument of Knowledge (zk-SNARKs) [8,13] are
among the most practically interesting NIZK proofs. They allow to generate
succinct proofs for NP-complete languages (3 group elements for CircuitSat [13])
but they are constructed based on non-falsifiable assumptions (e.g. knowledge
assumptions [6]). A well-known impossibility result of Gentry and Wichs [9]
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shows that this is unavoidable if one wants to have succinctness for general
languages. Thus, non-falsifiable assumptions are an essential ingredient to have
very efficient constructions, while falsifiable assumptions give stronger security
guarantees and more explicit and meaningful security reductions [22].

Groth-Sahai proofs [15] also allow to prove general languages1 under stan-
dard assumptions non-succinctly, trading security for succinctness. On the other
extreme, some constructions of Quasi-Adaptive NIZK (QA-NIZK) generate very
efficient proofs based on falsifiable assumptions for very specific statements (e.g.
membership in linear spaces).

Somewhere in between, recent work by González and Ràfols [11] constructs a
NIZK argument for boolean CircuitSat under falsifiable assumptions by combin-
ing techniques of QA-NIZK arguments and zk-SNARKs of size O(n + d) group
elements, where n is the length of the input and d is the depth of the circuit.

The primary requirements in a NIZK argument are Completeness, Zero-
Knowledge (ZK), and Soundness. Completeness guarantees that if both parties
honestly follow the protocol, the prover will convince the verifier. Zero-knowledge
preserves prover’s privacy and ensures that the verifier will not learn more than
the truth of the statement from the proof. Soundness guarantees that a dis-
honest prover cannot convince an honest verifier. However, in practice usually
bare soundness is not sufficient and one might need stronger variations of it,
known as Knowledge Soundness, Simulation Soundness or Simulation Knowl-
edge Soundness (a.k.a. Simulation Extractability) [12,24]. Knowledge soundness
ensures that if an adversary manages to come up with an acceptable proof,
he must know the witness. Simulation soundness (a.k.a. unbounded simulation
soundness) ensures that an adversary cannot come up with valid proof for a
false statement, even if he has seen an arbitrary number of simulated proofs.
This notion basically guarantees that the proofs are sound and non-malleable.
The strongest case, Simulation Extractability (SE) implies that an adversary
cannot come up with a fresh valid proof unless he knows a witness, even if he
has seen an arbitrary number of simulated proofs. In both notions knowledge
soundness and simulation extractability the concept of knowing is formalized by
showing that there exists an extraction algorithm, either non-Black-Box (nBB)
or Black-Box (BB), that can extract the witness from the proof.

Zk-SNARKs (either knowledge sound ones [8,13], or SE ones [1,14]) are the
best-known family of NIZK arguments that achieve nBB extraction which is
achieved under non-falsifiable assumptions. While SE with nBB extraction is a
stronger notion in comparison with (knowledge) soundness, it is still not suffi-
cient for UC-security and needs to be lifted. The reason is that in UC-secure
NIZK arguments, to simulate the corrupted parties, the ideal-world simulator
should be able to extract witnesses without getting access to the source code of
environment’s algorithm, which is only guaranteed is BB SE [4,12].

1 GS proofs allow to prove satisfiability of any quadratic equation over Zp, where p is
the order of a bilinear group. In particular, this can encode CircuitSat. The size of
the resulting proof is linear in the total number of wires.
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SE NIZK arguments have great potential to be deployed in practice [18,20],
or construct other primitives such as Signature-of-Knowledge (SoK) [5]. In an
SoK, a valid signature of a message M for some statement �x and a relation R
can only be produced if the signer knows a valid witness �w such that (�x, �w) ∈ R.
Groth and Maller [14] constructed a SE zk-SNARK and a generic construction of
an SoK from any SE NIZK argument, resulting in an SoK for CircuitSat. While
their construction is for general NP relations and it is also succinct, it also relies
on non-falsifiable assumptions and cannot be used in the UC framework.

Briefly speaking, this paper constructs a SE NIZK argument with BB extrac-
tion for Boolean CircuitSat which is secure under falsifiable assumptions. The
proposed construction is based on the result of [11]. We show that the proposed
construction adds minimal overhead to the original construction, resulting in a
SE NIZK argument with BB extraction and proof size O(n + d). That the pro-
posed construction also allows one to construct a (universally composable) SoK
of roughly the same size. A comparison of our SoK with prior schemes can be
found in Table 1.

Table 1. A comparison of our proposed SoK with prior schemes, where ns the secret
input size in a boolean circuit, d the depth of the circuit, nPPE is the number of pairing
product equations (each multiplication gate in an arithmetic circuit can be encoded as
a pairing product equation, in such case nPPE = n), nX , nY are the number of variables
in all the pairing product equations in G1,G2, respectively, �K is the size of the output
of a hash function. PE: Pairing Equations, SAP: Square Arithmetic Equations, QE:
Quadratic Equations.

Construction Language Signature Size Assumption

BFG [3] PE (nPPEnX , nPPEnY ) + �K Falsifiable

GM [14] SAP 3 Non-falsifiable

Sect. 3.2 QE (2ns + 6d + 13, 2d + 11) + �K Falsifiable

1.1 Our Contribution

Trivial Approach for Boolean CircuitSat. Let φ some boolean circuit, and
let ai, bi, ci be the left, right and output wires of gate i. An argument for Boolean
CircuitSat, where the prover shows knowledge of some secret input satisfying the
circuit, can be divided into three sub-arguments:

1) an argument of knowledge of some boolean input: to prove that the secret
input is boolean, the prover must show that each input value satisfies some
quadratic equation,

2) a set of linear constraints, which proves “correct wiring”, namely that ai, bi

are consistent with �c and the specification of the circuit,
3) a set of quadratic constraints, which proves that for all i, ai, bi and ci are in

some quadratic relation which expresses correct evaluation of gate i.
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It is straightforward to prove CircuitSat by computing perfectly binding com-
mitments to all the wires ai, bi, ci and use, for example, GS NIZK proofs for
each of the three sub-arguments. However, the proof size is obviously linear in
the number of wires.

New Techniques. In a recent result, González and Ràfols [11] give a proof for
Boolean CircuitSat of size O(n + d) group elements. We now give an overview
of their techniques, which is the main building block of our paper. The key to
their result is to prove 2) and 3) succinctly for each level of the circuit. More
specifically (ignoring zero-knowledge, momentarily), if Lj (resp. Rj , Oj) is a
shrinking (non-hiding, deterministic) commitment to all left (resp. right, output)
wires at depth j, they construct:

2’) an argument that shows that the opening of Lj is in the correct linear
relation (given by the wiring constraints in the circuit specification) with
the input and the openings of O1, . . . , Oj−1,

3’) an argument that shows that the opening of Oj is in the correct quadratic
relation (which depends on the type of gates at level j) with the opening of
Lj and Rj .

The abstraction given above of the results of [11] hides an important subtlety:
“the opening of Lj” (and similarly for the other shrinking commitments Oj , Rj)
is not well defined, as many openings are possible, so it is unclear what it means
for these sub-arguments to be sound. However, as the authors of [11] observe
when we are using these as part of a global proof of CircuitSat, “the opening
of Lj” to which we intuitively refer is well defined in terms of the openings in
previous levels. In other words, in the soundness proof, 2’) can be used to prove
that if the reduction can extract an opening of O1, . . . , Oj−1 consistent with
the input and the circuit, it can also extract a consistent opening of Lj (and
similarly Rj). On the other hand, 3’) shows that if the reduction can extract an
opening of Lj and Rj consistent with the input and the circuit, it can also extract
an opening of Oj . For this reason, González and Ràfols informally called 2’)
and 3’) “arguments of knowledge transfer” (linear and quadratic, respectively):
given knowledge of the input, arguments 2’) and 3’) can be used alternatively
to transfer this knowledge to lower levels of the circuit.

Promise Problems. To formalize this intuitive notion, the authors of [11]
define their sub-arguments 2’) and 3’) as arguments (with completeness and
soundness) for certain promise problems:

2’) Given the input �c0 and openings (�c1, . . . ,�cj−1) of O1, . . . , Oj−1, the argu-
ment shows that Lj can be opened to some �aj with the correct linear relation
to (�c1, . . . ,�cj−1) (similarly for Rj).

3’) Given �aj and �bj , openings of Lj and Rj , the argument shows that there is
an opening �cj of Oj that is in the correct quadratic relation (which depends
on the type of gates at level j) with �aj and �bj .
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From an efficiency point of view, the interesting thing is that the arguments are of
constant size. This explains the proof size O(n+d): O(n) is for committing to the
input (with extractable commitments, which exist under falsifiable assumptions
because the input is boolean), and d is the cost of doing 2’) and 3’) repeatedly
for each level. At a conceptual level, the key issue is that the verifier never
checks that the openings are correct (i.e. in 2’) it never checks that �ci is a valid
opening of Oi, and in 3’) that �aj , �bj are valid openings of Lj , Rj), which is
the promise. Soundness is only guaranteed if the promise holds, and nothing
is said when it does not hold (when the given openings are invalid). In fact,
the verifier does not need these openings, they are just part of the statement
to define soundness in a meaningful way, reflecting the fact that in the global
argument for boolean circuit sat, the openings at level j are uniquely determined
by transferring the knowledge of the circuit to lower levels. So excluding the need
to read the statement, the verifier works in constant time (it would work in linear
time if it verified the statement). In particular, when using the sub-arguments
in a global proof, verification of each of the sub-arguments is constant size, and
the global verifier runs in time O(n + d).

Security Proof. The sub-arguments 2’) and 3’) of [11] are not new. More
specifically, for 2’) the authors just use the QA-NIZK argument of linear spaces
for non-witness samplable distributions of Kiltz and Wee [19], a generalization
of [17,21] and for 3’) they use techniques appeared in the context of zk-SNARKs
(as e.g. [8]) to write many quadratic equations as a single relation of polynomial
divisibility that can be proven succinctly. The challenge they solve is to give a
proof that 2’) and 3’) are sound for the aforementioned promise problems under
falsifiable assumptions. For 2’), they prove that soundness holds under some
decisional assumption related to the matrix which defines the linear relations and
for 3’) they prove this is a straightforward consequence of a q-type assumption
in bilinear groups.

Our Techniques: General Approach. This paper builds a SE NIZK for
CircuitSat under falsifiable assumptions building on the work of [11]. There are
several generic techniques to solve this problem. To the best of our knowledge,
existing generic solutions are variations of the following approach, described
for example in [12]: build an OR proof that given some circuit φ and a public
input �xp, either the circuit is satisfiable with public input xp or a signature of
M = (φ, �xp) is known. The simulator uses as a trapdoor the signature secret key.
We note that this approach results in a considerable (although also constant)
overhead (around 20 group elements).2 Our approach is based on the following
observation: to compute “fake proofs” of satisfiability, a simulator just needs to
lie either about the satisfiability of quadratic equations or linear equations, but
not both. Further, it is sufficient to lie in the last gate. In particular, we choose

2 Using OR proofs (the less efficient construction for PPE given in [23] or adding a bit
as an auxiliary variable) plus the Boneh-Boyen signature for adaptive soundness.
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the following strategy to simulate a proof for a circuit φ and a public input
�xp: complete the input arbitrarily, compute consistent assignments to all gates
but choose the last left and right wire arbitrarily so that the last gate outputs
one. Thus the simulator outputs only honest proofs except for the last linear
relation, which is a simulated proof for a false statement, i.e. the simulator does
not need the simulation trapdoor for sub-arguments 1) and 3’) and standard
soundness is sufficient. To be consistent with this strategy, our SE NIZK for
boolean CircuitSat uses the construction of [11] but replaces 2’), the proof that
the linear relation holds, with 2”) an unbounded simulation sound proof for the
same promise problem.

Recall that the argument 2’) of [11] is just the QA-NIZK argument for mem-
bership in linear spaces of Kiltz and Wee for non-witness samplable distributions
with a security proof is adapted for promise problems (non-trivially). We take
the most efficient USS QA-NIZK argument of membership in linear spaces in
the literature, also due to Kiltz and Wee [19] and we adapt the USS argument to
work for bilateral linear spaces (linear spaces split among the two source groups
in a bilinear group) as in [10] and for promise problems as in [11]. The over-
head of the construction with respect to the original CircuitSat proof is minimal
(3|G1|). BB extractability is achieved because of the soundness of the argument
which proves that the input is boolean and the fact that ElGamal ciphertexts
of 0 or 1 are BB extractable (the extraction trapdoor is the secret key). Using
the generic transformation of Groth and Maller [14], the result gives directly an
SoK for boolean CircuitSat.

Generalization of Our Techniques. The observation that to add unbounded
simulation soundness to NIZK arguments which prove both quadratic and linear
equations it suffices to have USS in the linear part can have other applications.
For example, a direct application is to give USS to the construction of Daza et al.
[7], which gives a compact proof that a set of perfectly binding commitments
open to 0 or 1. Second, we observe that the advantage of our approach is that
to get tight security we only need to construct a tight USS for promise problems
in bilateral linear spaces, which we leave for future work. The result would be
a signature of knowledge for circuits with a loss of d (the circuit depth) in the
reduction (inherited from [11]).

2 Preliminaries

Let PPT denote probabilistic polynomial-time, and NUPPT denote non-uniform
PPT. Let λ ∈ N be the information-theoretic security parameter, say λ = 128.
All adversaries will be stateful. For an algorithm A, let Im(A) be the image of
A, i.e., the set of valid outputs of A. By y ← A(x; r) we denote the fact that A,
given an input x and a randomizer r, outputs y. We denote by negl an arbitrary
negligible function. For distributions A and B, A ≈c B means that they are
computationally indistinguishable.
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In pairing-based groups, a bilinear group generator BGgen(1λ) is a PPT algo-
rithm returns the group key gk := (p,G1,G2,GT , e,P1,P2), the description of an
asymmetric bilinear group, where G1,G2 and GT are additive groups of prime
order p, the elements P1,P2 are generators of G1,G2 respectively, e : G1 ×G2 →
GT is an efficiently computable, non-degenerate bilinear pairing, and there is
no efficiently computable isomorphism between G1 and G2. Elements in Gγ are
denoted implicitly as [a]γ := aPγ , where γ ∈ {1, 2, T} and PT := e(P1,P2).
For simplicity, we often write [a]1,2 for the pair [a]1, [a]2. The pairing operation
will be written as a product ·, that is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T .
Vectors and matrices are denoted in boldface. Given a matrix T = (ti,j), [T]γ
is the natural embedding of T in Gγ , that is, the matrix whose (i, j)th entry is
ti,jPγ . We denote by |Gγ | the bit-size of the elements of Gγ .

2.1 Definitions

We recall the formal definition of QA-NIZK proofs. A QA-NIZK proof system
[17] enables to prove membership in a language defined by a relation Rρ, which
is determined by some parameter ρ sampled from a distribution Dgk . While the
CRS can be constructed based on ρ, the simulator of zero-knowledge is required
to be a single PPT algorithm that works for the whole collection of relations
Rgk . For witness-relations Rgk = {Rρ}ρ∈sup(Dgk ) with parameters sampled from
a distribution Dgk over associated parameter language Lpar, a QA-NIZK argu-
ment system Π consists of tuple of PPT algorithms Π = (K0,K1,P,V,S0,S1, E),
defined as follows,

Parameter generator, gk ← K0(1λ): K0 is a PPT algorithm that given 1λ

generates group description gk .
CRS generator, crs ← K1(gk , ρ): K1 is a PPT algorithm that given gk , sample

string ρ ← Dgk , and then uses gk , ρ and generate (crs, trs, tre); finally output
crs (that also contains parameter ρ) and store simulation trapdoor trs and
extraction trapdoor tre as the trapdoors of CRS.

Prover, π ← P(crs, �x, �w): P is a PPT algorithm that, given (crs, �x, �w), where
(�x, �w) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier, {0, 1} ← V(crs, �x, π): V is a PPT algorithm that, given (crs, �x, π),
returns either 0 (reject) or 1 (accept).

CRS Simulator, (crs, trs, tre) ← S1(gk , ρ): S1 is a PPT algorithm that, given
(gk , ρ), output (crs, trs, tre), where trs is simulation trapdoor and tre is the
extraction trapdoor.

Prover Simulator, π ← S2(crs, �x, trs): S2 is a PPT algorithm that for valid
statements, given (crs, �x, trs), output a simulated argument π.

Extractor, �w ← E(gk , crs, �x, π, tre): E is a PPT algorithm that, given
(crs, �x, π, tre) extracts the witness �w; where tre is the extraction trapdoor.

We require an argument QA-NIZK system Π to be quasi-adaptive complete, com-
putationally quasi-adaptive sound and perfectly quasi-adaptive zero-knowledge, as
defined below.
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Definition 1 (Quasi-Adaptive Completeness). A quasi-adaptive argument
Π is perfectly complete for Rρ, if for all λ, and all (�x, �w) ∈ Rρ,

Pr
[
gk ← K0(1λ), ρ ← Dgk ,
crs ← K1(gk , ρ), π ← P(crs, �x, �w) : V(crs, �x, π) = 1

]
= 1.

Definition 2 (Computational Quasi-Adaptive Soundness). A quasi-
adaptive argument Π is computationally quasi-adaptive sound for Rρ, if for all
λ, and for all non-uniform PPT A,

Pr
[
gk ← K0(1λ), ρ ← Dgk ,
crs ← K1(gk , ρ), (�x, π) ← A(gk , crs) :

V(crs, �x, π) = 1 ∧
(�x, �w) �∈ Rρ

]
≈ 0

Definition 3 (Perfectly Quasi-Adaptive Zero-Knowledge). A quasi-
adaptive argument Π is perfectly quasi-adaptive zero-knowledge for Rρ, if for
all λ, and for all non-uniform PPT A,

Pr

⎡
⎢⎣

gk ← K0(1λ), ρ ← Dgk ,

crs ← K1(gk , ρ) :

AP(crs,·,·)(gk , crs) = 1

⎤
⎥⎦ = Pr

⎡
⎢⎣

gk ← K0(1λ), ρ ← Dgk ,

(crs, trs, tre) ← S1(gk , ρ) :

AS2(crs,trs,·,·)(gk , crs) = 1

⎤
⎥⎦

where P(crs, ·, ·) emulates the actual prover, and given (crs, �x, �w) outputs a proof
π if (�x, �w) ∈ Rρ, otherwise it outputs ⊥; and S2(crs, trs, ·, ·) is an oracle that
given (crs, trs, �x, �w), it outputs a simulated proof S2(crs, trs, �x) if (�x, �w) ∈ Rρ

and ⊥ if (�x, �w) /∈ Rρ.

We also consider Simulation Soundness for our proofs, we take the next def-
inition from Kiltz and Wee [19].

Definition 4 (Unbounded Simulation Adaptive Soundness). A quasi-
adaptive argument Π is unbounded simulation adaptive sound for Rρ, if for all
λ, and for all non-uniform PPT A,

Pr

⎡
⎣ gk ← K0(1λ), ρ ← Dgk ,

(crs, tr) ← S1(gk , ρ);
(�x∗, τ∗, π∗) ← AO(·)(gk , crs, ρ)

:
(�x∗, π∗) �∈ Qtags ∧ (�x, �w) �∈ Rρ

∧ V(crs, �x∗, π∗) = 1

⎤
⎦ ≈ 0,

where O(�x) returns (�x, π) ← S2(crs, tr, τ, �x) and adds τ to the set Qtags.

Now we define a variation of definition BB simulation extractability for QA-
NIZKs that is used in the construction of new schemes. To the best of our
knowledge, this is the first time that this definition is defined for QA-NIZKs.

Definition 5 (Quasi-Adaptive BB Simulation Extractability). A non-
interactive argument scheme Π is quasi-adaptive black-box simulation-
extractable for Rρ, if for all λ, and for all non-uniform PPT A, there exists
a black-box extractor E such that,

Pr

⎡
⎢⎢⎣

gk ← K0(1λ), ρ ← Dgk ,
(crs, trs, tre) ← S1(gk , ρ);
(�x∗, π∗) ← AO(·,·)(gk , crs, ρ),
�w ← E(gk , crs, �x∗, π∗, tre)

:
V(crs, �x∗, π∗) = 1

∧ (�x, �w) �∈ Rρ ∧ (�x∗, π∗) �∈ Q

⎤
⎥⎥⎦ ≈ 0,
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where O(�x) returns (�x, π) ← S2(crs, �x, trs) and adds (�x, π) to the set of simulated
proofs Q.

A key note about Definition 5 is that the extraction procedure is black-box
and the extractor E works for all adversaries.

2.2 Boolean Circuits

As in González and Ràfols [11], we slice a boolean circuit in layers according to
the level of each gate. Throughout the paper, φ : {0, 1}n → {0, 1} is a boolean
circuit with m gates of fan-in two and d is the depth. To simplify the exposition
of our result in limited space, we consider only NAND gates, but it is immediate
to extend our result to include gates of φ of any type as was done in fact in [11].

The gates of φ are indexed by a pair (i, j), where i denotes the gate depth
and j is some index in the range 1, . . . , ni, where ni is the number of gates at
level i.

In Lemma 1 we now express in equations what it means for a tuple (�a,�b,�c) to
be a valid assignment to the left, right and output wires of φ respectively, where
�a = (�a1, . . . ,�ad), �b = (�b1, . . . ,�bd) and �c = (�c0,�c1, . . . ,�cd) and �yi = (yi,1, . . . , yi,ni

)
for all �y ∈ {�a,�b,�c}. A valid assignment should give ai,j , bi,j and ci,j the values
of the left, right and output wires of the gate indexed by (i, j) and c0,1, . . . , c0,n

some boolean values which represent a satisfying input.
Lemma 1 breaks down CircuitSat in different items which reflect the different

building blocks used by [11] and also our work. The input vector �x (which cor-
responds to �c0) is divided in two parts, the first np components being the public
input �xp and the rest is the secret input �xs of length ns. The main achievement
of [11] is to do two aggregated proof of all the constraints at the same depth with
just two constant size proofs, one for the multiplicative and the other for the lin-
ear constraints. Therefore, items c) (resp. d)) require that for each i = 1, . . . , d,
a set of quadratic (resp. linear) equations holds. In the next two subsections
(Sect. 2.3, 2.4) we sketch the aggregated proofs of the sets of equations described
in c) and d).

Lemma 1. Let φ : {0, 1}n → {0, 1}, be a circuit with m NAND gates. Then,
for any public input �xp ∈ {0, 1}np , (�a,�b,�c) is a valid input for satisfiability of
φ(�xp, ·) if and only if:

a) (c0,1, . . . , c0,np
) = (�xp).

b) Boolean secret input: (c0,np+1, . . . , c0,n) = (�xs) ∈ {0, 1}ns .
c) Correct gate evaluation at level i, for i = 1, . . . , d:

ci,j = 1 − ai,jbi,j , j = 1, . . . , ni,

d) Correct “wiring” (linear constraints) at level i:

ai,j = ckL,�L , bi,j = ckR,�R ,

for some indexes 0 ≤ kL, kR < i, 
L ∈ {1, . . . , nkL
} and 
R ∈ {1, . . . , nkR

}.
In other words, for all i, there exist some matrices Fi,Gi such that �ai =
Fi�c|i−1 and �bi = Gi�c|i−1, where �c�

|i−1 = (�c�
0 , . . . ,�c�

i−1).
e) Correct output: cd,1 = 1.
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2.3 Aggregated Proofs of Quadratic Equations

We now describe the construction proposed in González and Ràfols [11] to prove
correct gate evaluation at level i, for i = 1, . . . , d − 1, i.e. a proof that ci,j =
1 − ai,jbi,j , for all j = 1, . . . , ni. It consists, for k = 1, 2, of a Groth-Sahai NIZK
Proof that some secret values [Li,k]1, [Ri,k]2, [Oi,k]1, [O∗

i,k]2, [Hi,k]1 satisfy the
following relation3:

[1]T − e([Li,k]1, [Ri,k]2) − e([Oi,k]1, [1]2) = e([Hi,k]1, [tk]2), (1)
e([Oi,j ]1, [1]2) = e([1]1, [O∗

i,j ]2). (2)

where if t(X) =
∏

r∈R(X − r), tk = t(sk) and λi(X) =
∏

j∈R\{ri}
(X − rj)
(ri − rj)

is the ith Lagrangian polynomial associated to R, a set of W = maxi=1,...,d ni

points used for interpolation, then

Li,k =
∑

ajλj(sk), Ri,k =
∑

bjλj(sk), Ci,k =
∑

cjλj(sk), Hi,k = hi(sk),

where s1, s2 are random secret points specified in the CRS, and hi(X) =
(1 − (

∑
ajλj(X))(

∑
bjλj(X)) − ∑ cjλj(sk))/t(X). Alternatively, for each ni

we define Λni
=
(

λ1(s1) . . . λni
(s1)

λ1(s2) . . . λni
(s2)

)
,

[�Li]1 = [Λni
�ai]1, [�Ri]2 = [Λni

�bi]2, [ �Oi]1 = [Λni
�ci]1,

and Λ is called Lagrangian Pedersen commitment in [11].
To the reader familiar with the literature, it is obvious that Eq. (1) uses

SNARK techniques originally appeared in [8] (what we could call “polynomial
aggregation”) for proving many quadratic equations simultaneously. What is
new in [11], is the security analysis, which avoids non-falsifiable assumptions.

GS proofs are necessary for zero-knowledge because �Li, �Ri, �Oi need to be
deterministic for the proof to work. The authors of [11] use this proof as a
building block in a larger proof, and for this they prove the following:
“if (�ai,�bi) are valid openings of [Li,k]1, [Ri,k]2 for k = 1, 2 then 1 − �ai ◦�bi is a
valid opening of Oi,k.”

Formally, the authors define the languages

Lquad
YES =

{
(�a,�b, [�L]1, [�R]2, [ �O]1) : �1 − �a ◦�b = �c,[

�L
]
1

= [Λ]1�a,
[
�R
]
2

= [Λ]2�b,
[
�O
]
1

= [Λ]1�c

}

3 The second equation is added to have the element Oi,j in both groups G1,G2. This
will allow us to use simple QA-NIZK proofs of membership in linear spaces in G1

and G2 for the linear constraints, instead of using proofs of membership in bilateral
spaces (spaces with parts in G1 and in G2.).
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Lquad
NO =

{
(�a,�b, [�L]1, [�R]2, [ �O]1) : �1 − �a ◦�b = �c,[

�L
]
1

= [Λ]1�a,
[
�R
]
2

= [Λ]2�b,
[
�O
]
1

�= [Λ]1�c

}
.

The argument consists of giving some values �H, �O∗ chosen by the prover
which satisfy Eq. (1) for �L, �R, �O. Completeness holds for Lquad

YES and soundness
for values Lquad

NO under the (R,m)-Rational Strong Diffie-Hellman assumption
[11]. When (1) are proven with GS proofs, they argue that zero-knowledge also
holds.

Note that the fact [�L]1 = [Λ]1�a, or [�R]2 = [Λ]2�b is never checked by the
verifier, this is the promise. The argument does not give any guarantee when
this does not hold.

2.4 Aggregated Proofs of Linear Equations

In this section we explain the technique used in González and Ràfols [11] to prove
correct “wiring” at level i, for i = 1, . . . , d−1, i.e. an aggregated proof for linear
constraints. As we have seen in Lemma 1, we can express linear constraints at
level i as:

�ai = Fi�c|i−1, �bi = Gi�c|i−1 for all i = 1, . . . , d. (3)

Then at level i left and right constraints can be expressed, respectively as:
(

�O|i−1

�Li

)
=
(
Ci

F̃i

)(
�c|i−1

)
,

(
�O|i−1

�Ri

)
=
(

Ci

G̃i

)(
�c|i−1

)
(4)

where Ci =

⎛
⎜⎜⎜⎝

I �0 . . . 0
0 Λn1 . . . �0

0 0
. . . 0

0 0 . . . Λni−1

⎞
⎟⎟⎟⎠, F̃i = Λni

Fi, G̃i = Λni
Gi and Λni

is the

matrix of the Lagrangian Pedersen commitment key defined in last section, and
�O0 is just the input of the circuit.

To make the argument zero-knowledge, the prover does never give �Oi, �Li or
�Ri in the clear, but rather, for k = 1, 2 and any i ∈ [d], it gives GS commitments
[�z]1 to the input (i.e. to all components of �O0 = �c0), to the vector �Oi as [�zO,i]1,
to the vector �Li as [�zL,i]1 and to the vector �Ri as [�zR,i]2 (a part from other
GS commitments necessary for the quadratic proof). The matrices which define
the linear relation between committed values are defined from Ci, F̃i = Λni

Fi,
G̃i = Λni

Gi adding columns and rows to accommodate for the GS commitment
keys in the relevant groups (see full details in [11]). We denote these matrices
ML

i ,NL
i for the left constraints and MR

i ,NR
i for the right constraints.

González and Ràfols prove that the QA-NIZK argument of Kiltz and Wee
[19] (with standard soundness) for membership in linear spaces for non-witness
samplable distributions is an argument for the following promise problem:

LLin
YES =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 = [N]1 �w

}



Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 35

LLin
NO =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 �= [N]1 �w

}

parametrized by matrices M,N.
If we use this construction for matrices ML

i and NL
i (similarly for right side),

this argument can be used to prove that, if we can extract �c|i−1, then we can
extract an opening �ai of �Li which is in the correct linear relation with �c|i−1.

The authors prove completeness of the argument for statements in LLin
YES and

soundness for LLin
NO under M�

L -MDDH, M�
R-MDDH and KerMDH assumption,

where ML (resp. MR) is the distribution of matrices ML
i (resp. MR

i ) described
above4.

We note that for simplicity, we have explained the result of [11] as proving
a linear system of constraints for each level and each side (left or right), but in
fact a single QA-NIZK argument for bilateral spaces for non-witness samplable
distributions [10] is used in [11] to gain efficiency (the proof requires then only
2 elements in G1 and G2 instead of O(d) elements).

3 SE NIZK Argument for Boolean CircuitSat

We present our Quasi-Adaptive argument for Boolean CircuitSat for the lan-
guage defined as

Lφ =
{

(�xp) ∃�xs ∈ {0, 1}ns s.t. φ(�xp, �xs) = 1
}

.

As consequence of Lemma 1 the language Lφ,ck can be equivalently defined
as

Lφ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(�xp)

∃�xs s.t. �xs ◦ (�xs −�1) = �0;
�c0 := (�xp, �xs);
∀i ∈ [d],∃�ai,�bi,�ci ∈ Z

ni
p s.t. ;

�ai = Fi�c|i−1,�bi = Gi�c|i−1 ∈ Z
ni
p ,

1 − �ai ◦�bi = �ci.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

In the following ΠQ denotes the argument for Quadratic Equations described
in Sect. 2.3, ΠL the USS membership argument for linear spaces presented in
Sect. 4 and Input an argument to prove that some BB extractable commitments
to integers open to binary values.

K0(λ,W,R): On input some set R ⊂ Zp of cardinal W , choose a bilinear group
gk and output (gk,W ).

Dgk,W,R: Pick commitment keys (ck1, ck2) = ([Λ]1, [Λ]2) that are the Lagrangian
Pedersen commitment keys associated to R. Output (ck1, ck2, crsGS).

4 An important point is that these MDDH assumptions can be reduced to a decisional
assumption in bilinear groups which does not depend on the circuit. In fact, ML

i

only depends on n, n1, . . . , ns, and the assumption can be reduced to a decisional
assumption which only depends on Λ and the GS commitment key.
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K1 (gk , φ): Given (ck1, ck2, crsGS) ← Dgk,W and φ : {0, 1}n → {0, 1} of maxi-
mum width W . For each i ∈ [d] define matrices [ML

i ]1, [MR
i ]2, [NL

i ]1, [MR
i ]2

as explained in Sect. 2.4. Let crsInput the crs of the argument Input for a vec-
tor of size ns is binary. Let crsQ the crs of ΠQ for proving correct evaluation
of (at most) W gates. For each i ∈ [d], let crsL

L,i (crsR
L,i) the crs for the USS

argument of linear knowledge transfer ΠL of left (right) wires at depth i. Let
crsL =

{
crsL

L,i, crs
R
L,i

}
i∈[d]

and trL =
{
trLL,i, tr

R
L,i

}
i∈[d]

, where trLL,i (trRL,i) are the
trapdoors of the ΠL arguments of left (right) wires at depth i.

Output crs = (ck1, ck2, crsGS, crsInput, crsQ, crsL), tr = trL.

P
(
crs, �xs, �r,�a,�b,�c, �xp

)
: Computes the commitment of the secret input [�z]1 =

comck1,ck2(�xs, �r) and constructs the proof Input for [�z]1. For each i ∈ [d] compute
Lagrangian Pedersen commitments to the wires [�Oi]1,2, [�Li]1, [�Ri]2, give a GS
proof ΠQ,i that they satisfy Eq. (1) and let [�zO,i,k]1, [�z∗

O,i,k]2, [�zL,i,k]1, [�zR,i,k]2
the correspondent GS commitments to �O, �L, �R, for k = 1, 2. Compute proofs
ΠL,i of correct wiring and ΠL,0 that the opening of [�z]1 is correctly assigned to

[�zO,0]1. Outputs π =
(
[�z]1, Input, [�zO]1, [�zL]1, [�z∗

O]2, [�zR]2 , �ΠL,ΠL,0, �ΠQ

)
.

V (crs, �xp, π): Verify all the proofs in π with the corresponding verification algo-
rithms VInput, VΠL

and check Eq. (1).

S (crs, �xp, tr): Extend the input with zeros, �x = (�xp, 0, . . . , 0) and evaluate

the circuit honestly with this input to obtain the corresponding �ai,�bi,�ci for
each i = 1, . . . , d. Change the last gate values, i.e. the right and left val-

ues of the last gate at level d to �̂ad = 0, �̂bd = 1, �̂cd = 1. Compute the
commitment [�z]1 = comck1,ck2(�0, �r), honest proofs Input and ΠQ,i and com-
mitments [�zO,i,k]1, [�zL,i,k]1, [�z∗

O,i,k]2, [�zR,i,k]2 for each i = 1, . . . , d. Run the
simulator SΠL

to obtain d simulated ΠS
L,i,Π

S
R,i together with ΠS

L,0. Finally,
πS = ([�z]1, Input, [�zO]1, [�zL]1, [�zR]2 , [�z∗

O]2,ΠS
L,ΠS

L,0,ΠQ).

Completeness and Zero-Knowledge are directly from the completeness and zero-
knowledge of the respective subarguments.

Unbounded Simulation Extractable Adaptive Soundness is proved in the following
theorem.

Theorem 1. If A is an adaptive adversary against the Unbounded Simulation
BB Extractability Soundness of the Boolean CircuitSat argument described in
Sect. 3 that makes at most Q queries to S, then there exist PPT adversaries B1,
B2, B3 against the BB Extractable Soundness of Input, the Unbounded Simulation
Soundness of ΠL argument and the soundness of ΠQ argument, respectively, such
that

AdvUSS(A) ≤ AdvES-Input(B1) + dAdvUSS-ΠL
(B2) + 2dAdvSound-ΠQ

(B3).
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Proof (sketch). The simulator algorithm generates honestly the Input and ΠQ

arguments and an adversary sees only simulated proofs of the linear argument
ΠL. Therefore, an adversary that creates a new proof for an invalid statement
breaks either the knowledge soundness of the Input, the soundness of the ΠQ

arguments, or the USS of the linear arguments ΠL. ��

3.1 Concrete USES QA-NIZK for Boolean CircuitSat

For the scheme described above, one can take as Input, and ΠQ the same building
blocks as [11], namely the bitstring argument of Daza et al. [7] and the argument
described in Sect. 2.3. The USS for promise problems given in Sect. 4.

To simplify the exposition we have ommitted many details that actually make
the proof more efficient. In particular, instead of using two linear arguments for
each depth of the circuit, we can use the linear argument for all the linear
constraints of the circuit at once (as it is also done in the original work). First,
it is easy to see one can prove all the left (and right) constraints together, by
considering a larger matrix. Second, left and right constraints can be merged in a
single matrix which consists of elements in both groups, and using an argument
for some promise problem in bilateral linear spaces. This also makes the auxiliary
variable O∗ (and related equations) unnecessary.

Efficiency. Then, the building blocks (1), (2) of our instantiation are exactly
the same as in González and Ràfols [11]. The cost of committing to the input
plus proving it is boolean with the argument of [7] is (2ns + 4)|G1| + 6|G2|. We
take the same quadratic constraints proof from [11] with Zero-Knowledge that
is 12d|G1| + 4d|G2| for the commitments and 8d|G1| + 4d|G2| for the GS proofs.
This is the same cost as in [11], but in the full version we will give different
tradeoffs to reduce the proof size at the cost of increasing the common reference
string. In any case, the overhead of using an USS argument for promise problems
in bilateral spaces as opposed to the argument for bilateral spaces with standard
soundness used in González and Ràfols [11] is only 3|G1|.

3.2 Universally Composable Signature of Knowledge

Following the same approach as Groth and Maller [14], the SE NIZK argu-
ment with BB extractability together with a universal one-way hash function
allows to construct a UC secure SoK for boolean CircuitSat based on falsifiable
assumptions in bilinear groups in a straightforward way. The full details of this
construction will appear in the full version of the paper.

4 USS QA-NIZK Arguments of Knowledge Transfer for
Linear Spaces

In this section we prove that the USS argument for membership in linear spaces
of Kiltz and Wee also satisfies the “knowledge transfer” property, or more techni-
cally, that it has soundness for the same promise problem described in Sect. 2.4.
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We give the argument for membership in linear spaces in one group in detail in
Sect. 4.1 and we present the scheme for the bilateral version in Sect. 4.2.

4.1 USS LinDk
Argument

In this section we present LinDk
, a quasi-adaptive USS argument of membership

in linear spaces in the group G1 for the promise problem defined by languages

LLin
YES =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 = [N]1 �w

}

LLin
NO =

{
(�w, [�x]1, [�y]1) :

[�x]1 = [M]1 �w and
[�y]1 �= [N]1 �w

}

parameterized by matrices M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p sampled from some distri-

butions M,N . Completeness holds for YES instances, and soundness guaran-
tees that NO instances will not be accepted. That is, as in [11], we assume
[�x]1 = [M]1 �w holds when proving soundness. In the CircuitSat context, this can
be assumed because the idea is that this is proven by first proving knowledge
of the input and then by “transferring” this knowledge to the lower layers via
the quadratic or the linear argument we have presented. We consider the general
language L that includes all tuples (�w, �x, �y) of the right dimension, some of them
which are outside of LLin

YES ∪ LLin
NO. We allow simulation queries for any tuple in

L. Note that it would be enough to allow the adversary just to ask for queries
in LLin

NO in some contexts, as in Sect. 3 for CircuitSat, but we define for general
statements.

Scheme Definition. The argument is presented in Fig. 1 and is just the USS
QA-NIZK argument of [19] written in two blocks, which adds a pseudorandom
MAC to the basic (not simulation sound, just sound) QA-NIZK argument of
membership linear spaces for non-witness samplable distributions also given in
[19]. If in the basic arguments proofs are of the form [�x�, �y�]1(K1,K2), in the
USS variant they are given by

([
(�x�, �y�)(K1,K2) + �r�Λ(Λ0 + τΛ1)

]
1
,
[
�r�Λ�]

1

)
.

Our contribution is not in the scheme but in the security analysis. Our proof
follows [11] that proved that the basic argument in [19] is complete and sound
for the same promise problem under some MDDH and KerMDH assumptions
related to the matrix M. Our contribution is to modify their analysis to adapt
it to simulation soundness for the scheme of Fig. 1.

Perfect Completeness, Perfect Zero-Knowledge. Our language LLin
YES is the same

language for membership proofs in a linear space [M,N]�1 used in [19]:{
(�w, [�x, �y]1) : [�x�, �y�]�1 = [M,N]�1 �w

}
, so perfect completeness and perfect zero-

knowledge are immediate.
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K(gk , [M]1, [N]1) : P (crs, τ, [x]1, [y]1, w) :
K1 ← Z

�1×(k+1)
p ,K2 ← Z

�2×(k+1)
p , Pick �r ← Z

k
p and return

K� = K�
1 ,K�

2

)
�π = w�[B]1 + �r�[P0 + τP1]1,

A,Λ ← Dk, [�r�Λ�]1
)
.

Λ0,Λ1 ← Z
(k+1)×(k+1)
p V (crs, τ, [x]1, [y]1, �π) :

C1 = K1A,C2 = K2A, Check if:
[B]1 =

[
M�K1 + N�K2

]
1

e (�π1, [A]2) − e x�, y�]
1
, [C]2

)

(P0,P1) = (Λ�Λ0,Λ�Λ1) = e (�π2, [Q0 + τQ1]2)
(Q0,Q1) = (Λ0A,Λ1A) S (crs, τ, [x]1, [y]1, tr) :
Return crs = gk , [B]1, [A]2, [P0]1 , Sample �r ← Z

k
p and return

[P1]1 , [Q0]2, [Q1]2, [C1]2, [C2]2, [Λ]1
)

�π = [�x�, �y�]1K + �r�[P0 + τP1]1,
tr = (K1,K2) [�r�Λ�]1

)
.

Fig. 1. The LinDk argument for proving membership in linear spaces in blocks [�x, �y]1 ∈
Im[M,N]1 where M ∈ Z

�1×n
p ,N ∈ Z

�2×n
p .

Unbounded Simulation Soundness. For any adversary A that sends any number
Q of queries (�wi, [�xi, �yi]1) ∈ L to the query simulator oracle S, receives simulated
proofs {�πi}Q

i=1 as described in Fig. 1, the probability that the adversary A comes
up with a proof �π∗ for a statement (�w∗, [�x∗, �y∗]1) ∈ LLin

NO different of the queried
ones and different tag τ∗, such that V(crs, τ∗, [�x∗, �y∗]1, �π∗) = 1 is negligible.

We use Definition 4 and our proof is analogous to USS proof of [19], where the
authors argue that partial information about matrix K is hidden across all the
simulated proofs which fits perfectly with the soundness argumentation in [11],
where the authors prove the block K2,2 is hidden from the adversary. We need
an extra change of games because our matrices admit more rows than columns
and we have to assure the projection of our matrices does not reveal information
of K2.

For the following theorem, we use the Computational Core Lemma of Kiltz
and Wee in Sect. 4.1. of [19], which is independent of M,N , it just assumes the
Dk-MDDHG1 , so we can use it directly in our proof.

Theorem 2. The LinDk
scheme in Fig. 1 is a Quasi-adaptive Non-Interactive

Zero-Knowledge Argument with Unbounded Simulation Soundness such that for
any adversary A that makes at most Q queries to S there exist adversaries B1,
B2, B3 against the Dk-KerMDH, M�-MDDH assumptions in G1 for which the
advantage of A is bounded by

AdvUSS-LinDk
(A) ≤AdvDk−KerMDHG1

(B1) + 2QAdvDk-MDDHG1
(B2)

+ AdvM�-MDDHG1
(B3) +

Q + 1
p

.

Proof. Let A be an adversary that plays the game described in USS Definition 4.
We will proceed by changing to indistinguishable games in order to bound the
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advantage of A. Let Game0 be the real game and Advi the advantage of winning
Gamei.

– Game1 is the same as Game0 except the verification algorithm V is changed
to

V∗(crs, τ, [�x, �y]1, �π) :
Check: �π1 = [�x�, �y�]1K + �π2(Λ0 + τΛ1).

If a tuple ([�x, �y]1, �π) passes verification of V but does not pass verification
of V∗, it means that the value �π − [�x�, �y�]1K − �π2(Λ0 + τΛ1) ∈ G

k+1
1 is

a non-zero vector in the cokernel of A. Thus, there exists an adversary B1

against KerMDHG1 such that

|Adv0 − Adv1| ≤ AdvDk−KerMDHG1
(B1).

– Game2 is the same as Game1 except the simulation algorithm S is changed to

S∗(crs, τ, [�x, �y]1, tr) :
�r ← Z

k
p, μ ← Zp

Return: �π = ([(�x�, �y�)K + μ�a⊥ + �r�(P0 + τP1)]1, [�r�Λ]1)
,

where �a⊥ is an element from the Kernel of A. Let B2 be an adversary against
Dk-MDDHG1 . B2 picks K itself and answers queries (τi, �wi, [�xi, �yi]1) from A:

• if τi �= τ∗: B2 queries the oracle Ob, defined in the core lemma [19], who
simulates S if b = 0, or S∗ if b = 1.

• if τi = τ∗: B2 samples �r ← Zp and computes ([(�x�
i , �y�

i )K + �r�(P0 +
τiP1)]1, [�r�Λ�

0 ]1).
Then B2 queries V∗ to simulate verification of the final message of A,
(τ∗, �w∗, [�x∗, �y∗]1). Now, it is easy to check if (�w∗, [�x∗, �y∗]1) ∈ LLin

NO by com-
puting [M]1 �w∗ and [N]1 �w∗. The difference between respective advantages is
bounded using the core lemma of [19] as

|Adv1 − Adv2| ≤ 2QAdvDk−MDDHG1
(B2) +

Q

p
.

– Game3 is the same as Game2 except the matrix K ← Z
(�1+�2)×(k+1)
p is changed

in K to K = K′ + �b�a⊥ where K′ ← Z
(�1+�2)×(k+1)
p , �b1 ← Z

�1
p , �b2 ← Z

�2
p ,

�b� = (�b�
1 ,�b�

2 ) and B = (M�,N�)K + (�z + N��b2)�a⊥, where �z = M��b1. It is
direct to see that both K, K′ are uniformly distributed in Z

(�1+�2)×(k+1)
p , so

the advantages of both games are equivalent.
– Game4 is the same as Game3 except that now �z ← Z

�1
p . Let B3 be an adversary

against Dk-MDDHG1 that receives ([M�]1, [�z]1) as a challenge and computes
the crs as in previous game with this [�z]1 in B and runs A as in Game3.
Finally, when the advantage of B3 to distinguish between Game3 and Game4
is bounded by the probability of distinguishing between a random vector from
the image of the matrix M�, so

|Adv3 − Adv4| ≤ AdvM�−MDDHG1
(B3).



Signatures of Knowledge for Boolean Circuits Under Standard Assumptions 41

Now we bound the advantage of adversary A in winning Game4. Firstly, we show
what is leaked about vector �b for the adversary’s view:

– the matrix C = (K′ +�b�a⊥)A completely hides the vector �b,
– the output of S∗, (�x, �y)�(K′ +�b�a⊥)+μ�a⊥ completely hides �b because μ masks

(�x�, �y�)�b,
– the matrix B contains information about �z+N��b2, but �z is uniformly random

and independent of �b2, so �z masks �b2.

Note that if the adversary A passes the verification V∗ with some �π∗ for
an statement (�w∗, �x∗, �y∗) ∈ LLin

NO, it can also construct a valid proof π = (�π∗
1 −

�w∗B, �π∗
2) for the statement (�w∗,�0, �y − �y∗) ∈ LLin

NO where �y = N�w∗. It must hold
that

π = (0, �y − �y∗)(K′ +�b�a⊥) = (�y − �y∗)K′
2 + (�y − �y∗)�b2�a⊥, (∗)

Note �y − �y∗ is not zero because �y �= �y∗. Since �b2 remains completely hidden to
the adversary and K′

2 is independent of �b2, the probability that equation (∗)
holds is less that 1/p. ��

K(gk , [M]1, [N]1, [P]2) : P (crs, τ, [x1]1, [x2]1, [y]2, w) :
K1 ← Z

�1×(k+1)
p ,K2 ← Z

�2×(k+1)
p , Pick �r ← Z

k
p and return

K3 ← Z
�3×(k+1)
p , �π = w�[B]1 + �r�[P0 + τP1]1,

A,Λ ← Dk,Γ ← Z
n×(k+1)
p , [�r�Λ�]1

)
,

Λ0,Λ1 ← Z
(k+1)×(k+1)
p θ = w�[D]2.

C1 = K1A,C2 = K2A,C3 = K3A, V (crs, τ, [x1]1, [x2]1, [y]2, �π, θ) :
[B]1 =

[
M�K1 + N�K2 + Γ

]
1

Check if: e (�π1, [A]2) − e ([A]1, θ)
[D]2 =

[
P�K3 − Γ

]
2

−e x�
1

]
1
, [C1]2

) − e x�
2

]
1
, [C2]2

)

(P0,P1) = (Λ�Λ0,Λ�Λ1) +e [C3]1 ,
[
y�]

2

)
= e (�π2, [Q0 + τQ1]2)

(Q0,Q1) = (Λ0A,Λ1A) S (crs, τ, [x1]1, [x2]1, [y]2, tr) :
Return crs = (gk , [B]1, [A]1,2, [P0]2, Sample �r ← Z

k
p and return

[P1]2 , [Q0]1, [Q1]1, [C1]2, [C2]2, �π = [�x1, �x2]1(K�
1 ,K�

2 )
[C3]1, [Λ]1) +�r�(P0 + τP1), [�r�Λ�]1

)
,

θ = [�y]2K�
3 .

tr = (K1,K2,K3)

Fig. 2. The BLinDk argument for proving membership in linear spaces in blocks
([�x1, �x2]1, [�y]2) ∈ Im ([M,N]1, [P]2, ) where M ∈ Z

�1×n
p ,N ∈ Z

�2×n
p ,P ∈ Z

�3×n
p .

4.2 USS BLinDk
Argument

In this section we present the USS argument for membership in linear spaces in
groups G1, G2, which is just an extension to bilateral spaces of the USS LinDk

argument presented in Sect. 4.1 for the promise problem defined by languages
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LBlin
YES =

{
(�w, [�x1]1, [�x2]1, [�y]2) :

[�x1]1 = [M]1 �w and
[�x2]1 = [N]1 �w, [�y]2 = [P]2 �w

}

LBlin
NO =

{
(�w, [�x1]1, [�x2]1, [�y]2) :

[�x1]1 = [M]1 �w and
[�x2]1 �= [N]1 �w or [�y]2 �= [P]2 �w

}

parameterized by matrices M ∈ Z
�1×n
p ,N ∈ Z

�2×n
p ,P ∈ Z

�3×n
p sampled from

some distributions M,N ,P. This argument is presented in Fig. 2. QA-NIZK
arguments of membership in linear spaces were extended to the bilateral case
in [10] for both samplable and non-witness samplable distributions. In [11], the
authors proved that the argument for non-witness samplable distributions of [10]
is also sound and complete for this promise problem. Adding the pseudorandom
MAC given in [19] we get USS. The proof is essentially the same as in Sect. 4.1,
but now the linear spaces are split in two groups G1 and G2. The core lemma
would be the analogous one and the reduction of the proof of USS is bounded
by SKerMDH and Dk-MDDHG1 Assumptions.
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23. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

24. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press,
October 1999

https://doi.org/10.1007/978-3-662-46497-7_10

	Signatures of Knowledge for Boolean Circuits Under Standard Assumptions
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Definitions
	2.2 Boolean Circuits
	2.3 Aggregated Proofs of Quadratic Equations
	2.4 Aggregated Proofs of Linear Equations

	3 SE NIZK Argument for Boolean CircuitSat
	3.1 Concrete USES QA-NIZK for Boolean CircuitSat
	3.2 Universally Composable Signature of Knowledge

	4 USS QA-NIZK Arguments of Knowledge Transfer for Linear Spaces
	4.1 USS LinDk Argument
	4.2 USS BLinDk Argument

	References




