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Abstract. Recent advances in artificial intelligence (AI) have drawn
attention to the need for AI systems to be understandable to human
users. The explainable AI (XAI) literature aims to enhance human under-
standing and human-AI team performance by providing users with neces-
sary information about AI system behavior. Simultaneously, the human
factors literature has long addressed important considerations that con-
tribute to human performance, including how to determine human infor-
mational needs. Drawing from the human factors literature, we propose
a three-level framework for the development and evaluation of explana-
tions about AI system behavior. Our proposed levels of XAI are based
on the informational needs of human users, which can be determined
using the levels of situation awareness (SA) framework from the human
factors literature. Based on our levels of XAI framework, we also propose
a method for assessing the effectiveness of XAI systems.

Keywords: Explainable AI · Human-AI collaboration ·
Interpretability

1 Introduction

With the recent focus on explainable artificial intelligence (XAI) in the AI lit-
erature, defining which information XAI systems should communicate and how
to measure their effectiveness is increasingly important. Gunning and Aha [21]
define XAI as “AI systems that can explain their rationale to a human user,
characterize their strengths and weaknesses, and convey an understanding of how
they will behave in the future.” We adopt this definition of XAI and define expla-
nations as the information necessary to support human inference of the above
details about AI systems, including information about their inputs, models, and
outputs. The motivation for development of XAI techniques is often stated as
the need for transparency within increasingly complex AI systems [20,31] and
the need to engender user trust in increasingly opaque systems [6,20,31]. Both
increasing AI system transparency and accounting for human trust in these
systems contribute to improved human-AI team performance; thus, supporting
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human-AI team performance is one of the primary aims of XAI. Some literature
argues that there is a performance-explainability trade off in that more explain-
able AI systems sacrifice algorithmic performance in some way [21,31]. However,
if a lack of system explainability inhibits overall team performance, benefits pro-
vided by improved algorithmic performance might be lost. Therefore, we view
optimization of human-AI team performance, enabled by explanations about the
system’s behavior, as the primary goal of XAI.

There exists a rich literature in human factors that explores scenarios in
which humans interact with automated systems, as well as the various factors
that influence human performance during task execution. The concept of situa-
tion awareness (SA), which has been studied within the field of human factors
and in the context of human-automation teams [9,13], defines the informational
needs for humans operating in any scenario [13]. XAI systems, as systems that
provide information about AI behavior, can contribute to the subset of a human
user’s SA that is related to AI behavior. Human-AI team performance can be
improved through information provided by XAI systems that support SA; how-
ever, overall SA, in addition to the subset of SA supported by XAI, are necessary
for but not solely sufficient to support team performance [13].

The human factors literature has additionally introduced methods and met-
rics for assessment of a human’s SA [37]. Just as SA supports but is not equivalent
to performance, high-quality explanations provided by XAI systems support but
are not equivalent to SA. Assessing XAI systems based on methods related to
SA can contribute to an understanding of whether the provided explanations
achieve the ultimate goal of enhancing human-AI team performance. Measuring
SA as an intermediate aim of XAI can provide clarity as to the potential con-
founds that exist in performance assessment. The XAI literature currently lacks
a comprehensive set of suitable methods and metrics for assessing explanation
quality. While it may not be possible to explicitly and independently define an
explanation’s quality, explanations are only “good” insofar as they contribute to
intermediate goals, such as SA, and the ultimate goal of improved performance.
In this paper, we discuss how a human factors-based SA assessment method can
be useful for evaluating XAI systems.

The remainder of the paper is organized as follows: in Sect. 2, we discuss the
relevant situation awareness literature as it relates to XAI. In Sect. 3, we pro-
pose a framework for design and evaluation of XAI systems in light of findings
within the human factors community. In this framework, we propose levels of
XAI that define which information about AI algorithms and processes should be
supported by XAI systems; these levels map closely to those of SA as proposed
by Endsley [13] (discussed in Sect. 2). Our framework applies to XAI generally,
including explainable machine learning (ML), explainable agents/robots, and
multi-agent/multi-human teams. There exist other frameworks in the XAI liter-
ature that are primarily agent-centric in that they categorize systems based on
agent attributes, such as stages of explanations [3,36], types of errors [42,43], or
agent internal cognitive states [23]. The framework we propose is complemen-
tary to these in that ours is human-centric and focuses on human informational
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needs. Other frameworks propose human-centric approaches [38,40], but these
are largely human role-based, and our framework applies more generally and is
role-agnostic. One other framework focuses on the theory of mind (ToM) of the
robot and human [26]. The authors of that work discuss the need to define which
information a robot should communicate, which our framework addresses.

In Sect. 4 we provide a non-comprehensive set of examples of how a set of
existing XAI techniques fit into our framework in order to clarify how our frame-
work might be applied. Section 5 discusses how to determine human informa-
tional needs at each of the three levels proposed in our framework. In Sect. 6, we
discuss how methods used to evaluate existing XAI techniques map to assess-
ments of SA from the human factors literature, and we propose one key SA-
related method for the assessment of XAI systems. Section 7 provides a motivat-
ing example, which we use to clarify our discussion of the levels of XAI and the
suggested SA-related assessment method. Finally, Sect. 8 suggests future direc-
tions for XAI research, and Sect. 9 concludes the paper.

2 Situation Awareness in the Human Factors Literature

The concept of situation awareness has been widely studied in the human fac-
tors literature, especially in the context of human-automation teams operating
in complex environments [13]. The concept originally received attention in the
study of aviation systems, particularly with the rise of cockpit automation and
the need to support pilot awareness of aircraft behavior [46]. However, its appli-
cability extends to any complex scenario in which humans have informational
needs for achieving the tasks they are performing. Accordingly, it has addition-
ally been studied in the context of many other domains including air traffic
control, emergency management, health care, and space, among others [15].

Different definitions of situation awareness and corresponding frameworks
have been proposed in the literature [5,13,44]. We adopt the three-level defini-
tion from Endsley [13]: “the perception of elements in the environment within
a volume of time and space (level 1), the comprehension of their meaning (level
2), and the projection of their status in the near future (level 3).” This defini-
tion is the most widely cited and applied of the existing definitions [47]. It has
direct value for designers of complex systems due to its relative simplicity and
its division into three levels, which allow for easy definition of SA requirements
for different scenarios and for effective measurement of a person’s SA [41]. The
SA construct has been empirically validated in various contexts [16,47], and con-
nections between SA and other task-related measures such as performance and
error frequency have been demonstrated in the literature [15]. SA has also been
used to define a framework for agent transparency [9], which focuses primarily
on information that interfaces should display about agent behavior. We apply a
similar approach to that of Chen et al. [9], but we focus on XAI specifically and
define our framework based on AI system behavior more generally.

Endsley [13] further defines an assessment technique for measuring a person’s
SA: the Situation Awareness Global Assessment Technique (SAGAT). Since SA
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Fig. 1. Levels of XAI framework

represents the “diagnosis of the continuous state of a dynamic world”, there
exists a “ground truth” against which a person’s SA can be measured [37]. The
SAGAT test aims to measure the discrepancies between a human user’s SA, or
their knowledge of the state of the world, and this “ground truth” state of the
world. We detail SAGAT and its applicability to XAI further in Sect. 6.4.

SA is relevant to the XAI community since it contributes to defining human
informational needs, and XAI aims to meet them. In particular, XAI provides
human users with the subset of their SA that relates to AI behavior. It is not
equally valuable to provide just any information to human users via XAI, but
only information that is relevant to them given their respective tasks and con-
texts. In fact, providing excessive or irrelevant information can be detrimental
to human-AI team performance by causing confusion or unnecessarily increasing
workload [37]. Therefore, it is important for XAI practitioners to consider which
information is relevant to users and then to measure whether users have received
and understood that information. Our proposed framework provides a guideline
for determining which information XAI systems should communicate about AI
system behavior, and our suggested use of the SAGAT method provides a way
to measure how effectively this information is delivered.

3 Situation Awareness-Based Levels of XAI Framework

As AI systems become increasingly ubiquitous and humans interact with more
complex AI systems, XAI support of adequate SA can benefit human-AI team
performance. According to the definition of SA provided by Endsley [13], an
individual working towards a goal requires all three levels of SA to support
their decision-making processes, which can in turn improve performance of goal-
oriented tasks. It is important to note the distinction between general SA (related
to the situation as a whole) and SA related specifically to AI behavior: the latter
is a subset of the former and is the focus of this paper. SA, in the most general
sense, comprises user awareness of the environment, other situational factors, and
other human teammates in addition to information about the AI’s behavior.

The informational needs defined by SA can serve to dictate the information
XAI systems should provide about AI behavior. For many scenarios in which
XAI systems are useful and relevant, humans in the loop must know what the



98 L. Sanneman and J. A. Shah

AI system did or what decision it made (perception), understand why the system
took the action or made the decision it did and how this relates to the AI’s own
sense of its goals (comprehension), and predict what the system might do next
or in a similar scenario (projection). Thus, just as SA is divided into three levels,
we introduce three levels of XAI systems. Our proposed framework is shown in
Fig. 1. The three levels of XAI in our framework are defined as follows:

1. Level 1: XAI for Perception - explanations of what an AI system did or is
doing and the decisions made by the system

2. Level 2: XAI for Comprehension - explanations of why an AI system acted in
a certain way or made a particular decision and what this means in terms of
the system’s goals

3. Level 3: XAI for Projection - explanations of what an AI system will do next,
what it would do in a similar scenario, or what would be required for an
alternate outcome

Our framework generalizes to cover both explainable ML and explainable
agents/robots. It can also be applied for both “black box” AI systems that are
fundamentally uninterpretable to human users and high-complexity systems that
may or may not be inherently interpretable/“white box” but that human users
cannot grasp due to their complexity. Note that our focus is on the informational
content of explanations rather than explanation modality (natural language,
communicative actions, etc.), which is a separate but important consideration.
The following sections further detail each of the levels of XAI in our framework.

3.1 Level 1: XAI for Perception

Level 1 XAI includes explanations about what an AI system did or is doing as
well as the decisions made by the system. It covers information about both AI
system inputs and outputs and aims to answer “what” questions as they are
defined by Miller [34]. In the context of explainable ML, level 1 information
might include inputted data or outputted classification, regression, or cluster
information, for example. For explainable agents and robots, level 1 information
could include inputted state information, a particular decision or action taken
by the system, an outputted plan/schedule (sequence of decisions/actions) from
a planning agent, a particular resource allocation, and others. While level 1 XAI
might seem straightforward in many applications since it is simply information
about a system’s inputs or outputs, providing this information might be challeng-
ing when explaining a complex model that makes decisions over many different
input factors and produces numerous outputs, only a subset of which are rele-
vant to the user. The primary technical challenge for level 1 XAI is determining
which specific information is relevant to users of complex systems.

3.2 Level 2: XAI for Comprehension

Level 2 XAI includes explanations about why an AI system acted in a particular
way or made a certain decision and what this means in terms of the system’s
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goals. The primary aim of level 2 XAI is to provide information about causality
in AI systems [22] as it relates to a specific instance or decision made by the
system. Level 2 XAI answers “why” questions (as defined by Miller [34]) and typ-
ically provides information about a system’s model. In the context of explainable
ML, level 2 information might relate to sensitivities to inputs, semantic feature
information, simplified feature or model representations, cluster information, or
abstracted representations of model details. For explainable agents and robots,
level 2 information could include details about system goals, objectives, con-
straints, pre-/post-conditions, rules, policies, costs, or rewards.

In identifying level 2 XAI informational requirements, it is important to iden-
tify which causal information is most relevant to a user attempting to under-
stand the system. Miller [34] states that explanations are fundamentally con-
trastive and that when humans seek explanations, they often have a particular
“foil” (defined by the author as a counterfactual case) in mind. Reasoning about
the most likely foils users have in mind when interacting with a system can help
determine which causal information to provide. Note that by our definition, level
2 XAI provides answers to “why” questions for specific instances or in relation to
specific foils and might only involve some limited information about a system’s
model. Therefore, level 2 explanations alone do not necessarily enable users to
make all necessary predictions; as such, information beyond level 2 XAI may be
required for projection (level 3). We detail this distinction further in Sect. 3.3.

3.3 Level 3: XAI for Projection

Level 3 XAI includes explanations about what an AI system will nominally do
next or would do in a different circumstance or context. Level 3 XAI provides
answers to “what if”/“how” questions as they are defined by Miller [34]. It aims
to explain what would happen if certain system inputs or parameters changed or
what the system would do if human users took particular actions. Level 3 XAI
incorporates counterfactual or other simulated information in order to provide
explanations about a system’s future behavior in the presence of changes to
either inputs or system parameters, which might occur due to human actions.

While level 2 XAI provides information about why a decision was made
based on model-related factors, level 3 XAI provides insight as to what degree of
change to inputs, model parameters, or constraints would yield a different out-
come. Further, while level 2 explanations provide information about a decision
made in a specific instance, level 3 information helps users to reason about what
will happen in different contexts and what exactly would need to change about
the given circumstance in order to alter the system’s output. In the context of
explainable ML, level 3 information could include information about what effect
a changed input would have on the output, which changes in the input would
be required to achieve a given output, or what would change about the output
if the model changed in some way. Similarly, for explainable agents and robots,
level 3 information would provide information about changed inputs and out-
puts, changed models (such as the addition/removal of constraints or differently
weighted objectives), or the nominal continued course of action.
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We define two types of prediction that can be supported with level 3 expla-
nations. First, backward reasoning helps a user start with a desired outcome and
work backwards to determine what would be necessary to achieve that outcome.
For example, consider a situation in which a user interacting with a neural net-
work hopes to understand what type of input would be required for a particular
classification. In such a case, successful level 3 XAI would help the user under-
stand the ranges of inputs to the neural network that would result in the desired
classification. Second, forward simulation helps a user understand what will hap-
pen given any changes in the inputs or model that occur. An example of forward
simulation in a robot planning scenario might involve a user who hopes to add
a constraint to the planning problem based on their own preferences about the
robot’s actions. Successful level 3 XAI would help such a user to understand the
effect the new constraint would have on the outputted plan.

4 Example Approaches Achieving the Levels of XAI from
the XAI Literature

The following sections discuss how a limited, non-comprehensive set of example
XAI techniques fit into our framework.

4.1 Example Approaches Achieving Level 1 XAI

Level 1 XAI relates to AI system inputs and outputs. Whether a system has pro-
vided adequate level 1 explanations depends on whether a human user has suffi-
cient information about these things. Many explainable ML techniques provide
level 1 XAI implicitly through their inputs and outputted results. For example,
Kim et al. [30] and Ribeiro et al. [39] provide users with the system’s outputted
classification (level 1) in addition to explanations about the reasons behind the
outputs (level 2). In these cases, the entire system output is captured by a single
or small number of classifications, and the human user can easily understand the
entire set of outputs. In other cases, such as with some clustering techniques, the
entire set of outputs (i.e. features that represent a cluster) contains extraneous
information in addition to information that is directly relevant to the human
user’s understanding of the outputted clusters. Kim et al. [29] designate a set of
clusters in a feature space, find the most quintessential prototype of each, and,
for each prototype, down-select to a subset of features to present to the user.

In the explainable agents and robots literature, explainable Belief-Desire-
Intention (BDI) agents explain their actions (intentions) based on their goals
(desires) and their observations (beliefs) [7,23,24]. Belief-based explanations are
level 1 explanations, since they provide information about inputs that agents
use in their decision-making processes. Harbers et al. [24] implement a BDI
agent that produces explanations of both its observations (inputs) and actions
(outputs), which both constitute level 1. Beyond BDI agents, Floyd and Aha [19]
implement an agent that explains when it changes its behavior (output) in order
to increase transparency. Lomas et al. [32] propose a framework for explainable



A Situation Awareness-Based Framework 101

robots which includes explanations about which actions a robot took (outputs)
and what information it had about the world at the time (inputs). Finally,
AI planning systems that provide users with a partial or entire plan [6,8,45]
implicitly provide level 1 XAI through their outputted plans.

4.2 Example Approaches Achieving Level 2 XAI

Level 2 XAI is fundamentally related to supporting user comprehension of a
system’s behavior through the understanding of its model, including reasoning
about objectives, constraints, features, or other model aspects. Successful level 2
XAI adequately explains the relevant aspects of why a system behaved the way
it did. Much of the current XAI literature falls into the category of level 2 XAI.

Various XAI techniques for ML models aim to explain which features, parts of
the model, or other feature abstractions have the greatest bearing on a system’s
decision making. Ribeiro et al. [39] introduce the LIME technique, which learns
an approximation of a complex classifier over a human-understandable set of
features in order to explain which of these features were most important in
generating a classification for a given input. Kim et al. [30] propose a technique
that allows users to define abstract concepts (which may be distinct from the
original set of features used for classification) and learn about the significance
of a concept’s contribution to a given classification. Other approaches, such as
saliency maps, highlight important aspects of inputs [1].

In the explainable agent and robot literature, explainable BDI agents that
explain their actions based on their goals (desires) [7,23,24] contribute to level
2 XAI. The agent proposed by Floyd and Aha [19] provides explanations about
why it changes its behavior (level 2) based on user feedback. Hayes and Shah
[25] propose a policy explanation technique that can answer questions about why
an agent did not take a given action by reasoning about predicates that consti-
tute its state. The technique proposed by Dannenhauer et al. [10] explains agent
behavior based on the agent’s rationale and goal. Dragan et al. [12] discuss the
distinction between legible and predictable robot motions. By their definition,
legible robot motions support human inference of the robot’s goal and would
therefore be considered level 2 XAI. Work related to explainable planning has
proposed explanations according to human-understandable aspects of AI models,
such as predicates or system objectives. Sreedharan et al. [45] introduce a tech-
nique that explains model predicates to a user in order to fill perceived gaps in
the user’s understanding of the model based on foils they suggest. Finally, Borgo
et al. [6] propose a set of techniques that explain system decisions by incorporat-
ing user-produced foils into planning and demonstrating that the modified plans
are sub-optimal or infeasible.

4.3 Example Approaches Achieving Level 3 XAI

Fundamentally, level 3 XAI is about supporting user prediction of AI behavior
through enabling understanding of what a system would do if its inputs changed
or if the model were to change in any way. Successful level 3 XAI helps users to
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predict what a system will do next or what it would do in a different context
and answers “what if” questions about system behavior.

In the explainable ML literature, some approaches provide users with pre-
dictions of contexts in which an AI system will fail [4] or predictions of which
changes in inputs would be required to amend misclassified examples [33]. Others
that provide level 2 information could be extended to support level 3. For exam-
ple, the SP-LIME algorithm [39] chooses a subset of local model approximations
produced by the LIME algorithm (discussed in Sect. 4.2) in order to provide a
more “global” explanation of the interpretable features that impact classification
in different scenarios. Ideally, if these examples are chosen according to human
informational needs for prediction, the human user would be able to predict the
outcome of a new example. However, with very complex systems, adequately
providing information in this manner might be intractable, and other ways of
providing level 3 explanations might be necessary. Other methods, such as the
one described by Kim et al. [30] (discussed in Sect. 4.2), could be augmented
to provide combinations of relevant “concepts” or could be complemented with
other contextual information in order to support prediction more fully.

In the explainable agent and robot literature, Amir and Amir [2] provide
explanations of global agent behavior by selecting “important” states in the
state space and providing traces of subsequent states and actions (determined
by the agent’s policy). These state-action pairs support human user prediction
of future agent behavior. The policy explanation technique proposed by Hayes
and Shah [25] can support both backward reasoning by answering questions
about when (from which states) it will take certain actions and forward reason-
ing by answering questions about what the agent will do given different states.
Some explainable agents provide more direct prediction-related information by
explaining their next action(s), such as explainable BDI agents that provide
sequence-based explanations [7,23] and others that provide their plans [19]. Note
that providing users with plans that agents are executing online is level 3 XAI,
while providing users with plans outputted by a planning agent is level 1 XAI.
Finally, in the discussion of legibility versus predictability [12], predictability is
related to human inference of a robot’s actions based on a known goal, so we
categorize predictable robot motions as level 3 XAI. As with explainable ML,
information provided by level 2 XAI techniques can be combined and amended
in order to produce level 3 XAI to support prediction of future robot or agent
actions.

5 Determining Human Informational Needs

In designing XAI systems and measuring their effectiveness, defining human
informational requirements according to the above framework is of value. This
information depends upon the overall goal of the human-AI team and the indi-
vidual roles of the autonomous agent(s) and human(s) within that team. Endsley
[16] describes a process called goal-directed task analysis (GDTA) for determin-
ing SA requirements for a given context, both for individuals and for those oper-
ating in larger teams. In this process, the major goals of each human teammate’s
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task are identified along with their associated sub-goals. Then, required decisions
associated with each sub-goal are enumerated. Finally, SA requirements at all
three levels are defined for each of these decisions (i.e. the information required
to support human decision-making). The GDTA process is detailed at length
in [16] and can be applied by XAI practitioners to define which information
human users need about AI system behavior in order to achieve their respective
goals. The definition of informational requirements with GDTA also informs the
assessment of XAI systems, which will be discussed further in Sect. 6.

In many scenarios, users do not require information about all of a system’s
behavior but only the aspects that are relevant to their specific tasks. Often,
a human cannot possess information about the entirety of a complex system’s
behavior; therefore, defining the specific information that users require (through
GDTA or a similar process) in order to support human-AI team goals is critical.
This is especially relevant when considering teams of humans, who each have
their own roles and corresponding goals. Informational requirements in these
cases are user-specific, and consequently, XAI systems might need to be able
to adapt to users playing different roles in the team, providing each with the
specific information relevant to his or her own task and potentially at different
levels of abstraction. An extended discussion of the definition and support of
team SA is provided by Endsley and Jones [18].

One important aspect of team SA is the interdependence of individual team
members. Johnson et al. [28] detail an “interdependence analysis” process for
assessing individual team members’ needs given different possible team config-
urations. This process results in the definition of observability (level 1) and
predictability (level 3) requirements for each teammate in the context of their
interdependence on each other. Since it defines information-sharing requirements
in the team, it can also be useful for defining information requirements for XAI
systems given different possible team configurations. We recommend using a
modified version of this process that includes the definition of “comprehensibil-
ity” requirements (level 2) in order to define which role an XAI system should
play in the context of a team. Once informational needs are identified, appropri-
ate XAI techniques can be chosen to provide necessary information.

6 Evaluating Explanation Quality: A Method
for Situation Awareness-Based XAI Assessment

In the following sections, we discuss a selection of existing human-based metrics
for XAI from the literature. We then suggest the use of the SAGAT method
from human factors for the assessment of the effectiveness of XAI systems.

6.1 Existing Level 1 XAI Methods and Metrics

Since providing a user with a system’s outputs is inherent to many existing XAI
techniques, most literature does not aim to assess whether the human properly
understood these outputs upon receiving them. Kim et al. [29] do this in part by
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assessing whether users are able to appropriately assign outputted prototypes
to clusters based on the subset of features presented. As the XAI community
moves towards explaining higher-complexity systems with multiple inputs and
outputs, it will be increasingly important to measure whether users understand
the correct inputs/outputs in the contexts of their intended goals. Section 6.4
outlines one approach that could be applied for such assessments.

6.2 Existing Level 2 XAI Methods and Metrics

Metrics for level 2 explanations should indicate whether users understand the
meaning of a given system’s actions or decisions and what these actions or deci-
sions imply in terms of progress towards team goals. Some of the literature has
proposed survey-like questions for assessing explanation quality as it relates to
user understanding. For example, Hoffman et al. [27] propose a “goodness” scale
that includes a question about whether the user understands how the given algo-
rithm works. They also detail a set of questions related to the perceived under-
standability of a system from the Madesen-Gregor scale for trust. Doshi-Velez
and Kim [11] suggest human experiments requiring users to choose which of two
possible system outputs is of higher quality, which necessitates understanding of
the system. While these questions and metrics represent a step towards measur-
ing whether adequate level 2 explanations have been provided to users, a more
comprehensive way of defining comprehension-related informational needs and
assessing whether they have been met through XAI is needed. As mentioned
previously, we outline one possible approach to this in Sect. 6.4.

6.3 Existing Level 3 XAI Methods and Metrics

Metrics for level 3 explanations should indicate whether human users can predict
what a system will do next or what it would do given an alternate context or
input. To this end, Doshi-Velez and Kim [11] suggest running human experiments
in which human users perform forward simulation, prediction, and counterfactual
simulation of system behavior given different inputs for XAI assessment. Hoffman
et al. [27] discuss the use of prediction tasks to measure explanation quality
and further detail a Likert-scale survey for trust measurement that includes a
question about predictability of system actions. Questions and experiments such
as these can be used to assess the quality of level 3 explanations provided by XAI
systems. Beyond these assessment techniques, a comprehensive way of assessing
whether level 3 informational needs are met is discussed in Sect. 6.4.

6.4 The SAGAT Test and Its Applicability for Assessment of XAI

In assessing the quality of XAI techniques, it is important to determine whether
human users receive the information they need in order to perform their roles.
Miller et al. [35], in particular, stress the need for human evaluations of XAI
systems. As discussed in Sects. 6.1–6.3, existing XAI literature includes some
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human-based evaluation metrics; however, to our knowledge, none have compre-
hensively assessed whether human informational needs are met by XAI systems.

Endsley [14] proposes the situation awareness-based global assessment tech-
nique (SAGAT) for SA measurement. SAGAT is a widely-used objective measure
of SA that has been empirically shown to have a high degree of sensitivity, reli-
ability, and validity in terms of predicting human performance [16]. It has been
applied for measurement of SA in a variety of domains [16], has been extensively
used to measure team SA [17], and has been shown to outperform other SA mea-
sures in terms of sensitivity, intrusivity, and bias, among other factors [17]. In the
SAGAT test, simulations of representative tasks are frozen at randomly selected
times, and users are asked questions about their current perceptions of the sit-
uation [17]. The questions asked are based directly on the human informational
needs defined according to a process such as GDTA (discussed in Sect. 5) and
therefore directly measure whether humans have the information required. More
complete discussions of SAGAT are provided in [13,14,16], and implementation
recommendations for the test are discussed by Endsley [16].

Since the SAGAT test measures whether human informational needs are met,
we propose that a SAGAT-like test can be applied to assess XAI systems. Situ-
ational information needs related to AI behavior should be thoroughly defined,
and in the assessment of an XAI system, user knowledge of this information
can be evaluated through a SAGAT-like test focused on information related to
specifically AI behavior. Such a test could more adequately determine whether
XAI systems achieve the purpose of communicating relevant information about
system behavior to human users than current assessment techniques allow.

7 Example Application of the Framework

Here we introduce a simple planetary rover example to demonstrate the appli-
cation of our framework and the use of the SAGAT test for assessment. The
example touches on aspects of explainable ML, explainable agents/robots, and
XAI for human teams. In our example, a rover on another planet is execut-
ing a learned exploration policy. Its objective is to search for water, which is
more likely to be found in areas with certain types of rocks. There are costs
associated with navigation time and science task duration, and there are differ-
ing rewards associated with performing science tasks on the different types of
rocks, some of which are more valuable. The rover has a camera onboard and
an ML-based image processing system that allows it to classify rocks. There are
constraints associated with the rover power requirements, and some terrain is
not traversable. Human users include one engineer who monitors rover health
and one scientist who monitors science activities. The scientist and engineer can
also request new rover actions during the mission. Below are examples of infor-
mation constituting levels 1–3 XAI for the engineer and scientist and the types
of information they represent (in parentheses).
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– Level 1 XAI:
Engineer - terrain information, current battery level (inputs); current
path plan and next stopping point/time (plan); next science action (deci-
sion/action)
Scientist - next science action (action/decision); inputted image of rock for
science analysis (input); rock classification (output)

– Level 2 XAI:
Engineer - terrain map with rover path costs including untraverseable areas
with infinite cost (policy information - costs); battery usage for current path
(constraints); list of possible science actions and associated rewards (policy
information - rewards); battery usage for each science action (constraints)
Scientist - list of possible science actions and associated rewards (policy
information - rewards); list of semantic features, such as color, contributing
to the rock classification (feature information); sensitivity to light given inputs
(sensitivity information)

– Level 3 XAI:
Engineer - map of maximum traverseable distance given current battery
level (continued action); remaining battery level after each possible science
activity (continued action)
Scientist - predicted rock classification under different lighting conditions
(changed inputs)

The scientist and engineer have individual informational requirements in addi-
tion to some shared requirements, such as which science activities are planned.
Each is only provided with necessary information in order to avoid a cognitive over-
load from excess information, which poses a risk to task performance.

Measuring SA Through SAGAT. In order to apply SAGAT to this exam-
ple, specific informational requirements can be enumerated from the high-level
informational needs listed above. A list of questions regarding this specific infor-
mation at all three levels can be specified, and a simulated mission can be run
with the scientist and engineer. At various randomly-selected points during the
simulated mission, the experiment should be frozen, and the scientist and engi-
neer would then be asked a subset of the specified questions for each level. For
example, the following questions might be asked of the engineer regarding the
battery during rover traversal between two science activity locations: What is
the current battery level of the rover? (Level 1); How much power is required to
get to the next location? (Level 2); Does the rover have enough battery to get
to the next location and perform the science task? (Level 3).

8 Future Directions

One natural future direction for this work would be to implement a system that
addresses the three levels of XAI in a goal- or performance-oriented context
and to perform human experiments to assess whether improved SA, enabled
through XAI, correlates with improved performance of the human-AI team.
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Such a system could be a combination of existing techniques addressing each
of the three levels or a single system that can address all three levels of XAI. To
our knowledge, no system exists that can, on its own, address all three levels.
While explainable BDI agents have addressed aspects of each of the three lev-
els [7,23], additional techniques beyond these solutions will be needed to fully
address levels 2 and 3 XAI. In general, development of an XAI system that can
independently address all three levels of XAI would be a valuable next direction.
Such a system will also require the development of techniques that provide user-
tailored explanations in a way that goes beyond what exists in the literature.
While there is some existing literature that considers user needs or context in a
limited way [8,19,45], producing explanations that fully consider user contexts
and tasks remains an understudied area. To this end, another possible future
direction would be to perform inference of human models in order to inform
explanation generation.

9 Conclusion

In this paper, we propose a three-level framework for the design of XAI sys-
tems based on human user informational needs. This framework is based on
the situation awareness framework in the human factors literature, which has
been studied in relation to performance of human-autonomy teams. We further
propose a method for assessment of explanations with respect to the three lev-
els of information that XAI systems should provide. Finally, we propose future
directions for XAI research.
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