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Abstract. We introduce a new database to promote visibility enhance-
ment techniques intended for spectral image dehazing. SHIA (Spectral
Hazy Image database for Assessment) is composed of two real indoor
scenes M1 and M2 of 10 levels of fog each and their corresponding fog-free
(ground-truth) images, taken in the visible and the near infrared ranges
every 10nm starting from 450 to 1000 nm. The number of images that
form SHIA is 1540 with a size of 1312 x 1082 pixels. All images are cap-
tured under the same illumination conditions. Three of the well-known
dehazing image methods based on different approaches were adjusted and
applied on the spectral foggy images. This study confirms once again a
strong dependency between dehazing methods and fog densities. It urges
the design of spectral-based image dehazing able to handle simultane-
ously the accurate estimation of the parameters of the visibility degra-
dation model and the limitation of artifacts and post-dehazing noise. The
database can be downloaded freely at http://chic.u-bourgogne.fr.
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1 Introduction

In computer vision applications, dehazing is applied to enhance the visibility
of outdoor images by reducing the undesirable effects due to scattering and
absorption caused by atmospheric particles.

Dehazing is needed for human activities and in many algorithms like objects
recognition, objects tracking, remote sensing and sometimes in computational
photography. Applications that are of interest in this scope include fully
autonomous vehicles typically that use computer vision for land or air navigation,
monitored driving or outdoor security systems. In bad visibility environments,
such applications require dehazed images for a proper performance.

Image dehazing is a transdisciplinary challenge, as it requires knowledge from
different fields: meteorology to model the haze, optical physics to understand how
light is affected through haze and computer vision as well as image and signal
processing to recover the parameters of the scene. Researchers have been always
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searching for an optimal method to get rid of degradation by light scattering
along aerosols. Many methods have been proposed and compared to each other.
However, available methods still do not meet efficient recovery standards and
show a varying performance depending on the density of haze [7].

Earlier approaches involve multiple inputs to break down the mathematical
ill-posed problem. Narasimhan et al. [18] calculate the haze model parameters
by considering the variation of the color of pixels under different weather con-
ditions. Feng et al. [9] take advantage of the deep penetration of near-infrared
wavelength to unveil the details that could be completely lost in the visible band.
Other ways consist in employing depth data [13] or images differently polarized
[20]. Later techniques mainly focus on single image dehazing approach, which
is more challenging but more suitable for the purpose of real time and costless
computer vision applications. Single image dehazing was promoted through the
work of He et al. [11], the well-known Dark Channel Prior, which gained its
popularity thanks to its simple and robust real assumption based on a statisti-
cal characteristic of outdoor natural images. Therefore, numerous versions were
released later, some of them propose an improvement in estimating one or more
of the model’s parameters and others extend the approach to other fields of
application [14]. This approach, like others such as filtering based method [21],
estimates explicitly transmission and airlight. Other methods overlook the phys-
ical model and improve contrast through multi-scale fusion [3], variational [10] or
histogram equalization approaches [27]. Recently, like many research domains,
several machine learning approaches for image dehazing have come to light [5,15].
These models are trained on synthetic images built upon a simplistic model com-
paring to reality [24]. Hence the importance to build a large number of real hazy
images.

To evaluate various dehazing methods, some databases of hazy images are
available. Tarel et al. [22,23] used FRIDA and FRIDA2 as two dehazing eval-
uating databases dedicated to driving assistance applications. They are formed
of synthetic images of urban road scenes with uniform and heterogenous layers
of fog. There exist also databases of real outdoor haze-free images, for each,
different weather conditions are simulated [28].

Given the significant research that has been conducted through the last
decade, it turns out that synthetic images formed upon a simplified optical model
do not simulate faithfully the real foggy images [6]. Therefore, several databases
of real images and real fog with the groundtruth images have emerged. The real
fog was produced using a fog machine. This was first used in our previous work
presented in [8] and it was used later by Ancuti et al. [2,4] to construct a good
number of outdoor and indoor real hazy images covering a large variation of
surfaces and textures. Lately, they introduced a similar database containing 33
pairs of dense haze images and their corresponding haze-free outdoor images [1].

The main contribution of this paper is SHIA, which is inspired from our
previous color image database CHIC [8]. To the best of our knowledge, SHIA is
the first database that presents for a given fog-free image, a set of spectral images
with various densities of real fog. We believe that such database will promote
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visibility enhancement techniques for drone and remote sensing images. It will
represent also a useful tool to valid future methods of spectral image dehazing.
Although it contains only 2 scenes, it stands for an example to consider and
to integrate efforts on a larger scale to increase the number of such complex
databases.

After the description of the used material and the acquisition process of the
scenes, we provide a spectral dimension analysis of the data. Then, we evalu-
ate the three color dehazing methods that have been applied to single spectral
images. Our experimental results underline a strong dependency between the
performance of dehazing methods and the density of fog. Comparing to color
images, the difference between dehazing methods is minor, since color shifting,
which is usually caused by dehazing methods is not present here. The differ-
ence is mainly due to the low intensity, especially induced by the physical based
methods and the increase of noise after dehazing.

2 Data Recording

2.1 TUsed Material

The hyperspectral data was obtained using the Photon focus MV1-D12801-120-
CL camera based on e2v EV76C661 CMOS image sensor with 1280 x 1024 pixel
resolution.

In order to acquire data in visible and Near-infrared (VNIR) ranges, two
models of VariSpec Liquid Crystal Tunable Filters (LCTF) were used: VIS,
visible-wavelength filters with a wavelength range going from 450 to 720 nm.
NIR, near-infrared wavelength filter with a wavelength range going from 730 to
1100nm. Every 10nm in the VIS range and in the NIR range, we captured a
picture with a single integration time of 530 ms, which allows a sufficient light to
limit the noise without producing saturated pixels over channels. This reduces as
well the complexity of the preprocessing spectral calibration step (cf. Sect. 2.3).

In order to provide the image depth of the captured scenes, which could be a
relevant data to assess approaches, a Kinect device was used. The Kinect device
can detect objects up to 10 m but it induces some inaccuracies beyond 5m [16].
Therefore, the camera was standing at 4.5 m from the furthest point at the center
of the scene.

To generate fog, we used the fog machine FOGBURST 1500 with the flow
rate 566 m®/min and a spraying distance of 12m, which emits a dense vapor
that appears similar to fog. The particles of the ejected fog are water droplets
whose radius is close to the radius size of the atmospheric fog (1-10 pm) [19].

2.2 Scenes

Scenes were set up in a closed rectangular room (length =6.35 m, width =6.29 m,
height =3.20m, diagonal =8.93m) with a window (length=>5,54m, height =
1.5m), which is large enough to light up the room with daylight. The acquisition
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session was performed on a cloudy day to ensure an unfluctuating illumination.
The objects forming the scenes were placed in front of the window, by which the
sensors were placed. This layout guarantees a uniform diffusion of daylight over
the objects of the scenes.

After the set up of each scene and before introducing fog, a depth image was
first captured using the Kinect device, and it was then replaced by the Photon
focus camera, which kept the same position through the capture of images at var-
ious fog densities of the same scene. The different densities of fog were generated
by spreading first an opaque layer of fog, which was then evacuated progres-
sively through the window. The same procedure was adopted for the acquisition
of visible and near infrared images.

Hence, the dataset consists of two scenes, M1 and M2. The images of the scene
M1 are only acquired over the visible range (450-720 nm) for technical reasons.
MZ2’s images are captured in visible and NIR (730-1000 nm) ranges (Figs. 1 and
2). In the first set the lamp in the middle of the scene is turned off and turned
on in the second. For each acquisition set, 10 levels of fog were generated besides
the fog-free scene. As result, there are 308 images for M1: 11 levels (10 levels of
fog + fog-free level), in each there are 28 spectral images taken at every 10nm
from 450 to 720nm). On the other hand, there are 1232 images for M2: on the
basis of M1’s images calculation, M2_VIS and M2_NIR’s images are 616 each
(308 for lamp on scene and 308 for lamp off scene).

2.3 Data Processing

We performed a dark correction to get rid of the offset noise that appears all
over the image, and a spectral calibration to deal with the spectral sensitivities
of the sensor and the used filters. The dark correction consists in taking several
images in the dark with the same integration time. For each pixel, we calculate
the median value over these images. Therefore, we obtain the dark image. We
then subtract the dark image from the spectral images taken with the same
integration time. The negative values are set equal to zero [17].

For the spectral calibration, we considered the relative spectral response of
the camera and the filter provided in the user manuals. For each captured image
at each wavelength band with an integration time of 530 ms, we divided by the
maximum peak value of the spectral response of the sensor and the corresponding
filter.

3 Spectral Dimension Analysis

In order to investigate the effective spectral dimension of the spectral images, we
used the Principal Component Analysis (PCA) technique [12]. For this analysis,
we computed the minimum number of dimensions required to preserve 95% and
99% of the total variance of the spectral images of a given scene. Table 1 shows
the minimum number of dimensions computed on the scenes M2 Lamp on and
M2 Lamp off considering visible and NIR components at the three levels of fog,
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Fog-free Medium High

Fig.1. M2_VIS Lamp off. Visible image at 550 nm with its corresponding images
taken under low, medium and high levels of fog.

Fog-free Medium High

Fig. 2. M2 _NIR Lamp on. NIR image at 850 nm with its corresponding images taken
under low, medium and high levels of fog.

Foggy MSCNN CLAHE Fog-free

(30.63, 0.97, 0.94) (22.81, 0.74, 0.69) (28.80, 0.69, 0.59) (29.86, 0.78, 0.68)

(27.89, 0.96, 0.93) (21.43, 0.72, 0.69) (26.74, 0.68, 0.60) (29.25, 0.77, 0.67)

(24.51, 0.94, 0.89) (18.65, 0.66, 0.61) (22.42, 0.64, 0.56) (23.87, 0.72, 0.62)

Fig. 3. M2_VIS Lamp off taken at 550 nm. Dehazed images processed by DCP,
MSCNN and CLAHE methods, with the foggy images presented in the first column
and the corresponding fog-free images in the last column. The first, second and third
rows correspond to the low, medium and high levels of fog, respectively. Under each
image, its corresponding scores are showed as follows: (PSNR, SSIM, MS-SSIM).
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Table 1. The minimum number of dimensions required to preserve 95% and 99% of
the total variance of M2 Lamp on and M2 Lamp off scenes.

VIS_on VIS off | NIR.on |NIR_off
95% 1 99% | 95% | 99% | 95% | 99% | 95% | 99%
Fog-free | 2 3 2 5 1 2 2 |21

Low 2 3 2 5 1 2 6 |23
Medium | 1 2 1 5 16 |25 |21 |26
High 1 2 1 8 21 |26 |20 |26
Foggy MSCNN CLAHE Fog-free

(31.79, 0.98, 0.96) (34.37, 0.74, 0.65) (25.31, 0.73, 0.63) (26.53, 0.79, 0.68)

(22.04, 0.93, 0.88) (34.51, 0.72, 0.70) (21.35, 0.70, 0.58) (21.19, 0.68, 0.56)

(21.87, 0.92, 0.88) (33.53, 0.71, 0.70) (21.56, 0.69, 0.59) (21.38, 0.67, 0.57)

Fig.4. M2_NIR Lamp on taken at 850 nm. Dehazed images processed by DCP,
MSCNN and CLAHE methods, with the foggy images presented in the first column
and the corresponding fog-free images in the last column. The first, second and third
rows correspond to the low, medium and high levels of fog, respectively. Under each
image, its corresponding scores are showed as follows: (PSNR, SSIM, MS-SSIM).

low, medium and high. We can observe that for M2 Lamp on, fog-free images and
images with very light fog, show an effective dimensions of one or two to preserve
95% of the total variance and from two to four dimensions to preserve 99% of
the total variance. Images with a denser fog, require almost the same dimensions
as light-fog images in the visible range and more dimensions in the NIR range.
This is very likely to be caused by the sensor noise, which is accentuated on
dark images. This can be observed from the number of dimensions required at
NIR range of M2 lamp off (darker than M2 Lamp on), which is significantly
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high at fog-free and low levels. Considering the particles size of the fog used to
construct this database, the spectral properties at NIR wavelengths is very close
to visible wavelengths. To take advantage of its spectral particularities and get
better visibility, images at higher infrared wavelengths will be required [6].

4 Evaluation of Dehazing Techniques

The images of SHIA database have been used to evaluate three of the most rep-
resentative categories of single image dehazing approaches: DCP [11], MSCNN
[5], and CLAHE [27]. DCP and MSCNN are both physical-based methods. DCP
relies on the assumption that, for a given pixel in a color image of a natural
scene, one channel (red, green or blue) is usually very dark (it has a very low
intensity). The atmospheric light tends to brighten these dark pixels. Thus, it is
estimated over the darkest pixels in the scene. MSCNN introduces DehazeNet,
a deep learning method for single image haze removal. DehazeNet is trained
with thousands of hazy image patches, which are synthesized from haze-free
images taken from the Internet. Since the parameters of the generating model
are known, they are used for training. CLAHE, which is a contrast enhancement
approach, consists of converting an RGB image into HSI color space. The inten-
sity component of the image is processed by contrast limited adaptive histogram
equalization. Hue and saturation remain unchanged.

These methods have been adjusted to be applied on spectral images rather
than color images. In other words, the parameters that are usually estimated
through the three color bands, were estimated from the single spectral image.
For the sake of readability, we have selected three levels of fog, which are denoted
by low, medium and high levels (Figs. 1 and 2). In this article, we only display the
dehazed images of the scene M2_VIS Lamp off at 550 nm (Fig.3) and the scene
M2_NIR lamp on at 850 nm (Fig.4). The first row in these figures represent the
foggy image at the low selected level of fog, in addition to the corresponding fog-
free image and the dehazed images resulting from the three selected dehazing
methods. Similarly, the second and the third rows represent the foggy image
at the medium and low levels, respectively. We have calculated the scores of
the classical metrics used to evaluate spectral images: PSNR, which calculate
the absolute error between images; SSIM [25], which consider the neighborhood
dependencies while measuring contrast and structure similarity; and MS-SSIM,
which is a multiscale SSIM [26], and performs particularly well in assessing
sharpness [7]. A higher quality is indicated by a higher PSNR and closer SSIM
and MS-SSIM to 1. The corresponding values are written under the images in
Figs. 3 and 4. The average values calculated over a few selected wavelengths in
the VNIR range are given in Table 2.

Through the visual assessment of the dehazed images presented in Figs. 3
and 4, we can observe that all methods, regardless their approach and hypothe-
ses, perform better at low fog densities, either at visible or near infrared range.
CLAHE, which does not consider the physical model of image degradation, elim-
inates well the fog. However, it induces an important amount of noise that
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increases with the density of fog. DCP, which is a physical-based approach,
fails to estimate accurately the unknown parameters of the image degradation
model, the airlight and the transmission of light [11]. This bad estimate produces
dim dehazed images, especially at high densities of fog, where the dark channel
hypothesis fails. This accords with the observation made on color images pre-
sented in our previous work [7]. MSCNN performs also an inversion of the phys-
ical model of visibility degradation. However, it estimates better the unknown
parameters comparing to DCP since it is trained on a large number of hazy
images. This can be deduced through its dehazed images, which are not as dark
as the DCP’s dehazed images are.

The metrics values provided in Figs.3 and 4 have the same trends for color
dehazed images across fog densities [7]. They show an increase in quality when
the density of fog decreases. However, they underline a global low performance
of dehazing methods. This means that haze removal is associated with secondary
effects that restrains quality enhancement. This is likely to be handicapped by
the noise and the artifacts induced in the image and the dark effect resulted from
wrong estimation of visibility model parameters. These effects seem to have a
more severe impact on image quality than the fog itself.

From Table 2, we can conclude that foggy images are quantitatively of better
quality comparing to the dehazed images, which suffer from noise, low intensity
and structural artifacts; the scores resulting from different dehazing methods are
very close to each other across wavelengths; the metrics values demonstrate a cor-
related performance between MSCNN and CLAHE over wavelengths. Although
DCP has relatively higher scores, this does not mean it is the best performing
method. The dimness of its resulting images seems to minimize the effect of the
artifacts.

Table 2. The average values of PSNR, SSIM and MS-SSIM (MS) metrics calculated
on the images taken under 10 densities of fog at 550, 650, 750 and 850 nm

Foggy DCP MSCNN CLAHE

PSNR[SSIM |MS |PSNR[SSIM|MS |PSNR[SSIM |MS |PSNR|SSIM |MS
550nm|26.98 0.94 |0.91/22.34 [0.69 |0.63/24.51 |0.65 |0.56/25.03 |0.73 |0.63
650nm|21.63 |0.88 |0.78/23.13 |0.77 |0.64/21.06 |0.61 0.45/20.72 |0.63 |0.48
750nm|33.23 10.97 |0.95/24.03 0.69 |0.66/26.07 |0.70 |0.63/28.10 |0.70 |0.66
850nm|29.53 10.93 [0.89]26.71 [0.71 |0.67/26.92 |0.69 |0.61/25.90 [0.70 |0.59

5 Conclusions

We introduce a new database to promote visibility enhancement techniques
intended for spectral image dehazing. For two indoor scenes, this hard built
database SHIA, contains 1540 images taken at 10 levels of fog, starting from
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a very light to a very opaque layer, with the corresponding fog-free images.
The applied methods introduce the same effects induced in color images, such
as structural artifacts and noise. This is underlined by pixelwise quality metrics
when they are compared to foggy images. Accordingly, future works should focus
on reducing these effects while considering the particularities of spectral foggy
images that need to be further investigated.
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