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Abstract. Two sorts of circular traffic systems are defined and their
minimal length of recurrent transition sequences is computed. The result
is used for finding cycloids that have an isomorphic reachability graph.
Cycloids are particular Petri nets for modelling processes of actions or
events, belonging to the fundaments of Petri’s general systems theory.
They have very different interpretations, ranging from Einstein’s rel-
ativity theory to elementary information processing gates. The cycloid
representation of circular traffic systems allows to identify basic synchro-
nisation mechanisms and leads to a structure theory of such systems.
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1 Introduction

Queues of traffic items like cars, trains, aircrafts, production goods, computer
tasks or electronic particles are widespread instances of dynamical systems.
Therefore they have been frequently used to illustrate the modelling by Petri
nets. Petri himself usually introduced the concept of coordination and synchro-
nization by the regimen or organization rule for people carrying buckets to extin-
guish a fire [4] or by cars driving in line on a road with varying distances. As
Petri always followed the principle of discrete modelling, resulting in finite struc-
tures, he defined cycloids by folding such structures with respect to space and
time. Cyloids define a subclass of partial cyclic orders and hence generalize the
well known token ring structure (a total cyclic order) that is at the core of many
solutions to the distributed mutual exclusion problem. This also includes virtual
token rings that have been employed in group communication middleware (e.g.
the Spread system). Hence, we conjecture that cycloids could more generally
play a role as coordination models in new middleware architectures. Another
potential application of cycloids might be their use as parallel data flow models
for iterative computations. Such data flow models can be directly implemented in
hardware (e.g. as systolic arrays) or in a combination of hardware and software,
for example on many-core architectures like graphics processing units (GPUs)
that are attracting a lot of interest for stream processing and machine learning
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applications. While Petri introduced cycloids in [4], a more formal definition has
been given in [2,7] and [9]. As a consequence of this formalization some prop-
erties could be derived, leading for instance to a synthesis procedure based on
observable parameters of the cycloid net, among which is the length of a min-
imal cycle. However, the concrete structure of a circular traffic queue given by
a definite number of c traffic items and g gap instances is not known. In this
article two different such systems are defined as transition systems tq-1(c, g) and
tq-2(c, g). For finding the behaviour equivalent cycloids the synthesis theorem
from [7] and [9] is used. It requires the number of cycloid transitions, which is
computed by the length of recurrent transition sequences of the circular traffic
queues in Sect. 2. Also the minimal length cyc of cycles is needed in this theo-
rem. To find it out a particular sequence of c transitions, called release message
chain, is introduced, which is the most important synchronisation mechanism
of the model. The release message chain is extended to a release message cycle.
The length rm of the latter varies for different models and contributes to the
determination of cyc. After having found these cycloids their behaviour equiva-
lence is established by proving the isomorphism between their transition systems.
Here also the release message cycle plays an important role. As an intermediate
step regular cycloid systems are introduced. The obtained cycloids are related
to unfoldings of coloured net models of circular traffic queues.

We recall some standard notations for set theoretical relations. If R ⊆ A×B
is a relation and U ⊆ A then R[U ] := {b | ∃u ∈ U : (u, b) ∈ R} is the image of U
and R[a] stands for R[{a}]. R−1 is the inverse relation and R+ is the transitive
closure of R if A = B. Also, if R ⊆ A×A is an equivalence relation then [[a]]R
is the equivalence class of the quotient A/R containing a. Furthermore N+, Z
and R denote the sets of positive integer, integer and real numbers, respectively.
For integers: a|b if a is a factor of b. The modulo-function is used in the form
amod b = a − b · �a

b �, which also holds for negative integers a ∈ Z. In particular,
−amod b = b−a for 0 < a ≤ b. Due to naming conventions (e.g. the function ind
in Definition 1), the range of the modulo-function is supposed to be {1, · · · , b}
instead of {0, · · · , b − 1} in some cases. In these cases however, b can be seen to
be equivalent to 0.

The author is grateful to U. Fenske, O. Kummer, M.O. Stehr and the anony-
mous referees for numerous corrections and improvements.

2 Circular Traffic Queues

We define a model of circular traffic queues with two sorts of traffic items. Traffic
items a ∈ C, going from left to right, exchange their position with traffic items
u ∈ G moving in the opposite direction. See the example after the next definition.
By a transition 〈〈ti, aj〉〉 traffic item aj is moved from the queue position i.

Definition 1. A circular traffic queue tq(c, g) is defined by two positive integers
c and g. Implicitly with these integers we consider two finite and disjoint sets of
traffic items C = {a1, · · · , ac} and G = {u1, · · · , ug} with cardinalities c and g,
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respectively. A state is a bijective index function ind : {1, · · · , n} → C∪G, hence
c + g = n. The labelled transition system LTS(c, g) = (States, T, tr, ind0) of
tq(c, g) is defined by a set States of states, a set of transitions T = {〈〈ti, aj〉〉|1 ≤
i ≤ n, 1 ≤ j ≤ c}, a transition relation tr and a regular initial state ind0. The
regular initial state is given by ind0(i) = ai for 1 ≤ i ≤ c and ind0(i) = gi−c for
c < i ≤ n. The transition relation tr ⊆ States × T × States is defined by

(ind1, 〈〈ti, aj〉〉, ind2) ∈ tr ⇔
ind1((i + 1)mod n) = ind2(i) ∈ G ∧ ind2((i + 1)modn) = ind1(i) = aj∧
ind2(m) = ind1(m) for all m /∈ {i, (i + 1)mod n}.

This is written as ind1
〈〈ti,aj〉〉−→ ind2 or ind1 → ind2. A transition sequence ind0 →

ind1 → · · · → ind0 of minimal length, leading from the initial state ind0 back to
ind0 is called a recurrent sequence. As usual ind1

∗→ ind2 denotes the reflexive
and transitive closure of tr. We restrict the set of states to the states reachable
from the initial state: States := R(LTS(c, g), ind0) := {ind|ind0

∗→ ind}.
A more intuitive notation would be to consider a state as a word of length n

over the alphabet C ∪G with distinct letters only, and the rewrite rule au → ua
with a ∈ C, u ∈ G when inside the word and u · · · a → a · · · u at the borders. An
example of two such transitions from tq(3, 4) with C = {a, b, c}, G = {u, v, w, x}
and transitions 〈〈t3, b〉〉, 〈〈t7, c〉〉 is u a b v w x c → u a v bw x c → c a v bw xu.
When defining the elements of G to be indistinguishable, they can be interpreted
as gaps interchanging with the traffic items from C.

Definition 2. A circular traffic queue with gaps tq-g(c, g) is defined as in Def-
inition 1, with the difference that |G| = 1 and the index function ind is not
bijective in general, but only on the co-image ind−1(C). In addition we require
that there is at least one gap: ind−1(G) �= ∅. As the number g from Definition 1
is not longer needed, we use it here to define the number of gaps: g := n− c ≥ 1.

With G = {×} for tq-g(3, 4) the example above modifies to ×a b ××× c →
×a ×b××c → c a×b×××. While the regular initial state is natural in the sense
that the traffic items start without gaps in between, in a different context (as
defined for cycloids by Petri) it is useful that the gaps are equally distributed. If
for instance, as in the example after the following definition of a standard initial
state, the numbers c and g are even, the queue in its initial state is composed
of two equal subsystems with the parameters c

2 and g
2 . An analogous situation

holds for larger divisors.

Definition 3. A standard initial state ind0 of a circular traffic queue is defined
by the form ind0(1)ind0(2) · · · ind0(n) = a1w1a2w2 · · · acwc with aj ∈ C,wj ∈
Grj and rj = |{ x ∈ N | j − 1 < c

g · x ≤ j}| for 1 ≤ j ≤ c. Grj is the set of
words of length rj over G.

To be a consistent definition it should be verified that all the rj sum up together
to

∑c
j=1 rj = g. This follows from the observation that the intervals in the
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definition of rj are disjoint and all together define a set {x ∈ N| 0 < c
g ·x ≤ c} =

{ x ∈ N | 0 < x ≤ g} of cardinality g. To give an example, we consider the case
c = 4, g = 6. We obtain (r1, r2, r3, r4) = (1, 2, 1, 2) and a1×a2××a3×a4×× for
the resulting standard initial state.

Theorem 4. Let be Δ = gcd(c, g) the greatest common divisor of c and g.
The length of each recurrent sequence (Definition 1) of tq(c, g) is Ξ(c, g) :=
g
Δ · (c + g) · c. For a circular traffic queue with gaps tq-g(c, g) this reduces to
Γ (c, g) := c · (c + g).

Proof. In both cases we start with a regular initial state ind0 = a1a2 · · · ac

u1u2 · · · ug with ai ∈ C and uh ∈ G. In the second case all uh equal ×. To
reach the initial state ind0 for the first time, each traffic item aj ∈ C has
to make n = c + g steps. Hence in total, we have Γ (c, g) := c · (c + g).
Since the general model tq(c, g) is symmetric with respect to G and C, as
well as the result Ξ(c, g) := 1

Δc(c + g)g to be proved, it is sufficient to con-
sider the case g ≥ c. Furthermore we assume g > 1 since for g = 1 we also
have c = 1 and the problem reduces to the case of Γ (c, g). The recurrent
sequence to be constructed is split into several pieces. We start by shifting
all traffic items to the end of the queue requiring g steps for each and g · c

steps in total: (I) ind0 = a1a2 · · · acu1u2 · · · ug
g·c−times−→ u1u2 · · · uga1a2 · · · ac.

Then we move the traffic items back to their initial position, needing c · c steps:
(II) u1u2 · · · uga1a2 · · · ac

c·c−→ a1a2 · · · acuc+1 · · · ugu1 · · · uc. Ignoring the indi-
vidual names of the elements ui ∈ G we have the situation described in the
case of c · g + c · c = c · (c + g) steps. But here in the first case the initial
state is not yet reached since the items uh are not necessary in their initial
order. Therefore the c · (c + g) steps have to be repeated in a number of dif-
ferent levels. In the following, the step from level k to k + 1 is shown. The
letter uik

j
denotes the item uij

∈ G of level k in position ind−1(uij
) = j.

(III) a1a2 · · · acuik
1
uik

2
· · · uik

g

c(c+g)−→ a1a2 · · · acuik+1
1

uik+1
2

· · · uik+1
g

with uik+1
1

=
u(ik

1+c)mod g. We now consider the sequence ui11
ui21

· · · uik
1
· · · of items from G

for all levels k in equation (III): ui11
ui21

· · · uik
1
· · · starting with ui11

= u1 from
ind0. The initial state is reached when uik

1
= ui11

= u1 for the first time. By
induction, beginning with equations (I) and (II): ui11

= u1, ui21
= u1+c and

by the induction step from equation (III): uik+1
1

= u(ik
1+c)mod g we conclude

uik
1

= u(k·c+1) mod g. Hence to determine the value of k for a recurrent sequence
we have to find the smallest nontrivial solution in the following equation:
(IV) (k · c + 1)mod g = 1. Next we prove k = g

x to be a solution, where x ∈ N.
Applying the formula (a + b)mod g = (amod g + bmod g)mod g this is done by
( g

x · c + 1) mod g = ([( c
x · g) mod g] + [1 mod g]) mod g = (0 + 1) mod g = 1

since g > 1. In this calculation c
x has to be an integer, hence x|c. The same

holds for k = g
x and also x|g. For a minimal non-trivial solution we obtain

x = gcd(c, g) = Δ and k = g
Δ . Recall that k is the number times the step from

equation (III) has to be repeated to obtain a recurrent transition sequence. This
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gives the result Ξ(c, g) = k ·c·(c+g) = c·(c+g)·g
Δ . All different recurrent transition

sequences are obtained by permutations and cannot be shorter. ��
The proof has shown that a sequence has to be repeated g

Δ times to reach
a state where all traffic items from C are in their initial order. To obtain an
adequate labelling of the transitions we add a counter k, 0 ≤ k < r to represent
the repetitive behaviour. The counter is implemented as an exponent of the
names of traffic items ak

j and transitions tkv . Each time the traffic item aj starts
a new round in its (initial) position j ∈ {1, · · · , c} (with respect to the regular
initial state) the counter is increased. With the values of i and k in the following
definition, for each traffic item aj a number p = n ·r of process states is reached.
Later we will restrict to the cases r = 1 (no repetition) and r = g

Δ .

Definition 5. Let be r ∈ N+ and Cr := {ak
j |aj ∈ C, 0 ≤ k < r}. A (r-repetitive)

labelled transition system LTSp(c, g) = (States, T, tr, ind0) with p = r · n and
c, g, n = c + g ∈ N+ is defined by a set States of states as in Definition 1 with
C replaced by Cr, T = {〈〈tkv , aj〉〉|1 ≤ v ≤ p, 0 ≤ k < r, 1 ≤ j ≤ c} as a set of
transitions, The transition relation tr ⊆ States × T × States is defined by

(ind1, 〈〈tkv , aj〉〉, ind2) ∈ tr ⇔ ∃u ∈ G ∃ i ∈ {1, · · · , n} : v = k · n + i∧
ind1(i) = ak

j ∈ Cr ∧ ind1((i + 1)mod n) = u ∧
ind2(i) = u ∧ [ind2((i + 1)mod n) = ak

j if i �= j else a
(k+1)mod r
j ] ∧

ind2(m) = ind1(m) for all m /∈ {i, (i + 1)mod n}.

In particular, we consider the special cases tq-2(c, g) := LTSp(c, g) with p = g
Δ ·n

and tq-1(c, g) := LTSn(c, g) with G = {×}. In the latter cases we have r = 1 and
the labelling of the transitions can be simplified to 〈〈ti, aj〉〉.

For preparing the modelling of alternative formalisms, in particular of Petri
nets in Sect. 4, we give a specification of circular traffic queues by their properties.
To be free from a more sequential specification we prefer a message-oriented
formulation. This is similar to Petri’s notion of a permit signal in [5].

Definition 6. A circular traffic queue tq-1(c, g) respectively tq-2(c, g) has the
following properties. Next, u ∈ G denotes a gap in the case of tq-1(c, g) and a
traffic item in the case of tq-2(c, g).

a) Each traffic item a ∈ C and u ∈ G is in exactly in one of n = c+ g positions.
b) Each traffic item a ∈ C can make a step from position i ∈ {1, · · · , n} to

position (i + 1) mod n, if it has received a message from u ∈ G in
position (i + 1) mod n. After this step the u ∈ G is in position i.

c) The length of recurrent transition sequences is Γ (c, g) = c · n and Ξ(c, g) :=
g
Δ · c · n, respectively.

d) tq-2(c, g) is isomorphic to g
Δ copies of transition systems of type tq-1(c, g)

with |G| = g. After c · n steps each transition sequence enters the next of
these copies.

This specification is denoted as a definition, but requires some justification.
The items a), b) and c) follow from the definitions of a circular traffic queue.
The supplement concerning tq-2(c, g) follows from the proof of Theorem 4.
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3 Petri Space and Cycloids

In this section (Petri-) nets and cycloids are defined. Some results are cited from
[7] and [9], whereas concepts like regular cycloids and the use of matrix algebra
are new. We define Petri nets in the form of condition/event-nets or safe T-nets,
while coloured nets are used in Sect. 4.3 without formal definition.

Definition 7. As usual, a net N = (S, T, F ) is defined by non-empty, disjoint
sets S of places and T of transitions, connected by a flow relation F ⊆ (S ×T )∪
(T × S). X := S ∪ T . N � N ′ denote isomorphic nets. A transition t ∈ T is
active or enabled in a marking M ⊆ S if •

t ⊆ M ∧ t
• ∩ M = ∅ and in this case

M
t→ M ′ if M ′ = M\•

t ∪ t
• , where •

x := F−1[x], x
• := F [x] denote the input

and output elements of an element x ∈ S ∪ T , respectively. ∗→ is the reflexive
and transitive closure of →. A net together with an initial marking M0 ⊆ S is
called a net-system (N,M0) with its reachability set R(N,M0) := {M |M0

∗→
M}. The reachability graph RG(N,M0) = (R(N,M0),→,M0) is defined by the
reachability set as the set of nodes, the relation → as its set of arrows and the
initial marking as distinguished node.

Fig. 1. a) Petri space, b) Fundamental parallelogram of C(α, β, γ, δ) = C(2, 4, 3, 2) with
regular initial marking.

Definition 8. A Petri space is defined by the net PS1 := (S1, T1, F1) where
S1 = S→

1 ∪ S←
1 , S→

1 = {s→
ξ,η | ξ, η ∈ Z} , S←

1 = {s←
ξ,η | ξ, η ∈ Z} , S→

1 ∩ S←
1 = ∅,

T1 = {tξ,η | ξ, η ∈ Z} , F1 = {(tξ,η, s→
ξ,η) | ξ, η ∈ Z} ∪ {(s→

ξ,η, tξ+1,η) | ξ, η ∈ Z} ∪
{(tξ,η, s←

ξ,η) | ξ, η ∈ Z} ∪ {(s←
ξ,η, tξ,η+1) | ξ, η ∈ Z} (cutout in Fig. 1a). S→

1 is the
set of forward places and S←

1 the set of backward places.
→• tξ,η := s→

ξ−1,η is the forward input place of tξ,η and in the same way
←•

tξ,η := s←
ξ,η−1, t→

•
ξ,η := s→

ξ,η and t←
•

ξ,η := s←
ξ,η (see Fig. 1a).

By a twofold folding with respect to time and space we obtain the cyclic
structure of a cycloid. See [7,9] for motivation and Fig. 2 a) for an example of a
cycloid.
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Definition 9 ([7,9]). A cycloid is a net C(α, β, γ, δ) = (S, T, F ), defined by
parameters α, β, γ, δ ∈ N+, by a quotient of the Petri space PS1 := (S1, T1, F1)
with respect to the equivalence relation ≡ ⊆ X1×X1 with ≡[S→

1 ] ⊆ S→
1 ,≡[S←

1 ] ⊆
S←
1 ,≡[T1] ⊆ T1, xξ,η ≡ xξ+mα+nγ, η−mβ+nδ for all ξ, η,m, n ∈ Z , X = X1/≡,

[[x]]≡ F [[y]]≡ ⇔ ∃x′ ∈ [[x]]≡ ∃ y′ ∈ [[y]]≡ : x′F1y
′ for all x, y ∈ X1.

The matrix A =
(

α γ
−β δ

)

is called the matrix of the cycloid. Petri denoted

the number |T | of transitions as the area A of the cycloid and determined in
[4] its value to |T | = A = αδ + βγ which equals the determinant A = det(A).
Cycloids are safe T -nets with |•s| = |s• | = 1 for all places s ∈ S. The embedding
of a cycloid in the Petri space is called fundamental parallelogram (see Fig. 1
b), but ignore the tokens for the moment). If the cycloid is represented as a net
N without explicitly giving the parameters α, β, γ, δ, we call it a cycloid in net
form C(N).

For proving the equivalence of two points in the Petri space the following
procedure is useful.

Theorem 10. Two points x1,x2 ∈ X1 are equivalent x1 ≡ x2 if and only if the
parameter vector π(v) = π(x2 − x1) has integer values, where π(v) = 1

A · B · v
with area A and B =

(
δ −γ
β α

)

.

Proof. For x1 := (ξ1, η1),x2 := (ξ2, η2),v := x2−x1 from Definition 9 we obtain

in vector form: x1 ≡ x2 ⇔ ∃m,n ∈ Z :
(

ξ2
η2

)

=
(

ξ1 + mα + nγ
η1 − mβ + nδ

)

⇔ ∃m,n ∈

Z : v =
(

ξ2 − ξ1
η2 − η1

)

=
(

mα + nγ
−mβ + nδ

)

=
(

α γ
−β δ

)(
m
n

)

= A
(

m
n

)

⇔
(

m
n

)

=

A−1v ∈ Z × Z . It is well-known that A−1 = 1
det(A)B if det(A) > 0 (see any

book on linear algebra). The condition det(A) = A = αδ + βγ > 0 is satisfied
by the definition of a cycloid. ��
Theorem 11 ([7,9]). The following cycloids are isomorphic to C(α, β, γ, δ):

a) C(β, α, δ, γ), (The dual cycloid of C(α, β, γ, δ).)
b) C(α, β, γ − q · α, δ + q · β) if q ∈ N+ and γ > q · α,
c) C(α, β, γ + q · α, δ − q · β) if q ∈ N+ and δ > q · β.

Proof. Part a) has been proved in [7,9] as well as b) and c) for the special case
of q = 1. The current form is derived by iterating the result. ��
Definition 12. For a cycloid C(α, β, γ, δ) we define a cycloid-system
C(α, β, γ, δ,M0) or C(N,M0) by adding the standard initial marking:

M0 = {s→
ξ,η ∈ S→

1 | βξ + αη ≤ 0 ∧ β(ξ + 1) + αη > 0} /≡ ∪
{s←

ξ,η ∈ S←
1 | βξ + αη ≤ 0 ∧ βξ + α(η + 1) > 0} /≡
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The motivation of this definition is given in [7] and [9]. See Fig. 2 a) for
an example of a cycloid with standard initial marking. As in the case of cir-
cular traffic queues we define a regular initial marking for cycloids, but not
necessarily within the fundamental parallelogram. It is characterized by the
absence of gaps between the traffic items whereby only a single transition on
the top of the queue is enabled. In the example of C(2, 4, 3, 2) from Fig. 1 b)
this is the transition t0,1−β = t0,−3, which is enabled by the tokens in s→

−1,−3

and s←
0,−4. After occurring the β − 1 = 3 transitions t0,−2, t0,−1 and t0,0 can

occur in some order. They model the steps of the traffic items following the
item at the head of the queue. In this example the regular initial marking is
{s→

−1,0, s
→
−1,−1, s

→
−1,−2, s

→
−1,−3, }∪{s←

0,−4, s
←
1,−4}, as shown in Fig. 1 b). Equivalent

places within the fundamental parallelogram can be computed. For instance,
the regular initial marking of C(4, 3, 3, 3) is represented by highlighted places in
Fig. 2 a).

Definition 13. For a cycloid C(α, β, γ, δ) a regular initial marking is defined by
a number of β forward places {s→

−1,i| 0 ≥ i ≥ 1−β} and a number of α backward
places {s←

i,−β | 0 ≤ i ≤ α − 1}.
Theorem 14 ([7,9]). The length of a minimal cycle of a cycloid C(α, β, γ, δ) is

cyc(α, β, γ, δ) = cyc = γ + δ +
{ � δ

β �(α − β) if α ≤ β

−� γ
α�(α − β) if α > β

As proved in [7,9] by the Synthesis-Theorem for cycloids we can compute
the parameters α, β, γ and δ of a cycloid from its net presentation using the
system parameters τ0, τa, A and cyc. τ0 is the number of transitions having at
least one marked input place, τa is the number of active transitions, both w.r.t.
the standard initial marking M0. A is (as before) the number of all transitions
and cyc is the minimal length of transition cycles. The following procedures do
not necessarily give a unique result, but for α �= β the resulting cycloids are
isomorphic.

Theorem 15 (Synthesis-Theorem, [7,9]). Cycloid systems with identical
system parameters τ0, τa, A and cyc are called σ-equivalent. Given a cycloid
system C(α, β, γ, δ,M0) in its net representation (S, T, F,M0) where the parame-
ters τ0, τa, A and cyc are known (but the parameters α, β, γ, δ are not). Then a
σ-equivalent cycloid C(α′, β′, γ′, δ′) can be computed by α′ = τ0, β′ = τa and
for γ′, δ′ by some positive integer solution of the following formulas using these
settings of α′ and β′:

a) case α′ > β′: γ′ mod α′ = α′·cyc−A
α′−β′ and δ′ = 1

α′ (A − β′ · γ′),

b) case α′ < β′: δ′ mod β′ = β′·cyc−A
β′−α′ and γ′ = 1

β′ (A − α′ · δ′),
c) case α′ = β′: γ′ = � cyc

2 � and δ′ = � cyc
2 �

These equations may result in different cycloid parameters, however the
cycloids are isomorphic in the cases a) and b) as in Theorem 11.
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Circular traffic queues are composed by a number of c sequential and inter-
acting processes of equal length. In the formalism of cycloids this corresponds to
a number of β disjoint processes of equal length p. Cycloids with such a property
are called regular.

Definition 16. A cycloid C(α, β, γ, δ) with area A is called regular if for each
η ∈ {0, · · · , 1 − β} the set {tξ,η|1 ≤ ξ ≤ p} with p = A

β of transitions forms an
elementary cycle1 and all these sets are disjoint. p ∈ N+ is called the process
length of the regular cycloid. A regular cycloid together with its regular initial
marking M0 is called a regular cycloid system C(α, β, γ, δ,M0) .

Theorem 17. A cycloid C(α, β, γ, δ) is regular if and only if β|δ.
Proof. We first prove that starting in any point tξ,η of the fundamental para-
llelogram of the cycloid and proceeding in direction of the ξ-axis we will return
to tξ,η after passing p = A

β transitions. By Theorem 10, to decide tξ+p,η ≡ tξ,η

it is sufficient to check whether

π(
(

ξ + p
η

)

−
(

ξ
η

)

) = π(
(

p
0

)

) =
1
A

(
δ −γ
β α

)(
p
0

)

=
(

δ·p
A

β·p
A

)

∈ Z × Z.

A
β is the smallest value for p to obtain an integer value in the second com-

ponent of the last vector. Therefore an equivalent point is not reached before
passing p transitions and the cycle is elementary. By the first component, to
fulfill δ·p

A = δ·A
A·β = δ

β ∈ Z it is necessary and sufficient that β|δ. It follows
that there is a number of β such elementary cycles of length A

β covering the
entire set of A transitions. Therefore no pair of these cycles can have a common
transition. ��

A regular cycloid can be seen as a system of β disjoint sequential and cooper-
ating processes. To exploit this structure we define specific coordinates, called
regular coordinates. The process of a traffic item a1 starts with transition t0,0

which is denoted [t1, a1], having the input place [s0, a1]. The next transitions are
[t2, a1] up to [tp, a1] and then returning to [t1, a1]. The other processes for a2 to
ac (with β = c) are denoted in the same way (see Fig. 2 b). As the process of aj

starts in position j of the queue, its initial token is in [sj−1, aj ].

Definition 18. Given a regular cycloid C(α, β, γ, δ), regular coordinates are
defined as follows: transitions of process j ∈ {1, · · · , β} each with length p are
denoted by {[t1, aj ], · · · , [tp, aj ]}. For each transition we define [ti, aj ]→

•
:= [si, aj ]

and [ti, aj ]←
•

:= [s′
i, aj ], where we also use s0 := sp and s′

0 := s′
p. Furthermore

for 1 ≤ j ≤ β let [si, aj ]
• := [t(i+1)mod p, aj ]. Regular coordinates are related to

standard coordinates of the Petri space by defining the following initial condition
[t1, aj ] := t1−j,1−j for 1 ≤ j ≤ β.

1 An elementary cycle is a cycle where all nodes are different.
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Fig. 2. Cycloid C(4, 3, 3, 3) in a) and with regular coordinates in b).

In Fig. 2 b) we obtain for the last formula in Definition 18: [t1, a3] := t−2,−2 ≡
t1,1. While the output place [s′

i, aj ] in regular coordinates takes its name from
the input transition, it remains to determine its output transition according to
the corresponding standard coordinates.

Lemma 19. The injective mapping stand from regular to standard coordinates
is given by stand([ti, aj ]) = ti−j,1−j for 1 ≤ i ≤ p and 1 ≤ j ≤ β (modulo
equivalent transitions). The output transition is [s′

i, a1]
• = [t(i+α+β−1)mod p, aβ ]

while for 1 < j ≤ β we have [s′
i, aj ]

• = [t(i−1)mod p, a(j−1)mod c]. If β = γ = δ
the two cases coincide.

Proof. For a given j by Definition 18 we have [t1, aj ] := t1−j,1−j . Adding a
value i − 1 to the index of t1 we obtain the index of ti, hence stand([ti, aj ]) :=
t1−j+(i−1),1−j . To prove [s′

i, aj ]
• = [t(i−1)mod p, aj−1] for 1 < j ≤ β we first

compute the corresponding standard coordinate stand([ti, aj ]) = ti−j,1−j . To
obtain the output transition of [s′

i, aj ] we go to the next transition in η-direction
ti−j,1−j+1 = ti−j,2−j = stand([ti−1, aj−1]), where mod p and mod c are omit-
ted. To make the proof for [s′

i, a1] we start with [ti, a1] and compute again
stand([ti, a1]) = ti−1,0. The next transition in η-direction is ti−1,1. Using Theo-

rem 10 we prove ti−1,1 ≡ ti−1+α,1−β : π(
(

i − 1
1

)

−
(

i − 1 + α
1 − β

)

) = π(
(−α

β

)

) =

1
A

(
δ −γ
β α

)(−α
β

)

= 1
A

(−A
0

)

∈ Z × Z. Going back to the corresponding

regular coordinates the desired result is obtained: stand([ti+α+β−1, aβ)]) =
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ti+α+β−1−β,1−β = ti+α−1,1−β where mod p and mod c are omitted again. If
β = γ = δ the two cases coincide as p = α + β in this case. ��
Corollary 20. The regular initial marking of a regular cycloid system
C(α, β, γ, δ,M0) with process length p is M0 = {[si, ai+1]|0 ≤ i ≤ β − 1} ∪
{[s′

i, a1]|p−α+1 ≤ i ≤ p}. For later reference, we note ←•
[tβ , aβ ] = [s′

p−α+1, a1].

Proof. Since the mapping stand is defined on transitions, from the first place of
M0 in Corollary 20 [s0, a(0+1)mod β ] we go to its output transition [t1, a1] and
apply stand([t1, a1]) = t0,0. Going back in ξ-direction we obtain s→

−1,0, which is
the first element in Definition 13. Doing the same with [sβ−1, aβ mod β ] we come
via stand([tβ , aβ ]) = tβ−β,1−β = t0,1−β to s→

−1,1−β . By this we obtain the entire
forward places from Definition 13. Since the mapping stand is injective we can
conclude also in the inverse direction. To prove the second part of the union recall
that the last traffic item aβ is active (enabled). Therefore also the backward input
place [s′

i, a1] of [tβ , aβ ] must be marked. Using Lemma 19 the value of i must
satisfy [s′

i, a1]
• = [t(i+α+β−1)mod p, aβ ] = [tβ , aβ ], hence (i+α+β −1)mod p = β

and i = (1 − α)mod p = p − α + 1. This holds since β|δ ⇒ β ≤ δ and therefore
p = A

β = α δ
β + γ > α. The marked place in question is therefore [s′

i, a1] =
[s′

p−α+1, a1]. To determine the other elements of {[s′
i, a1]|p−α+1 ≤ i ≤ p} recall

that the last traffic item aβ should be able to make α steps before any other
transition has to occur. Therefore also the places [s′

p−α+2, a1] to [s′
p−α+α, a1]

must be marked in the regular initial marking. ��
In the regular cycloid system C(4, 3, 3, 3,M0) in Fig. 2 b) we obtain ←•

[t3, a3] =
[s′

p−α+1, a1] = [s′
4, a1]. The given regular initial marking is {[s0, a1], [s1, a2],

[s2, a3], [s′
4, a1], [s′

5, a1], [s′
6, a1], [s′

7, a1]}. The standard initial marking is given by
bold circles. It is useful in some cases to express the minimal cycle length cyc of
a regular cycloid by its process length p. While this can be perfectly done for the
case α ≤ β in the complementary case only partial results are achieved. Com-
pared with general cycloids the lack of symmetry of regular cycloids becomes
apparent by these results. However, they cover all the cases required in Sect. 4.
In Theorem 23 we consider C(α, β, β, β) (in the form α = g, β = c) with p = α+β
and cyc = min{α + β, 2 · β}, which is covered by the cases a) and c) in Lemma
21. Afterwards in Theorem 24 we have C(α, β, 1

Δαβ, 1
Δαβ) with p = 1

Δα(α + β)
and cyc = min{p, β

α · p}, which is covered by the cases a) and b).

Lemma 21. Let be C(α, β, γ, δ) a regular cycloid with process length p and min-
imal cycle length cyc. Then a) cyc = p if α ≤ β, b) If α > β and α|γ then
cyc = β

α · p and c) cyc = 2 · β if α > β = γ = δ.

Proof. a) By Theorem 14 and δ = m · β for some m ∈ Z we obtain cyc =
γ + δ + � δ

β �(α − β) = γ + m · β + �m·β
β �(α − β) = γ + m · α. This term equals

p = A
β = 1

β (αδ + βγ) = 1
β (α · m · β + βγ) = α · m + γ.

b) If α > β case a) applies to the dual cycloid C(β, α, δ, γ) (Theorem 11)
which is regular since α|γ. Hence cyc = p′ where p′ = A

α = β·p
α is the process

length of the dual cycloid which is isomorphic to C(α, β, γ, δ) by Theorem 11.
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c) If α > β = γ = δ then cyc = γ + δ − � γ
α�(α − β) = β + β − 0 · (α − β). If

α = β = γ = δ then cyc = γ + δ + � δ
β �(α − β) = β + β + 1 · 0. ��

The regular cycloid C(4, 3, 3, 6) does not satisfy any of the conditions of
Lemma 21. The parameters in question are cyc = 9, p = 11 and β

α · p = 3
4 · 11.

4 Net Representations of Traffic Queues

From the specification in Definition 6 we deduce different types of cycloids using
Theorem 15. This is, however, not a complete proof since it was not shown, that
the specifications are correct and complete, but has the great advantage that
structural properties of these cycloids are found. Afterwards formal proofs are
added, showing that the cycloids are indeed behavioural equivalent to circular
traffic queues.

Fig. 3. Nets of circular traffic queues a) Nbasic(c, g) b) Ncoul(c, g) and c) Nsym(c, g).

4.1 Cycloids from the Circular Traffic Queue Specification

Theorem 22. From the specifications of a circular traffic queue with gaps
tq-1(c, g) (Definition 6 a, b) using the Synthesis-Theorem 15 the cycloid
C0(g, c) := C(g, c, 1, 1) can be deduced, which is isomorphic to the net Nbasic(c, g)
of Fig. 3 a).
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Proof. From Petri’s papers [3,4] or [5] it follows definitely that the first two
parameters are β = c and α = g. To follow a more formal approach we determine
the parameters τ0, τa, A and cyc and then apply Theorem 15 to determine the
parameters α, β, γ and δ of the cycloid C(g, c, 1, 1). Consider first the case g ≥ c
and the state a1×k1a2×k2 · · · ac ×kc . Due to the assumption g ≥ c it follows
kj ≥ 1 (1 ≤ j ≤ c). This means that all traffic items aj are able to move right,
i.e they are enabled and therefore τa = β = c. τ0 is the number of transitions
having initially at least one marked input place. From all g positions of the
queue which are empty a release message was sent to the left. Therefore there
is a number of τ0 = α = g such transitions, among these the c active transitions
mentioned before. Given a fixed traffic item a and a fixed position in the queue,
in a recurrent sequence the traffic item enters the position exactly once. Hence
by Definition 6 a) there are A = g + c transitions, since in this case all aj ∈
C are using the same transitions. In a step the traffic item a gives a release
message to enable the access to the position it is leaving. This results in a
minimal cycle of length 2. With the parameters τa = β = c, τ0 = α = g,A =
g + c and cyc = 2 obtained, we compute in the case α > β with Theorem 15:
γ mod α = α·cyc−A

α−β = g·2−(g+c)
g−c = g−c

g−c = 1. With a solution γ = 1 of this
equation we obtain δ = 1

α (A−β · γ) = 1
g (c+ g − c · 1) = 1. For the case α = β of

Theorem 15 we obtain γ = δ = � cyc
2 � = 1.

Next we prove formally that this cycloid C(g, c, 1, 1) is isomorphic to the
basic tq-net Nbasic(c, g) from Fig. 3 a). Starting in the origin (0, 0) of the funda-
mental parallelogram of C(g, c, 1, 1) using Theorem 10 we compute the small-

est point (ξ, 0) on the ξ-axis equivalent to (0, 0):
(

m
n

)

= 1
A

(
δ −γ
β α

)

v =

1
g+c

(
1 −1
c g

)(
ξ
0

)

= 1
g+c

(
ξ

ξ · c

)

.The smallest positive integer for m is ξ = g + c.

Since A = g + c all transitions have their position on the ξ-axis from (0, 0) to
(g + c − 1, 0) and form a cycle. This cycle is isomorphic to the cycle t1 · · · tc+g

in the net of Fig. 3 a). It remains to prove that ti,0 (1 ≤ i ≤ c + g) is con-
nected to ti−1,0 via a place isomorphic to s′

i forming a cycle of length 2. As
t←

•
i,0 = s←

i,0 and (s←
i,0)

• = ti,1 (see Fig. 4 a) we have to prove: ti−1,0 ≡ ti,1. By

Theorem 10 using v = (i, 1) − (i − 1, 0) :
(

m
n

)

= 1
A

(
δ −γ
β α

)

v =

1
g+c

(
1 −1
c g

)(
1
1

)

= 1
g+c

(
0

c + g

)

=
(

0
1

)

∈ Z×Z. For the case g < c we observe

that the net from Fig. 3 a) is symmetric in the following sense. Interpreting the
places s′

1, s
′
2, · · · s′

c+g to be the slots of the traffic items instead of s1, s2, · · · sc+g

we obtain an isomorphic system. By the construction in the first part of this
proof we obtain the cycloid C(c, g, 1, 1) which is isomorphic to C(g, c, 1, 1) by
Theorem 11 a). Therefore the theorem holds also in this case. ��

As an example, in Fig. 4 b) the cycloid C(4, 2, 1, 1) is shown. To illustrate the
preceding proof by dashed lines the following equivalent transitions are given:
t3,0 ≡ t2,−1, t4,0 ≡ t3,−1 and t5,0 ≡ t4,−1. The transitions t0,0, · · · , t5,0 on the
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Fig. 4. Cycloid C(4, 2, 1, 1) with regular initial marking and minimal cycle in a).

ξ-axis are instances of the transitions t0,0, · · · , tg+c−1,0 in the proof. The places
s←
1,0, s←

1,−1, s←
2,−1, s←

3,−1, s←
3,−2 and s←

4,−2 correspond to the complementary places
s′
1, s

′
2, · · · , s′

c+g of the net from Fig. 3 a).
As motivated in the introduction, cyloids are of particular interest and there-

fore in the focus of this paper. To distinguish them from the preceding model in
Theorem 22 we assume c > 1 to obtain secure cycloids. To be secure is probably
the most important property of cycloids with γ, δ > 1. This has been inten-
sively discussed by Petri in [3,4] and [5]. For the definition of safe and secure see
[4] or [9]. Starting with the specification of circular traffic queues in Definition
6 in Theorems 23 and 24 we will derive cycloid models, that are behavioural
equivalent to the models tq-1(c, g) and tq-2(c, g), respectively. Again, as in
Theorem 22, the Synthesis-Theorem 15 will have a prominent role. Therefore,
the minimal length cyc of cycles has to be computed. Candidates are the length
of the processes p = c + g and of the release message cycle rm = 2 · c. The
latter starts with the release message chain which is the sequence of release
messages from traffic item ac to ac−1, from ac−1 to ac−2 and so on. This can
be seen as the synchronization principle of the system. Finally we will obtain
cyc = min{p, rm}. After this derivation, in Theorem 25 it will be proved by their
transition systems, that the cycloid systems (C1(g, c),M0) and (C2(g, c),M0) are
in fact behaviour equivalent to tq-1(c, g) and tq-2(c, g), respectively.

Theorem 23. Within the class of regular cycloids C(α, β, γ, δ) with γ, δ ≥ 2,
from the specifications of a circular traffic queue with gaps tq-1(c, g) with c > 1
(Definition 6) using the Synthesis-Theorem 15 the cycloid C1(g, c) := C(g, c, c, c)
can be deduced. It has process length p = g + c and minimal cycle length cyc =
min{g + c, 2 · c} (in accordance with Lemma 21 a) and c)).

Proof. For the determination of α and β we argue as in Theorem 22, i.e. α = g
and β = c. If the total number of transitions is A and there are c traffic items with
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Fig. 5. Release message cycle a) in C(g, c, c, c) and b) in C(g, c, g·c
Δ

, g·c
Δ

) with g
Δ

= 2.

the same process length, this process length is p = A
c . Petri made the assertion

[5] that a cycloid with γ, δ ≥ 2 is secure, if and only if every pair of successive arcs
lies on a basic cycle. A basic circuit is a cycle with exactly one place marked.
This has been proved (also for the more general case of T-systems) by Stehr
[6] and it is therefore called the Lemma of Petri/Stehr. Due to this lemma
all the marked process cycles are disjoint. As there is a number c of disjoint
communicating processes of equal length p the net to be constructed is a regular
cycloid (Definition 16) and we can use the naming of Definition 18. The missing
places of this net are obtained by considering condition b) of the specification
in Definition 6 as follows. Transition 〈〈ti, aj〉〉 models the step of traffic item aj

in position i. To be enabled for this step, it received a release message from
a(j+1)mod c and when occurring is sending such a message to a(j−1)mod c. This is
modelled by new places ←•

[ti, aj ] =: [s′
i+1, aj+1] and [ti, aj ]←

•
=: [s′

i, aj ] (Figs. 2 b
and 6 c). As a result, we obtain additional c ·p places, i.e. in total |S| = 2 · |T |. To
find a minimum length cycle, we next consider a sequence of transitions, which we
call the release message chain, rm-chain for short. The rm-chain starts in some
transition [ti, aj ] and continues via place [s′

i, aj ] and transition [ti−1, aj−1] down
to [ti−c+1, aj−c+1], i.e. the process of all traffic items are passed (see Fig. 5 a).
Again, first and second index is computed modulo n and c, respectively. In the
following the rm-chain is closed to a release message cycle. We continue within
the process cycle aj−c+1 a number of c transitions until [ti−c+1+c, aj−c+1] =
[ti+1, aj−c+1] and [ti+1, aj−c+1]←

•
= [s′

i+1, aj−c+1]. For the final step by Lemma
19 there are two cases to compute [s′

i+1, aj−c+1]
• = [ti, aj ] (Fig. 5 a). If aj−c+1 =

a1 then [s′
i+1, aj−c+1]

• = [ti+1+g+c−1, ac] = [ti, aj ] since (i+1+g+c−1)mod (g+
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c) = i and j − c + 1 = 1 ⇒ c = j. If aj−c+1 �= a1 then [s′
i+1, aj−c+1]

• =
[ti, aj−c+1−1] = [ti, aj ] since (j − c)mod c = j.

The length of the rm-cycle is rm = 2 · c transitions and there is no
shorter cycle connecting the process cycles. These process cycles have the
length of p = A

c = c·(c+g)
c = c + g transitions and are also candidates for

an overall minimal cycle. Therefore the overall minimal cycle of the cycloid
is cyc = min{2 · c, c + g}. For a regular cycloid we construct the following
recurrent transition sequence, starting with [tc, ac] in the standard initial mark-
ing: [tc, ac], [tc−1, ac−1], · · · , [t1, a1], · · · · · · , [tc+n−1, ac], [tc+n, ac−1], · · · ][tn, a1]
of length c · n. By [9] the cycloid is strongly connected and therefore has a
T-invariant of the form (x, x, · · · , x), x ∈ Z (see reference [1]). This means that
all recurrent sequences contain each transition exactly once, as it is in the con-
structed one and we have A = Γ (c, g) = c · (g + c) (by Definition 6 c, Theorem
4). Together with the value of cyc and the parameters α = g, β = c we can apply
Theorem 15 to obtain γ = δ = c in all cases (see [8] for details). ��

In Fig. 2 b) the cycloid C(4, 3, 3, 3) is represented as a regular cycloid. Some
regular coordinates, like [s0, a1] and [t1, a1], are added. One of the rm-cycles is
highlighted. It has the length rm = 2 · c = 2 ·β = 6. The step in the proof where
Lemma 19 is applied becomes here [s′

4, a1]
• = [t3, a3]. Also in the next theorem

the length rm of the release message cycle is important to determine cyc.

Theorem 24. Within the class of regular cycloids C(α, β, γ, δ) with γ, δ ≥ 2,
from the specifications of a circular traffic queue with gaps tq-2(c, g) with c > 1
(Definition 6) using the Synthesis-Theorem 15 the cycloid C2(g, c) := C(g, c, g·c

Δ ,
g·c
Δ ) can be deduced. It has process length p = g

Δ (g + c) and minimal cycle length
cyc = min{p, c

g · p} (in accordance with Lemma 21 a) and b)).

Proof. The proof is the same as for Theorem 23 until the computation of the
length of the rm-chain. Due to the increased length of processes the rm-chain
cannot be closed as in this case. By the specification of Definition 6 d) the
transition system of tq-2(c, g) is a composition of g

Δ copies of the transition
system of tq-1(c, g). As informally discussed in Sect. 5 this holds also for the
corresponding cycloids and is schematically represented in Fig. 5 b) for the case
g
Δ = 2. At full arcs of this graph one place is omitted. At dotted arcs with
label λ a number of λ transitions is supposed (including beginning and end of
the arc). For the upper copy the rm-chain from transition a via transitions b
and c to d cannot be closed, but is continued to the lower copy. To this end
a number g − 1 of additional transitions are to be passed. From e via f the
rm-chain is closed to complete a rm-cycle. In the general case the structure
of the upper copy is repeated a number of g

Δ times. Hence, the overall length
of the rm-cycle is the number of transitions on a path from transition a to
transition f by repeating the path from b to d a number of g

Δ − 1 times: rm =
(c − 1) + ( g

Δ − 1) · (c + 1 + g − 1) + c + 1 = g
Δ · (g + c) + (c − g) = p + (c − g).

If c ≥ g the length of the rm-cycle is not smaller than the process-length p,
which is the minimal cycle in this case, hence cyc = p = g

Δ · (g + c). The model
tq-2(c, g) is symmetric with respect to c and g. The same proof can be made
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with c and g interchanged and cyc = c
Δ · (g + c) if c ≤ g. Using these values of

cyc, and the parameters α = g, β = c and A = Ξ(c, g) = g
Δ · (g + c) · c (by the

analogous argument as in the proof of Theorem 23) we apply Theorem 15 with
g = α > β = c. The resulting cycloid is C(g, c, g, c · ( g+c

Δ −1)). By Theorem 11 c)
this cycloid is equivalent to C(α, β, γ + q ·α, δ − q ·β). With q = c

Δ − 1 we obtain
γ′ = γ+q·α = g+( c

Δ −1)·g = g·c
Δ and δ′ = δ−q·β = c·( g+c

Δ −1)−( c
Δ −1)·c = g·c

Δ .
Case α < β is similar. See [8] for details of the computation. For α = β we obtain
γ = δ = � cyc

2 � = g·g
Δ . ��

4.2 Isomorphisms

The formal synthesis of cycloids from a less formal specification in Sect. 4.1 is
completed in this section by formal analysis. We will prove that the obtained
cycloids are behaviour equivalent to the circular traffic queues. This is done using
operational semantics, i.e. by comparing the labelled transition systems.

Theorem 25. a) The reachability graph of the cycloid system (C1(g, c),M0) :=
C(g, c, c, c,M0) is isomorphic to the labelled transition system LTSp(c, g) with
p = n = c + g, where M0 and ind0 are the regular initial marking and state,
respectively. The same holds for the standard initial marking.

b) The reachability graph of the cycloid system (C2(g, c),M0) := C(g, c, g·c
Δ , g·c

Δ ,
M0) is isomorphic to the labelled transition system LTSp(c, g) with p = g

Δ ·n =
g
Δ · (c + g), where M0 and ind0 are the regular initial marking and state,
respectively. The same holds for the standard initial marking.

Proof. The reachability graph RG(N,M0) = (R(N,M0),→) of the cycloid net
can be seen as a labelled transition system LTS′ = (States′, T ′, tr′, ind′

0). Each
marking contains the same number n = g + c of marked places as this holds in
the initial marking of the T-net. Therefore we also consider such a marking as
an ordered set by an index function ind′ : {1, · · · , n} → S, where S is the set of
places. The labelled transition systems LTS := LTSp(c, g) and LTS′ are isomor-
phic if there are bijective mappings ϕ and ψ. ϕ gives for each state ind ∈ States
a corresponding state ind′ = ϕ(ind) ∈ States′ and ψ gives for each transition
t ∈ T a corresponding transition t′ = ψ(t) ∈ T ′. The following condition is
required: (ind1, t, ind2) ∈ tr ⇔ (ϕ(ind1), ψ(t), ϕ(ind2)) ∈ tr′. The cycloids of
the theorem are regular by Theorem 17 and we can use its regular coordinates
(Definition 18, Lemma 19). In the remaining proof, all indices containing j are
understood modulo c whereas indices containing i are understood modulo n in
a) and modulo p in part b). We start with part a) of the theorem:

1. Definition of ϕ and ψ. We define ϕ(ind) := {ind′(i)|1 ≤ i ≤ n} with

ind′(i) := [ŝi, next(i)] and ŝi =
{

si−1 if ind(i) ∈ C
s′

i if ind(i) = u ∈ G
. The function next

is defined by: next(i) = aj ∈ C in a position including or next to i (modn).
Hence, if ind(i) = aj ∈ C then next(i) = aj and ind′(i) = [si−1, aj ]. If ind(i) ∈
G then next(i) = aj ∈ C is the first aj ∈ C after position i (modn) and
ind′(i) = [s′

i, aj ]. The mapping ϕ is bijective since the image of a state is an
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Fig. 6. Illustrating the bijections ϕ and ψ in the proof of Theorem 25.

encoding of this state. In Fig. 6 a) the case for a state of size n = 7 is shown. The
mapping ψ is obviously injective since ψ(〈〈ti, aj〉〉) = [ti, aj ] and also surjective
as LTS1(c, g) has a number of Γ (c, g) = (c + g) · c transitions (Theorem 4) as
well as (C1(g, c),M0) := C(g, c, c, c,M0).

2. (s1, t, s2) ∈ tr ⇒ (ϕ(s1), ψ(t), ϕ(s2)) ∈ tr′. The occurrence of a transition
〈〈ti, aj〉〉 of LTS implies that two positions are involved. ind(i)ind(i + 1) =
aj× is changed to ind(i)ind(i + 1) = ×aj . By transformation with the map-
ping ϕ we obtain that ind′(i)ind′(i + 1) = [si−1, aj ][s′

i+1, aj+1] is changed to
ind′(i)ind′(i + 1) = [s′

i, aj ][si, aj ] (Fig. 6 b). This is just the result of the occur-
rence of the transition ψ(〈〈ti, aj〉〉) = [ti, aj ] of LTS′ (Fig. 6 c).

3. (s1, t, s2) /∈ tr ⇒ (ϕ(s1), ψ(t), ϕ(s2)) /∈ tr′. A move of a traffic item aj at
position i by transition 〈〈ti, aj〉〉 is impossible if and only if there is a sequence of
traffic items aj+1, · · · , aj+r (r ≥ 1 and all mod c) at positions i+1, · · · , i+r (all
modn) followed by a gap ×∈ G at position (i + r + 1)modn. By the map ϕ in
the cycloid the corresponding transitions [ti+s, aj+s], (0 ≤ s ≤ r) have an empty
input place [s′

i+s+1, aj+s+1], with the exception of [ti+r, aj+r]. For this transition
also [s′

i+r+1, aj+r+1] is marked since aj+r can make a move to exchange with the
gap×. This sequence is part of a release message chain (Fig. 5). Since the cycloid
is live and safe [9] the chain is part of a cycle with exactly one token, which
implies that [s′

i+1, aj+1] is unmarked. Hence, transition ψ(〈〈ti, aj〉〉) = [ti, aj ]
cannot occur.

4. Initial state. Applying the mapping ϕ to Definition 1 of a regular initial
state we obtain ind′(i) = [si−1, ai] for 1 ≤ i ≤ c and ind′(i) = [s′

i, a1] for
c < i ≤ n. Hence, for 1 ≤ i ≤ c traffic item ai is in position i and for c < i ≤ n
there is a gap and the next traffic item modulo n is a1. To prove the same
for the standard initial state (Definition 3) we have to show that this meets
Definition 12 of a standard initial marking of the cycloid. If we substitute j by
−η the bound 1 ≤ j ≤ c becomes −1 ≤ η ≤ −c. Then we substitute g, c and
x in j − 1 < c

g · x ≤ j by the cycloid parameters α, β and ξ, respectively. As



194 R. Valk

a result we obtain −η − 1 < β
α · ξ ≤ −η which is equivalent to βξ + αη ≤

0 ∧ βξ + α(η + 1) > 0 from the definition of the backward places s←
ξ,η ∈ S←

1

of M0 (Definition 12). In this definition the bound −1 ≤ η ≤ −c is not needed
since it is replaced by the quotient /≡. The standard initial state is completely
determined by the distribution of the gaps by the definition of the ri. The same
holds for the cycloid. In fact, the definition of the forward places s→

ξ,η ∈ S→
1 is

unambiguously deducible from the definition of the backward places s←
ξ,η ∈ S←

1 .
For a more formal proof of this assertion consider the definition of a m-path in
[9].

Figure 6 d) is the analogon to a) in the proof of part b) with respect to
C(4, 3, 12, 12) with 84 transitions. In principle, the proof is similar to part a),
but is omitted due to space limitations and can be found in [8]. ��

4.3 Representations of Circular Queues by T- and Coloured Nets

In Fig. 3 a) Petri’s queue of cars is represented as net Nbasic(c, g) with a regular
initial marking. The positions of a number of c cars are represented by black
tokens in the places s0, · · · , sc−1 followed by g tokens in the complementary
places s′

c+1, · · · , s′
c+g representing the gaps. By the complementary places the

net is safe and the cars cannot pass each other. They cannot be distinguished
which is different in the net Ncoul(c, g) from part b) of Fig. 3, where the cars have
identifiers a1, · · · , ac. To handle such individual tokens a coloured net is used con-
taining a variable x. It has been proved in [8] that applying a light modification
of the standard procedure of unfolding the net into a T-net with black tokens
only, a net is obtained that is isomorphic to the cycloid C1(g, c) = C(g, c, c, c).
As a result, this cycloid is a folding of the Petri space and an unfolding of the
coloured net Ncoul(c, g). As shown, the net has the behaviour of a circular traf-
fic queue with gaps tq-1(c, g). In the coloured net Nsym(c, g) from part c) of
Fig. 3 also the places s′

k have individual tokens representing traffic items moving
to the left hand side. A counter place named r has the effect that the initial
marking is not reached before a number of g

Δ iterations of the loop. In [8] it
is proved that the unfolding of this coloured net into a T-net is isomorphic to
C2(g, c) = C(g, c, g·c

Δ , g·c
Δ ).

5 Composition of Cyloids and Summary

In this paper the theory of cycloids is extended by new formal methods and
new results concerning circular traffic queues. The use of matrix algebra leads
to a more mathematical and easier handling of the cycloid equivalence relation.
The formalism of regular cycloids is introduced having a process structure like
circular traffic queues, but miss some of the clear mathematical properties of
general cycloids. The proof of isomorphism of circular traffic queues and special
cycloids is facilitated by the use of these regular cycloids as a link. The concept
of release message chain and cycle is shown to be useful. It appears to be closely
connected to the notion of minimal cycles which was so important in earlier
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publications on cycloids. Using Theorem 10 it is straight forward to deduce (see
[8]), that the equivalence relation ≡ becomes finer if the cycloid parameters
are integer multiples. In particular ≡1 ⊆ ≡2 for the equivalence relations of
C1(α, β, n · γ, n · δ) and C2(α, β, γ, δ) with n ∈ N+, respectively. For instance,
the cycloid C(α, β, 2 · γ, 2 · δ) has a fundamental parallelogram consisting of two
copies of the fundamental parallelogram of C(α, β, γ, δ), pasted together at the
line segment QR (Fig. 1 b) of the first and the line segment OP of the second.
Iterating this construction n times the so-called n-fold temporal iteration of
C(α, β, γ, δ) is obtained and denoted by C(α, β, γ, δ)[n]. As some kind of a formal
summary, this notion allows to characterize the two most important cycloids of
this article by iterations of the basic cycloid C(α, β, 1, 1). Table 1 contains the
two models of circular traffic queues tq-1(c, g) and tq-2(c, g), their modelling by
cycloids C0(g, c), C1(g, c) and C2(g, c), the corresponding values of minimal cycles,
the numbers of transitions and their representations as iterations of C0(g, c).

Table 1. Summary of some results.

Model Cycloid Minmal cycle cyc No of transitions Iteration

tq-1(c, g) C0(g, c) = C(g, c, 1, 1) 2 1 · (g + c) C0(g, c)[1]

tq-1(c, g) C1(g, c) = C(g, c, c, c)

{
2 · c if g ≥ c

g + c if c > g
c · (g + c) C0(g, c)[c]

tq-2(c, g) C2(g, c) = C(g, c, g·c
Δ

, g·c
Δ

)

{
c
Δ

(g + c) if g ≥ c
g
Δ

(g + c) if c > g

g·c
Δ

· (g + c) C0(g, c)[
g·c
Δ

]
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