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Abstract. This paper presents the first construction for an efficient mul-
tisignature (MS) in the lattice setting, achieving signature compression
and public key aggregation simultaneously with single round signature
generation. The multisignature size in our construction is the same as
that of a single signature. The verification of a multisignature can be per-
formed with the aggregated public key and the verifier gets convinced
that the message has been signed by all the signers. More positively, our
aggregated public key size is also the same as that of a single signer.

Additionally, we extend our multisignature to an accountable sub-
group multisignature (ASM) that permits any subset of potential signers
to sign a common message with the property that the signature reveals
the identities of the signers to any verifier. Our ASM scheme enjoys the
same efficiency as that of our MS scheme without incurring any loss in
the security reduction. We design our schemes in the plain public key
model where there is no need to verify individual public keys. Our con-
structions are built in the standard lattice and are proven to be secure
under the hardness of the short integer solution (SIS) problem in the
random oracle model.

Keywords: Multisignature · Accountable subgroup multisignature ·
Public key aggregation · Lattice · Short integer solution

1 Introduction

Multisignature. In today’s digital world, reducing bandwidth is a desirable
and challenging task, especially for low energy devices. For instance, sensors
and cell phones have restricted battery life. Multisignature is a powerful cryp-
tographic primitive that helps to reduce the bandwidth taken by N signatures
from O(N) to O(1). A multisignature scheme provides a group of signers the
ability to sign collaboratively a common message in such a way that the size of
the multisignature remains the same as that of a single signature and the verifier
gets convinced that the message has been signed by all the signers. Multisigna-
ture becomes more efficient when the public keys can be aggregated to have size
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asymptotically equivalent to that of the public key of an individual signer and
can be verified with the aggregated public key.

Accountable Subgroup Multisignature. Accountable subgroup multisigna-
ture, introduced by Micali et al. [17], enables a subset S of a set of potential
signers G to jointly produce a multisignature on a given message such that it
satisfies flexibility and accountability. Flexibility means that any subset S of G
can sign the document and the verification is then upto the verifier whether the
subset S is sufficient to approve the document (message) which is signed jointly
by the signers in S. For instance, consider a case as taken in [17], when a com-
pany X signs a contract of a company Y. Suppose a subset S of X containing
chief operating officer, chief financial officer and chief marketing officer sign the
contract and sends the signature to Y. If Y prefers to have the signature of the
chief executive officer then Y may reject the signature. Accountability refers to
the fact that the set S is known to the verifier.

Application of Multisignature and Accountable Subgroup Multisigna-
ture. Multisignatures find applications in areas where storage and bandwidth
costs are subject to minimization. Recently, multisignature has gained attention
due to the popularity of the distributed applications that supports decentral-
ize trust such as blockchain. Blockchain is a promising technology in the new
financial era where digital currency like Bitcoin is the central currency with no
intermediaries trusted parties such as bank to process transactions. Multisigna-
ture can reduce the size of blockchains [16]. In blockchain, a number of users agree
(sign) on a specific message and put the signature to a block. It is desirable to
aggregate these signatures into a single signature to reduce the size of the block.
Furthermore, since all the public keys need to be written to the blockchain, it is
also required to aggregate all the public keys into a single public key such that
the aggregated public key has the same size as that of a single public key.

In Bitcoin, multisig is the hash of l public keys and a number k with 1 ≤ k ≤ l.
Multisignature can reduce the multisig Bitcoin address. The multisig in real life
offers a feature that participation of all the l signers is not required to spend funds
from the multisig address, but a sufficient number k of participation is sufficient.
Accountable subgroup multisignature is a solution that allows a subset S of k
signers take part in the signature generation instead of all l signers where

(
l
k

)

is large [4]. The subset S may be decided by the verifier from the flexibility
property of the accountable subgroup multisignature [17].

Our Contribution. As pointed by Micali et al. [17], many proposed multisig-
nature schemes are vulnerable to rogue key attacks (for instance Harn [10], Li
et al. [14]) or their security requires trusted generation of each key (for instance
Ohta et al. [19], Ohta et al. [20]). They constructed the first multisignature
scheme in [17] without trusted key generation. However, it requires an inter-
active initialization session among all the signers where each signer proves to
the other signers that it possesses the secret key for the given public key. This
model does not support dynamic setting and is not suited for large groups.
Later, Boldyreva [3] introduced the concept of knowledge of secret key (KOSK)
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to overcome the interactive initialization round in the key registration process.
The KOSK assumption utilizes non-interactive zero knowledge proof of knowl-
edge (ZKPoK) involving heavy computation. Consequently, it is highly desirable
to construct multisignature scheme in the plain public key model where the
special registration of public key is not required.

Table 1. Comparative summary of multisignature resistant to rogue key attack and
secure in the ROM

MS Communication Rs Storage Computation Security assumption Model

|apk| |msig| |pk| |sk| Sign Verify

[4] |G2| |G1| 1 |G2| |Zq| 1E 2P co-DH PPK

[5] |G| 2|G| + 3|Zq| 2 |G| + 2|Zq| |Zq| 5E 6E DL PoP

[6] |G| 2|G| 1 |G| + 2|Zq| O((log T )2) 4E 3P+1E l-wBDHI∗3 PoP

[16] |G| |G| + |Zq| 3 |G| |Zq| 2E 1E DL PPK

[7] − O(n) 3 O(n) O(n) 2PM (N + 1)PM Ring-SIS PPK

Ours O(n2) ˜O(n2) 1 ˜O(n2) ˜O(n2) 2MM 2MM SIS PPK

Table 2. Comparative summary of accountable subgroup multisignature resistant to
rogue key attack and secure in the ROM

ASM Communication Rounds Storage Computation Security assumption Model

|apk| |msig| Rs Rg |pk| |sk| |mk| Sign Verify

[4] |G2| |G1| + |G2| 1 1 |G2| |Zq| |Zq| 1E 3P ψ-co-DH PPK

Ours O(n2) O(n2) 1 1 ˜O(n2) ˜O(n2) O(n2) 1MM (2 + L)MM SIS PPK

|apk|: size of the aggregated public key, |msig|: size of the compressed signature, |pk|: size of a public key, |sk|:
size of a secret key, |mk|: size of group membership key, co-DH: computational Diffie-Hellman, DL: discrete

logarithm, l-wBDHI∗3 : weak bilinear Diffie-Hellman inversion problem for type-3 pairings, SIS: short integer

solution, G, G1, G2 are groups of prime order q, |G|: bit size of an element of the group G, T : max number

of time periods in forward secrecy, λ: security parameter, n = O(λ), Rs: number of rounds in the signature

generation algorithm, PPK: plain public key model, PoP: proof of possession, E: number of exponentiations,

P: number of pairings, Rg : number of rounds in the group membership key generation algorithm, N : number

of signers, L: size of the subgroup, Model: model to prevent rogue key attack, PM: number of polynomial

multiplications, MM: number of matrix multiplications.

This paper constructs the first lattice based multisignature scheme support-
ing public key aggregation in the plain public key model. Specifically, we design a
multisignature scheme MS and an accountable subgroup multisignature scheme
ASM that exhibit signature compression as well as public key aggregation. The
verifier only requires an aggregated public key instead of all the public keys to
verify a multisignature. Each signer in MS takes part in the multisignature gen-
eration and uses public keys of all the participating signers. On the other hand,
each signer in our ASM uses aggregated public key along with a group member-
ship key to issue a multisignature. We require only a single round interactive
protocol among all the participating signers in a group G to generate a group
membership key which can be used to issue an accountable subgroup multisigna-
ture for any subset of signers S ⊆ G. Both our constructions achieve simulation
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based security in the plain public key model against adversaries making bounded
number of queries to signatures and hashes. The security of our MS and ASM
is derived under the hardness of short integer solution (SIS) problem following
the security model of Boneh et al. [4].

As shown in Table 1, 2, our MS and ASM schemes are computationally effi-
cient as we have used matrix addition and multiplication. These are linear oper-
ations and are very efficient compared to exponentiations and pairings used
in [4–6,16]. Our construction enjoys the same round complexity as in the work
of Boneh et al. [4]. Similar to the existing works, the multisignature size in our
designs are independent of the number of signers involved. Since, our designs
are based on lattice, the storage and communication overheads are more (see
Table 1, 2) compared to the pairing based multisignature schemes [4–6,16].

The only lattice based multisignature scheme is by Bansarkhani et al. [7]
which compresses signature but does not support public key aggregation. It is
based on the signature scheme of Guneysu et al. [8,9]. The verifier requires
public keys of all the signers. The scheme uses ideal lattice and chooses secret
keys from polynomial rings where coefficients are bounded. The scheme is secure
under the hardness of ring-SIS problem. It involves three rounds of communi-
cation between a signer and cosigner to generate a multisignature. In contrast,
our scheme requires only one round of communication between a signer and
the designated signer, is built on standard lattice, the verifier requires only an
aggregated public key instead of public keys of all the signers and is proven to
be secure under the hardness of SIS problem.

Overview of Our Technique. In our MS construction, a trusted third party
generates the public parameter set Y that contains a public matrix A ∈ Z

n×m
q

along with hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and
H2 : {0, 1}∗ → Dn×n

Zq,σ modeled as random oracles in the security proof. Here

Dk×l
Zq,σ = {M ∈ Z

k×l
q : ||M|| ≤ σ

√
k}. Each user generates its own public-

secret key pair (pk, sk). The signer i chooses a short matrix Vi ∈ Z
m×m
q with

||Vi|| ≤ σ
√

m as its secret key ski and sets its own public key as pki = Yi =
A · Vi ∈ Z

n×m
q where σ is specified in the public parameter set Y. Note that

finding ski = Vi from pki = Yi is the SIS problem. As each signer generates
its own public-secret key pair, the adversary is allowed to generate public and
secret keys of users in the security game except for the challenged signer i∗. The
adversary is given access to the signing oracle corresponding to the signer i∗ ∈ G.
Let G be a group of signers involved in generating a multisignature on a message
M and PK is the set of public key of the signers in G who have participated in
this multisignature generation. Each signer i ∈ G uses its secret key ski together
with the public keys of all the signers in G to generate a signature Ti,M =
H0(M,PK)+ ski ·H1(pki,PK) ·H2(M) on M and sends Ti,M to the designated
signer. The designated signer aggregates all the received signatures Ti,M into a
multisignature TM =

∑

i∈G

Ti,M and outputs msigPK,M = (TM , pkagPK, G,M).

Anyone can aggregate the public keys in PK into an aggregated public key
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pkagPK =
∑

i∈G

pki · H1(pki,PK) ∈ Z
n×n
q . A verifier verifies a multisignature

msigPK,M = (TM , pkagPK, G,M) using the aggregated public key pkagPK. It
outputs 1 if A · TM = A · |G| · H0(M,PK) + pkagPK · H2(M) and ||TM || ≤
|G| · (||H0(M,PK)|| + σ3m

√
n). Otherwise, it outputs 0.

While the adversary makes a signature generation query, the simulator sim-
ulates the signature for the challenged signer i∗. The ranges of H1 and H2

have been specified with bounds to preserve the security. While simulating the
signature Ti∗,M for i∗ without knowing its secret key, the simulator calls for
H1(pki∗ ,PK) query, H2(M) query, chooses Ti∗,M ∈ Z

n×m
q and finds the value

of H0(M,PK) satisfying the equation A · Ti∗,M = A · H0(M,PK) + pki∗ ·
H1(pki∗ ,PK) · H2(M). As there is no bound restriction on the range of H0,
one can find H0(M,PK) using the Gauss elimination method or any other linear
algebra method. Using the generalized forking lemma, we finally show that if the
adversary is able to forge a multisignature, then the simulator finds V∗ ∈ Z

m×m
q

satisfying A · V∗ = 0 mod q with ||V∗|| ≤ σ
√

m. Thus the simulator solves an
instance of SIS problem and we have the following theorem.

Theorem 1 (Informal). The scheme MS is unforgeable in the random oracle
model if the SIS problem is hard.

The public parameter set Y in our ASM scheme uses a matrix A ∈ Z
n×m
q

and hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ , H2 :
{0, 1}∗ → Z

n×n
q and H3 : {0, 1}∗ → Dn×n

Zq,σ where H0,H1,H2 are modeled as
random oracles in the security proof. The key generation and the key aggre-
gation are performed as in our MS scheme. All the members in a group of
signers G take part in the group membership key protocol. Let PK be the
set of public keys of the signers in G. Each member i ∈ G uses its secret
key ski together with the public keys of other signers in G, computes Mj,i =
H2(pkagPK, j) + ski · H1(pki,PK) · H3(j) for all j ∈ G and sends Mj,i to all
j ∈ G parallely where pkagPK =

∑

i∈G

pki · H1(pki,PK) ∈ Z
n×n
q . After receiving

Mi,j from all signers j ∈ G, the i-th signer generates its group membership key
mki,PK =

∑

j∈G

Mi,j . Let S be a subset of G and L be the set of all public keys in

S. Each signer i ∈ S using its secret key ski together with the public keys of all
the signers in G computes Ti,M = ski ·H0(pkagPK,M)+mki,PK and sends Ti,M

to the designated signer. The designated signer aggregates all the received sig-
natures Ti,M into a multisignature TM =

∑

i∈G

Ti,M and outputs accmsigL,M =

(TM , spkagL, pkagPK, G,M, S) where spkagL =
∑

i∈S

pki · H0(pkagPK,M) is the

aggregated subgroup public key. The verifier using the aggregated public key
pkagPK and aggregated subgroup public key spkagL, outputs 1 if A · TM =
spkagL + |G| · ∑

i∈S

A ·H2(pkagPK, i)+pkagPK · ∑

i∈S

H3(i) and ||TM || ≤ |S| ·σ√
m ·

H0(pkagPK,M) + |G| · max
i∈S

||H2(pkagPK, i)|| + |S| · |G| · σ3m
√

n. Otherwise, it

outputs 0.
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The adversary is given access to the group membership key query for the
challenged signer i∗ ∈ G. The simulator and the adversary take part in the
group membership key generation protocol where the simulator simulates the
group membership key for the challenged signer i∗. The ranges of H1 and H3

have been specified with bounds to preserve the security. While simulating Mj,i∗

for i∗ without knowing its secret key, the simulator chooses Mj,i∗ such that
||Mj,i∗ || ≤ σ

√
m for each j ∈ G, queries to H1(pkj ,PK) oracle for each j ∈ G,

finds H2(pkagPK, j) satisfying A·Mj,i∗ = A·H2(pkagPK, j) +Yi∗ ·H1(pki∗ ,PK)·
H3(j). There is no bound on the range of H2 and thus can be found using any
linear algebra method. The adversary is also given signature oracle to query for
the challenged signer i∗ ∈ G. The simulator models the random oracle H0 to
simulate the signature for the challenged signer i∗. Finally, we apply generalized
forking lemma to show that forging an accountable subgroup multisignature
yields a solution to an SIS instance and proved the following theorem.

Theorem 2 (Informal). The scheme ASM is unforgeable in the random oracle
model if the SIS problem is hard.

Related Work. The first construction of multisignature was presented by
Itakura and Nakamura [12]. Multisignature schemes require homomorphic prop-
erties of arithmetic operations involved in standard signatures. Unfortunately,
the same homomorphic properties that permits aggregation of signatures into
multisignatures can enable a rogue key attack on such schemes. Infact, the mul-
tisignature schemes in early literature [10,11,13,14,18–20] were broken mostly
by mounting a rogue-key-attack. In this attack, a cheating group member sets
its public key as a function of the public key of an honest signer of the group
enabling it to forge multisignature easily. Many solutions were proposed to pre-
vent rogue key attack like key registration model, knowledge of secret key (KOSK)
assumption, proof of possession (PoP) assumption etc. These approaches have
higher complexity and are unrealistic assumptions on the public key infrastruc-
ture (PKI). The key registration model is parameterized by the key registration
and the adversarial behaviour is restricted by the security game based on the
successful or unsuccessful registration. In this model, the client registers with
the certifying authority through the key registration protocol and the adversary
can access the key registration oracle. Okamoto [19] and Micali [17] developed
proper security framework for multisignature. They also built constructions for
multisignatures and analyzed the security in the respective proposed models. In
contrast to [19], the security model of [17] addresses attacks in the key generation
phase. To prevent rogue key attack, Micali et al. [17] allows all the signers to
engage in an interactive protocol to generate public and secret keys. This scheme
is not dynamic in the sense that all the signers require to be fixed at the setup
phase.

The constructions in Boldyreva et al. [3], Lu et al. [15], on the other hand,
use KOSK assumption to achieve security against rogue key attack. When the
adversary provides a public key for a signer, it is required to provide a matching
secret key. In KOSK setting, a user has to prove the knowledge of secret key to
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the certifying authority during public key registration. However, PKI has yet not
realized the KOSK assumption. Bellare and Neven [2] pointed out that a scheme
is secure under the KOSK assumption face the upgradation of existing PKI as it
would require client and certifying authority to possess zero knowledge proof of
knowledge (ZKPoK) with extraction guarantees in fully concurrent settings. The
utilization of non interactive zero knowledge proof of knowledge requires heavy
computation.

To avoid the KOSK assumption for preventing rogue key attack, Ristenpart
and Yilek [21] modified the multisignature scheme of Boldyreva et al. [3] and
proved it is secure under the PoP assumption. Unlike KOSK, the PoP setting
does not ask to prove the knowledge of secret key, but it attests that a client has
the access to the public and secret key pair. One of the simplest ways to achieve
PoP in signature schemes is by sending the signature on the message requested
by the certifying authority.

Bellare and Neven [2] had overcome the KOSK assumption and proposed a
multisignature scheme in the plain public key model. In plain public key model,
the users do not need to prove the knowledge or possession of their secret keys.
The multisignature scheme of Micali et al. [17] is the first scheme that is secure
in the plain public key model. Downfall of this scheme is that the set of the
potential signers becomes static once the key setup phase is done. On the other
hand, the multisignature of Bellare and Neven [2] does not require a dedicated
key setup algorithm and is secure in the plain public key model. However, this
scheme requires several rounds of communication between the signers.

Recently, many multisignature schemes [4–6,16] have been proposed. The
scheme by Boneh et al. [4] is the first compact multisignature scheme secure
under the computational co-Diffie-Hellman problem with both signature com-
pression and public key aggregation. Further, they have constructed the first
short accountable subgroup multisignature scheme under the hardness of com-
putational Ψ -co-Diffie-Hellman problem in the random oracle model (ROM).
Drijvers et al. [6] proposed a construction for pairing based multisignature secure
under a variant of the bilinear Diffie-Hellman inversion problem in the ROM.
The work in Drijvers et al. [5] pointed out serious issues in the two round mul-
tisignature schemes without pairings and presented a variant of Bagherzandi
et al. [1] scheme secure under the discrete logarithm assumption in the ROM.
Maxwell [16] gave the first multisignature scheme secure in the palin public key
model. It is based on Schnorr signature and is secure under the hardness of dis-
crete logarithm problem. All the aforementioned schemes are secure only on the
classical machine and are not quantum computer resistant. The construction of
Bansarkhani et al. [7] is the only multisignature scheme that is secure under the
hardness of computational problems from lattice that are not succeptiable to
quantum attacks. The scheme is secure in the ROM under the ring-SIS problem.
However, the scheme is interactive involving three rounds during the signature
generation and does not support public key aggregation.

Drijvers et al. [6] proposed a multisignature scheme with forward secrecy
to address adaptive corruption. The adversary can corrupt committee members



288 M. Kansal and R. Dutta

after they have certified (signed) a message and use their signing keys to certify
(sign) a different message. Forward secure multisignatures prevent this attack
and enables signers to update their secret keys over time without changing their
respective verification keys.

2 Preliminaries

Notation. We provide below some of the notation that will be used: a ∈ Δn

means that a is a column vector of dimension n × 1 with elements from the set
Δ. For a vector x = (x1, x2, . . . , xn) ∈ Δn, ||x|| =

√
x2
1 + . . . + x2

n denotes the
Euclidean norm. Let X = (x1,x2, . . . ,xn) be a matrix with n columns in Δm

then ||X|| = max
1≤k≤n

||xk||. We say that a function f is negligible in λ if f = λ−ω(1).

Definition 1 (Lattice). A full rank matrix B ∈ Z
n×m
q is a basis of an m dimen-

sional lattice Λ if Λ = {y ∈ Z
m | ∃ x ∈ Z

m,y = B · x}. For any integer q ≥ 2,
a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q define Λ⊥

q (A) = {v ∈ Z
m
q |A · v =

0 mod q} and Λu
q (A) = {v ∈ Z

m
q |A · v = u mod q}.

Definition 2 (Discrete Gaussian Distribution). The discrete Gaussian distribu-
tion over a lattice Λ with center c ∈ R

m and parameter σ is DΛ,σ,c(y) = ρσ,c(y)
ρσ,c(Λ)

for all y ∈ Λ. Here ρσ,c(y) = exp(−π ||y−c||2
σ2 ) and ρσ,c(Λ) =

∑

y∈Λ

ρσ,c(y). If c = 0,

we simply denote it by DΛ,σ.

Definition 3 (Short Integer Solution (SIS) Problem). Given a uniformly random
matrix A ∈ Z

n×m
q and a real number β, the SIS problem is to find a vector

v ∈ Z
m
q such that A · v = 0 mod q and ||v|| ≤ β.

Generalized Forking Lemma [5]. Let us consider an algorithm A that takes
inA as input and interacts with a random oracle O. Let Ω = {r|r = (r̂, h1, h2,
. . ., hqH

)} be the randomness space and let r|j = (h1, h2, . . . , hj−1). Here r̂ is
the random tape of A, qH is the maximum allowable number of random oracle
queries and hj is the response to j-th random oracle query. The execution of
A is termed success if it outputs (I, {outi}i∈I) where I is a non empty subset
of {1, 2, . . . , qH}. The input inA is generated by the input generator IG. The
working of the algorithm FLA is explained below in Algorithm 1. We say that
FLA succeeds if it does not output fail.

Lemma 1 (Generalized Forking Lemma [5]). Let IG be a randomized input
generation algorithm and A be a randomized algorithm running in time τ with
access to a random oracle O such that A succeeds with probability ε. If q > 8nqH

ε ,
then FLA(inA) runs in time atmost τ · 8n2qH

ε ·ln( 8n
ε ) and succeeds with probability

atleast ε
8 , where the probability is over the choice of inA ← IG and over the coins

of FLA.
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Algorithm 1. Generalized Forking Algorithm FLA(inA)
1: (I, {outi}i∈I , aux) ← AO(inA, r) where r = (r̂h1, h2, . . . , hqH

);

2: if I = ∅ then
3: output fail;
4: else
5: Aux ← aux;
6: Let I = {i1, i2, . . . , in} such that i1 ≤ i2 ≤ . . . ≤ in;
7: for t = 1 to n do
8: successt ← 0; kt ← 0; kmax ← 8nqH

ε · ln( 8n
ε );

9: repeat
10: r′′ ∈ Ω such that r′′|it = r|it ;

11: Let r′′ = (r̂, h1, h2, . . . , hit−1, h′′
it

, . . . , h′′
qH

); (Note that h′′
j 	= hj for j = it to qH)

12: (I′′, {out′′i }i∈I′′ , aux) ← AO(inA, r′′);
13: Aux ← Aux ∪ aux;
14: if (h′′

it
	= hit and I′′ 	= ∅ and it ∈ I′′) then

15: out′
it

← out′′it
; successt ← 1;

16: end if
17: kt ← kt + 1;
18: until successt = 1 or kt > kmax

19: end for
20: if (successt = 1 for all t = 1, 2, . . . , n) then
21: output (I, {outi}i∈I , {out′i}i∈I ,Aux)
22: else
23: output fail
24: end if
25: end if

2.1 Multisignature - Syntax, Definition and Security Model

Syntax of Multisignature. The multisignature scheme allows a group of sign-
ers with public keys {pki1 , pki2 , . . . , pkil

} to issue a multisignature ‘msig’ on a
message M in such a way that the verifier agrees that all the N signers have
signed the message M . Let there be a designated signer who combines all the
signatures of the signers into a single multisignature. The designated signer may
be one of the signers or an external party.

At high level, we define a multisignature scheme MS = {pg, kg, kag, sg, vrf} as
consisting of parameter generation algorithm pg, key generation algorithm kg and
key aggregation algorithm kag together with an interactive signature generation
protocol sg and a deterministic verification algorithm vrf. A trusted third party,
called the key generation center (KGC), generates the public parameter set Y ←
MS.pg. A user generates its public-secret key pair (pk, sk)←MS.kg. The public
keys are made public while the secret keys are kept secret to the users. The signer
i uses secret key ski to generate signature Ti,M on a message M and sends Ti,M

to the “designated signer”. The designated signer aggregates all the received
signatures Ti,M on the message M into a multisignature msigPK,M . Here PK is
the set of public key of the signers participated in this multisignature generation.
The key aggregation algorithm MS.kag can be run by anyone to aggregate the
public keys in a set PK into a single public key pkagPK. The verifier using
the aggregated public key pkagPK, runs the algorithm MS.vrf and returns 0,
indicating the multisignature msigPK,M is not properly generated or 1, assuring
that msigPK,M is correct. More concretely, we have the following.
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• MS.pg(1λ) → Y. It is a probabilistic polynomial time (PPT) algorithm run
on a security parameter λ and outputs the public parameter set Y.

• MS.kg(Y, i) → (pki, ski). For each user i, this PPT algorithm returns the pub-
lic and secret key pair (pki, ski) on input the user i and the public parameter
set Y. The public key pki is made public while the secret key ski is kept secret
to the user.

• MS.kag(Y,PK) → pkagPK. Let PK be the set of public keys of signers. This
is a deterministic algorithm and it aggregates the public keys in PK into a
single public key pkagPK. It outputs the aggregated public key pkagPK which
asymptotically has the same size as a single public key.

• MS.sg(Y,PK,SK,M) → msigPK,M . With input the public parameter set Y,
the set of public and secret keys (PK,SK) of the signers and a message M ,
this single round protocol executes as follows. Let PK = {pki1 , pki2 , . . . , pkil

},
SK = {ski1 , ski2 , . . . , skil

} and IPK = {i1, i2, . . . , il}. The signer i ∈ IPK uses
PK along with its secret key ski to generate a signature Ti,M on M and
sends Ti,M to the designated signer. The designated signer aggregates all the
signatures Ti,M , i ∈ IPK on M into a single multisignature msigPK,M .

• MS.vrf(Y,msigPK,M ) → (0 or 1). On input the public parameter set Y, a
multisignature msigPK,M , this deterministic algorithm returns 1 if msigPK,M

is valid. Otherwise, it returns 0.

Completeness. A multisignature scheme should satisfy completeness. That is,
for any Y ← MS.pg(1λ), for any N , if we have (pki, ski) ← MS.kg(Y, i) for
i = 1, 2, . . . , N , for any message M and for any set of public keys PK =
{pk1, pk2, . . . , pkN} with corresponding set of secret keys SK = {sk1, sk2, . . .,
skN}, ifmsigPK,M ← MS.sg(Y,PK, SK,M) thenMS.vrf(Y,msigPK,M ) outputs 1.

Security Under Unforgeability. The unforgeability experiment ExpunforgF (λ)
between a simulator S and a forger F is described in Fig. 1 following the model
of Boneh et al. [4] that considers the infeasibility to forge multisignature with
atleast one honest signer. The forger has given polynomially many access to the
signature queries on any message M with any set of public keys PK.

Definition 4. We say that a multisignature is unforgeable if AdvunforgF (λ) =
Pr[ExpunforgF (λ) = 1] ≤ negl(λ) for every PPT adversary F in the experiment
ExpunforgF (λ) defined in Fig. 1 where negl(λ) is a negligible function in λ.

3 The MS

Our multisignature MS= (pg, kg, kag, sg, vrf) works as follows.

• MS.pg(1λ) → Y. A trusted third party, called key generation center (KGC),
generates the system parameters Y ← (n, q,m, σ,H0,H1,H2,A).

– choose n of size O(λ), q of size O(n3) and m ≥ 2n
log q�,
– pick the standard deviation σ of the discrete Gaussian distribution DΛ,σ

of size Ω(
√

n log q log n),
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1. The simulator S generates system parameters Y and a challenge public key pki∗ for user
i∗. The simulator S runs the forger on (Y, pki∗ ).

2. The forger is allowed to make signature queries to S on (Ml,PKl), 1 ≤ l ≤ qs where
Ml is a message and PKl is a set of public keys with pki∗ ∈ PKl i.e., has access to

the oracle O(Y,·,·,·) that simulates the honest signer i∗ with the public keys in PKl and
produce a signature Ti∗,M on M .

3. Finally, outputs a forgery msig∗
PK,M on a message M for a set of public keys PK.

4. The simulator S returns 1 if the following conditions hold:
(a) MS.vrf(Y,msig∗

PK,M ) → 1,

(b) pki∗ ∈ PK.
(c) M �= Ml for 1 ≤ l ≤ qs.
Otherwise, S returns 0.

5. The forger wins the game if S returns 1.

Fig. 1. Unforgeability game ExpunforgF (λ)

– select a matrix A ∈ Z
n×m
q over Zq and sample cryptographically secure

hash functions H0 : {0, 1}∗ → Z
m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and H2 :

{0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}.

• MS.kg(Y, i) → (pki, ski). The signer i runs this algorithm using Y to generate
its own public and secret key pair (pki, ski) by performing the following steps.

– choose a short matrix Vi ∈ Dm×m
Zq,σ and compute Yi = A · Vi mod q ∈

Z
n×m
q ,

– set the public key pki = Yi ∈ Z
n×m
q and secret key ski = Vi ∈ Dm×m

Zq,σ .
The public key pki is made public and the secret key ski is kept secret to the
signer i.

• MS.kag(Y,PK) → pkagPK. This deterministic algorithm outputs the aggre-
gated public key pkagPK =

∑

i∈IPK
pki · H1(pki,PK) ∈ Z

n×n
q by extracting H1

from Y where PK = {pki1 , pki2 , . . . , pkil
} and IPK = {i1, i2, . . . , il} is the

index set of PK.
• MS.sg(Y,PK,SK,M) → msigPK,M . It is an interactive protocol among the

signers i ∈ IPK where PK = {pki1 , pki2 , . . . , pkil
} is the set of public keys

of the signers with pki = Yi, SK = {ski1 , ski2 , . . . , skil
} is the corresponding

set of secret keys with ski = Vi and IPK = {i1, i2, . . . , il} is the index set of
PK. The protocol executes the following steps where A, n,m, σ,H0,H1,H2

are extracted from Y.
– each signer i ∈ IPK generates a signature Ti,M on a message M ∈ {0, 1}∗

using its secret key ski = Vi as Ti,M = H0(M,PK) + ski · H1(pki,PK) ·
H2(M) and sends Ti,M to the designated signer. Note that

||Ti,M || ≤ ||H0(M,PK)|| + ||ski|| · ||H1(pki,PK)|| · ||H2(M)||
≤ ||H0(M,PK)|| + σ3m

√
n

as ski ∈ Dm×m
Zq,σ , H1(pki,PK) ∈ Dm×n

Zq,σ and H2(M) ∈ Dn×n
Zq,σ ,
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– the designated signer in turn verifies whether ||Ti,M || ≤ ||H0(M,PK)||+
σ3m

√
n and A · Ti,M = A · H0(M,PK) + Yi · H1(pki,PK) · H2(M),

– if the verification fails, the designated signer does not accept the signa-
ture and returns ⊥. Otherwise, it issues the multisignature msigPK,M =(
TM , pkagPK, IPK,M

)
where TM =

∑

i∈IPK
Ti,M mod q.

• MS.vrf
(Y,msigPK,M

) → (0 or 1). On input the multisignature msigPK,M =
(TM , pkagPK, IPK,M), it outputs 1 if A · TM = A · |IPK| · H0(M,PK) +
pkagPK · H2(M), ||TM || ≤ |IPK| · (||H0(M,PK)|| + σ3m

√
n). Otherwise, it

returns 0.

The proof of the following Theorem3 is immediate from the construction.

Theorem 3. The scheme MS is complete.

3.1 Security Proof

Theorem 4. The scheme MS is (tF , qs, qH , εF )-unforgeable in the random ora-
cle model if SIS problem is ((tF + tqH

+ tqs
+ textra) ·8q2H · εF · log(8qH/εF ), εF

8qH
)-

hard. In other words, suppose that there exists a forger F running in time tF
can break the security under unforgeability of our scheme MS with non-negligible
advantage εF making qs signature queries and qH hash queries. Then there exists
an algorithm S running in time (tF + tqH

+ tqs
+ textra) · 8q2H · εF · log(8qH/εF ),

that for a given P ∈ Z
n×m
q finds a nonzero V ∈ Z

m×m
q satisfying ||V|| ≤ σ

√
m

and P · V = 0 mod q with non negligible advantage εF
8qH

. Here m ≥ 2n
log q�,
σ is of size Ω(

√
n log q log n), q is of size O(n3), tqH

, tqs
respectively denote the

time taken to answer hash and signature queries and textra is extra time taken
by the algorithm S.
Proof. We assume that there exists a forger F that wins the unforgeability game
played with a simulator S given in Definition 4 with probability εF .

1. Given an SIS instance P ∈ Z
n×m
q with m ≥ 2n
log q�, q is of size O(n3), σ is

of size Ω(
√

n log q log n), the simulator S sets Y = (n, q,m, σ,H0,H1,H2,A)
by setting A = P and H0 : {0, 1}∗ → Z

m×n
q , H1 : {0, 1}∗ → Dm×n

Zq,σ and H2 :

{0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}. The simulator

S generates a random matrix pki∗ = Yi∗ and randomness ρ = {ξ, C} where
C = {C1,C2, . . . ,CqH

}, ξ ∈ Z
m×n
q and each Ci ∈ Dm×n

Zq,σ for i = 1, 2, . . . , qH .
The simulator S speculates a random index k ∈ {1, 2, . . . , qH}. More precisely,
S guesses that F makes k-th H2 query on a message that is used by F to
output a valid forgery. It then runs F on input pki∗ ∈ Z

n×m
q , randomness ρ

and system parameters Y = (n, q,m, σ,H0,H1,H2,A).
2. The forger F is allowed to make qH many hash and qs many signature queries

which are simulated as follows.
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H1 Query. The simulator S maintains a list LH1 containing elements of the
form (x,H1(x)). If the tuple x = (pki,PKl), 1 ≤ l ≤ qH is already answered
then S returns from the list LH1 . If it is queried for the first time, S chooses a
random value from the set {C1,C2, . . . ,CqH

} for H1(pki,PK) for pki∗ ∈ PK if
pki∗ ∈ PK and i = i∗. Otherwise, it returns random value from Dm×n

Zq,σ . Finally,
the simulator stores ((pki,PK),H1(pki,PK)) in the list LH1 .

H2 Query. On receiving the query on a message Ml, 1 ≤ l ≤ qH if it already
queried then the simulator returns from the list LH2 . Otherwise, S honestly
generates and returns H2(Ml) to the forger F . The simulator stores (Ml,H2(Ml))
in the list LH2 .

H0 Query. The simulator maintains a list LH0 containing elements of the form
(x,H0(x)) where x = (Ml,PKl). If the message has already been queried then it
returns from the list LH0 . Otherwise, the simulator performs the following steps
to answer H0 query on any message Ml.

– choose Ti∗,Ml
∈ Dm×n

Zq,σ uniformly,
– query H1(pki∗ ,PKl) and H2(M) to the random oracles H1 and H2 respec-

tively,
– find B ∈ Z

m×n
q (using Gauss elimination method or any linear algebra

method) satisfying the equation A · B = A · Ti∗,Ml
− Yi∗ · H1(pki∗ ,PKl) ·

H2(Ml),
– return H0(Ml,PKl) = B to F and store ((Ml,PKl),H0(Ml,PKl)) in the list

LH0 and ((Ml,PKl), Ti∗,Ml
) in the list Lgood.

The distribution of Ti∗,Ml
is identical to the real protocol. Note that in the

real protocol, ||Ti,Ml
|| ≤ σ3m

√
n and as we have chosen Ti∗,Ml

∈ Dm×n
Zq,σ giving

||Ti∗,Ml
|| ≤ σ

√
m ≤ σ3m

√
n.

Signature Generation Query. When F makes a signature query on a message
Ml, with signers PKl, 1 ≤ l ≤ qs the simulator firstly checks whether pki∗ ∈ PKl.
If not, it aborts. Otherwise, S checks whether (Ml,H2(Ml)) ∈ LH2 with l = k
where k ∈ {1, 2, . . . , qH} is fixed at the beginning of the game. If yes, it aborts.
Otherwise, S checks whether ((Ml,PKl),Ti∗,Ml

) ∈ Lgood. If yes, then return
Ti∗,Ml

. If not, then S calls H0 query on (Ml,PKl) and return Ti∗,Ml
.

3. With the above knowledge, the forger F outputs a forgery msig∗
PK,M =

(T∗
M , pkagPK, IPK,M) on a message M . If it is a valid forgery then A ·T∗

M =
A · |IPK| · H0(M,PK) +

∑

i∈PK
pki · H1(pki,PK) · H2(M).

4. The algorithm S returns fail if (a) msig∗
PK,M is not a valid forgery. (b) pki∗ /∈

PK. (c) M = Ml for some 1 ≤ l ≤ qs.

As pki∗ ∈ PK for a valid forgery, H1(pki∗ ,PK) = Ct for some t, 1 ≤ t ≤ qH .
The simulator S computes pkagPK =

∑

i∈IPK
pki · H1(pki,PK) where pki is the

public key corresponding to the signer i ∈ IPK and H1(pki,PK) are simulated
as in the H1 query for each pki ∈ PK. Let Ej = H1(pkj ,PK) for pkj ∈ PK.
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Then the algorithm SF (inS = P, ρ) outputs ({t}, {(msigPK,M , PK, pkagPK,
E1, · · · ,E|IPK|)}) where ρ = (ξ,C1,C2, . . . ,CqH

).
We prove the theorem by constructing an algorithm B that, on input an

SIS instance A ∈ Z
n×m
q and the above constructed simulator S, solves the SIS

problem. Particularly, B runs the generalized forking lemma FLS on SF (inS =
P, ρ) given in Sect. 2. The algorithm B outputs fail if FLS outputs (0,⊥). On the
other hand, B outputs a solution V∗ of the SIS instance as follows if FLS outputs
({t}, {out1}, {out2}). Here out1 = {(msig∗

PK,M , PK, E1, . . . ,E|IPK|)}, out2 =
({(msig

′
PK′,M , PK′, E′

1, . . . ,E
′
|IPK′ |)}) with msig∗

PK,M = (T∗
M , pkagPK, IPK,M)

and msig′
PK,M = (T′

M , pkagPK′ , IPK′ ,M) are obtained from two executions of
S with randomness ρ and ρ′ such that ρ|t = ρ′|t i.e., ρ = (ξ,C1,C2, . . ., Ct−1,
Ct, . . ., CqH

) and ρ′ = (ξ,C1,C2, . . . ,Ct−1,C′
t, . . . ,C

′
qH

). In other words, the
arguments of this query are identical (PK = PK′) but Ei∗ = H1(pki∗ ,PK) = Ct

and E′
i∗ = H1(pki∗ ,PK′) = C′

t with Ei∗ 
= E′
i∗ . Also pkagPK =

∑

i∈IPK
pki · Ei

and pkag′
PK =

∑

i∈IPK
pki ·E′

i. Since Ej = E′
j for all j ∈ IPK except j = i∗ before

the forking point and therefore pkagPK − pkag′
PK = pki∗Ei∗ − pk′

i∗E′
i∗ .

B extracts T∗
M and T′

M from msig∗
PK,M and msig′

PK,M respectively, sets
V∗ = T∗

M −T′
M = ski∗ ·(Ei∗ −E′

i∗)·H2(M) where ||V∗|| ≤ σ
√

m, ||Ei∗ || ≤ σ
√

m,
||E′

i∗ || ≤ σ
√

m and ||H2(M)|| ≤ σ
√

n. Thus ||V∗|| ≤ σ4m
√

n. Also note that
A ·T∗

M = A ·T′
M mod q. This implies A ·V∗ = 0 mod q. Hence, V∗ is a solution

to the SIS instance.
The probability of success of S is the probability that (i) F succeeds to

output a valid forgery with probability εF and (ii) (Mk,H2(Mk)) ∈ LH2 with
Mk = M i.e., F has asked the k-th H2 query on M . Here the index k is guessed
at prior by S before H2 queries are made. The algorithm S chooses the correct
index with probability 1

qH
. Thus the success probability of S is εF

qH
.

The running time of S is that of F plus the time taken to answer the queries
and the additional computation S makes. Let tqH

, tqs
be the time taken to

answer hash and sign queries. Let textra be extra time taken by S. Therefore,
the run time of S is tF + tqH

+ tqs
+ textra. By the generalized forking lemma,

if q > 8qH

εF
, the running time of B is (tF + tqH

+ tqs
+ textra) · 8q2H/εF · ln( 8qH

εF
)

and the success probability of B is atleast εF
8qH

. ��

4 Accountable Subgroup Multisignature

Syntax of Accountable Subgroup Multisignature. Let PK = {pk1, pk2,
. . ., pkl} denotes the set of public keys of a group of signers IPK = {1, 2, . . . , l}
and SKPK = {sk1, sk2, . . . , skl} be the set of corresponding secret keys of the
set PK. Let L = {pki1 , pki2 , . . . , pkik

} be the set of public keys of a subgroup
of signers IL = {i1, i2, . . . , ik} and SKL = {ski1 , ski2 , . . . , skik

} be the set of cor-
responding secret keys of the set L. The accountable subgroup multisignature
scheme allows a subgroup IL ⊆ IPK to issue an accountable subgroup multisig-
nature accmsig on a message M in such a way that the verifier agrees that all
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the k signers in IL have signed the message M . Let there be a designated signer
who combines all the signatures of signers into a single accountable subgroup
multisignature. The designated signer may be one of the signers or an external
party.

An accountable subgroup multisignature scheme ASM= {pg, kg, kag, gmk,
sg, vrf} consists of parameter generation algorithm pg, key generation algorithm
kg and key aggregation algorithm kag together with an interactive group mem-
bership key protocol gmk, signature generation protocol sg and a deterministic
verification algorithm vrf. A trusted third party, called the key generation cen-
ter (KGC), generates the public parameter set Y ← AMS.pg. A user generates
its public-secret key pair (pk, sk)←ASM.kg. The public keys are made public
while the secret keys are kept secret to the users. All signer i ∈ IPK with its
own secret key ski execute the protocol ASM.gmk among themselves and gener-
ates a group membership key mki,PK i ∈ IPK. In signature generation protocol
ASM.sg, each signer i ∈ IL ⊆ IPK uses its secret key ski and group membership
key mki,PK to generate signature Ti,M on a message M and sends Ti,M to the
designated signer. The designated signer aggregates all the received signatures
Ti,M for i ∈ IL on the message M into an accountable subgroup multisignature
accmsigPK,L,M . The key aggregation algorithm ASM.kag can be run by any-
one to aggregate the public keys in a set PK into a single public key pkagPK.
The verifier runs the algorithm ASM.vrf and returns 0, if the multisignature
accmsigPK,L,M is not properly generated or 1 if accmsigPK,L,M is correct. More
concretely, description of these algorithms are given below.

• ASM.pg(1λ) → Y. It is a PPT algorithm run by a KGC on a security parameter
λ to generate the public parameter set Y.

• ASM.kg(Y, i) → (pki, ski). Each user i runs this algorithm with input the
public parameter set Y to generate the public and secret key pair (pki, ski).
The secret key ski is kept secret to the user i while the public key pki is made
publicly available.

• ASM.kag(Y,PK) → pkagPK. This is a deterministic algorithm and it aggre-
gates the public keys in PK into a single public key pkagPK. It outputs the
aggregated public key pkagPK which asymptotically has the same size as a
single public key.

• ASM.gmk(Y,PK,SKPK) → mki,PK. With input the public parameter set Y,
the set of public keys PK of the signers, the set of secret keys SKPK of the
signers in IPK, this interactive protocol runs among all signers in IPK and
generates group membership key mki,PK for each i ∈ IPK.

• ASM.sg(Y, L,PK,SKL,GL,M) → accmsigPK,L,M . With input the public
parameter set Y, the set of public keys PK of signers, the set of secret keys
SKL of signers in IL, the set of group membership keys GL = {mki,PK|i ∈
IL ⊆ IPK} and a message M , this interactive protocol works as follows. The
signer i ∈ IL uses its secret key ski and group membership key mki,PK to gen-
erate a signature Ti,M on M and sends Ti,M to the designated signer. The
designated signer aggregates all the signatures Ti,M for i ∈ IL on a message
M into a single accountable subgroup multisignature accmsigPK,L,M .
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• ASM.vrf(Y, accmsigPK,L,M ) → (0 or 1). On input the public parameter set
Y and an accountable subgroup multisignature accmsigPK,L,M , this deter-
ministic algorithm returns 1 if the accountable subgroup multisignature
accmsigPK,L,M is valid. Otherwise, it returns 0.

1. The simulator S generates system parameters Y and a challenge public key pki∗ . The
simulator S runs the forger on (Y, pki∗ ).

2a. The forger is allowed to make group membership key queries on a set of public keys
PKl, 1 ≤ l ≤ qm where PKl is a set of public keys with pki∗ ∈ PKl i.e., has access

to the oracle O(Y,PKl,·) in which S plays the role of the honest signer i∗. The simulator
stores the resulting membership key mki∗,PKl

but does not return it to .

2b. The forger is allowed to make signature queries on (Ml,PKl) where Ml is a message
and PKl is a set of public keys with pki∗ ∈ PKl , 1 ≤ l ≤ qs. That is, has access to the

oracle O(Y,·,PKl,·,·,Ml). The simulator plays the role of the honest signer i∗ and produce
a signature Ti∗,Ml

on Ml.

3. Finally, outputs a forgery accmsig∗
PK,L,M on a message M for L ⊆ PK where PK is a

set of public keys of a group of signers.
4. The simulator S returns 1 if the following conditions hold:

(a) ASM.vrf(Y, accmsig∗
PK,L,M ) → 1,

(b) pki∗ ∈ L,
(c) M �= Ml 1 ≤ l ≤ qs.
Otherwise, S returns 0.

5. The forger wins the game if S returns 1.

Fig. 2. Unforgeability game ExpunfF (λ)

Completeness. An accountable subgroup multisignature scheme should sat-
isfy completeness. That is, for any Y ← ASM.pg(1λ), (pki, ski) ← ASM.kg(Y, i)
with i ∈ IPK where IPK is the index set for the set of public keys PK, SKPK
is the corresponding set of secret keys, any message M , any subset L ⊂ PK
with the set of secret keys SKL, group membership keys GL = {mki,PK|i ∈
IL ⊆ IPK} where mki,PK ← ASM.gmk(Y,PK,SKPK), if accmsigPK,L,M ←
ASM.sg(Y, L,PK,SKL,GL,M) then ASM.vrf(Y, accmsigPK,L,M ) outputs 1.

Security Model. We consider the infeasibility to forge accountable subgroup
multisignature with atleast one honest signer following the security model of
Boneh et al. [4]. The forger has given access to qg many group membership key
queries along with qs many signature queries on any message with any set of
public keys PK and any subgroup of signers IL ⊆ IPK. The unforgeability game
ExpunfF (λ) between a forger F and a simulator L is described in Fig. 2.

Definition 5. We say that an accountable subgroup multisignature is unforge-
able if AdvunfF (λ) = Pr[ExpunfF (λ) = 1] ≤ negl(λ) for every PPT adversary F in
the experiment ExpunfF (λ) defined in Fig. 2 where negl(λ) is a negligible function
in λ.
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4.1 The ASM

We describe our accountable subgroup multisignature ASM= {pg, kg, kag, gmk,
sg, vrf} below.

• ASM.pg(1λ) → Y. The key generation center (KGC) generates the system
parameters Y ← (n, q,m, σ,H0,H1,H2,H3,A) as follows.

– parameters n, q,m, σ,H0,H1,A are generated as in the algorithm
MS.pg(1λ) of Sect. 3,

– sample cryptographically secure hash functions H2 : {0, 1}∗ → Z
n×n
q and

H3 : {0, 1}∗ → Dn×n
Zq,σ where Dk×l

Zq,σ = {M ∈ Z
k×l
q : ||M|| ≤ σ

√
k}.

• ASM.kg(Y, i) → (pki, ski). The signer i generates its own public and secret
key pair (pki, ski) same as in the algorithm MS.kg(Y, i) of Sect. 3. The secret
key ski = Vi ∈ Dm×m

Zq,σ is kept secret to the signer i and the public key
pki = Yi ∈ Z

n×m
q is made public. Note that Yi = A · Vi mod q.

• ASM.kag(Y,PK) → pkagPK. This deterministic algorithm outputs the aggre-
gated public key pkagPK =

∑

i∈IPK
pki · H1(pki,PK) ∈ Z

n×n
q .

• ASM.gmk(Y,PK,SKPK) → mki,PK. It is a single round protocol between the
signers in IPK where PK = {pki1 , pki2 , . . . , pkil

} is a set of public keys with
pki = Yi and SKPK = {ski1 , ski2 , . . . , skil

} is the collection of corresponding
secret keys with ski = Vi. All signers i ∈ IPK utilize the public parameter
set Y = (n, q,m, σ,H0,H1,H2,H3,A) and parallely execute the following.

– generate pkagPK ← ASM.kag(Y,PK) where pkagPK =
∑

i∈IPK
pki ·

H1(pki,PK),
– compute Mj,i = H2(pkagPK, j)+ ski ·H1(pki,PK) ·H3(j) for all j ∈ IPK,
– send Mj,i to signer j with ||Mj,i|| ≤ ||H2(pkagPK, j)|| + σ3m

√
n.

– On receiving Mi,j \ {i} from all signers j ∈ IPK, the i-th signer verifies
||Mi,j || ≤ ||H2(pkagPK, i)|| + σ3m

√
n. If the verification fails, it returns

⊥. Otherwise, it computes the group membership key
mki,PK =

∑

j∈IPK
Mi,j =

∑

j∈IPK

[
H2(pkagPK, i) + skj · H1(pkj ,PK) · H3(i)

]

• ASM.sg(Y, L,PK,SKL,GL,M) → accmsigPK,L,M . It is a one round protocol
run between the members of the set IL where L ⊆ PK = {pki1 , pki2 , . . . , pkil

}
is the set of public keys of the signers in IL with pki = Yi. The set
SKL is the collection of corresponding secret keys of the signers in IL with
ski = Vi. Each signer i ∈ IL performs the following steps by extracting
(n, q,m, σ,H0,H1,H2,H3,A) from Y.

– generate pkagPK ← ASM.kag(Y,PK) where pkagPK =
∑

i∈IPK
pki ·

H1(pki,PK),
– compute Ti,M = ski · H0(pkagPK,M) + mki,PK with ||Ti,M || ≤ σ

√
m ·

H0(pkagPK, M) + |IPK| · ||H2(pkagPK, i)|| + |IPK| · σ3m
√

n,
– send Ti,M to the designated signer.
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Note that ||Ti,M || ≤ σ
√

m ·H0(pkagPK,M)+ |IPK| · ||H2(pkagPK, i)||+ |IPK| ·
σ3m

√
n.

The designated signer verifies whether ||Ti,M || ≤ σ
√

m · H0(pkagPK,M) +
|IPK| · ||H2(pkagPK, i)|| + |IPK| · σ3m

√
n. If not, it aborts and returns ⊥.

Otherwise, the designated signer combines all the signatures Ti,M , i ∈ IL to
produce TM =

∑

i∈IL

Ti,M with ||TM || ≤ |IL| · σ√
m · H0(pkagPK,M) + |IPK| ·

max
i∈IL

||H2(pkagPK, i)|| + |IL| · |IPK| · σ3m
√

n. The designated combiner also

aggregates the public keys in L and generates aggregated subgroup public key
spkagL =

∑

i∈IL

pki. It finally returns the accountable subgroup multisignature

accmsigPK,L,M = (TM , spkagL, pkagPK, IPK, IL,M).
• ASM.vrf(Y, accmsigPK,L,M ) → (0 or 1). On receiving an accountable subgroup

multisignature accmsigPK,L,M = (TM , spkagL, pkagPK, IPK, IL,M), a verifier
runs this deterministic algorithm using the public parameter set Y and returns
1 if

– A·TM = spkagL·H0(pkagPK,M) + |IPK|· ∑

i∈IL

A·H2(pkagPK, i) + pkagPK·
∑

i∈IL

H3(i) where spkagL =
∑

i∈IL

pki and pkagPK =
∑

i∈IPK
pki · H1(pki,PK)

– ||TM || ≤ |IL| · σ
√

m · H0(pkagPK,M) + |IPK| · max
i∈IL

||H2(pkagPK, i)|| +

|IL| · |IPK| · σ3m
√

n. Otherwise, the verifier returns 0.

The proof of the following theorem is immediate from the construction.

Theorem 5. The scheme ASM described above is complete.

Theorem 6. The scheme ASM is unforgeable in the random oracle model if the
SIS problem is hard.

Proof (Sketch). We assume that there exists a forger F that wins the unforge-
ability game played with a simulator S given in Definition 5 with probability
εF .

1. This step is similar to the step 1 of the Theorem 4 in Sect. 3.1.
2. We give the hints of the simulation of H0, H1 and group membership key

queries. The H1-query on x = (pki,PK) is simulated from the already chosen
random values {C1,C2, . . . ,CqH

}. for pki ∈ PK if i = i∗. Otherwise a random
value is returned. Let bad1 be the event that a query to random oracles H0

or H2 is made involving pkagPK before making H1 query on (pki,PK) for
some pki. The simulator S aborts when the event bad1 occurs as it cannot
simulate the queries without knowing the public keys used to form pkagPK.
The group membership key query on PK is simulated only if pki∗ ∈ PK by
finding B ∈ Z

n×n
q satisfying A · Mi,i∗ = A · B + pki∗ · H1(pki∗ ,PK) · H3(i)

and sets H2(pkagPK, i) = B. Here Mi,i∗ ∈ Z
m×n
q is randomly chosen such

that ||Mi,i∗ || ≤ σ
√

m. Let bad2 be the event that a query to random oracle
H0 is made involving pkagPK before making group membership key query
on PK. The simulator S aborts when the event bad2 occurs as it cannot
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simulate the H0 query without knowing mki∗,PK. Also, H0-query on x =
(pkagPK,M) is simulated by finding B ∈ Z

n×n
q satisfying A ·Mi,i∗ = A ·B+

Yi∗ · H1(pki∗ ,PK) · H3(i) and sets H2(pkagPK, i) = B where Ti∗,M ∈ Z
m×n
q

is randomly chosen such that ||Ti∗,M || ≤ σ
√

m.
3. With the view of all the allowed queries, F outputs a valid forgery.
4. The simulator S applies the generalized forking lemma (on H1 query) and

solves the SIS instance as we have done in the Theorem 4 in Sect. 3.1. ��
The complete proof will be provided in the full version of the paper.
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