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Abstract. We suggest a general framework to study dependency
schemes for dependency quantified Boolean formulas (DQBF). As our
main contribution, we exhibit a new tautology-free DQBF dependency
scheme that generalises the reflexive resolution path dependency scheme.
We establish soundness of the tautology-free scheme, implying that it
can be used in any DQBF proof system. We further explore the power
of DQBF resolution systems parameterised by dependency schemes and
show that our new scheme results in exponentially shorter proofs in com-
parison to the reflexive resolution path dependency scheme when used
in the expansion DQBF system ∀Exp+Res.

On QBFs, we demonstrate that our new scheme is exponentially
stronger than the reflexive resolution path dependency scheme when
used in Q-resolution, thus resulting in the strongest QBF dependency
scheme known to date.
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1 Introduction

Quantified Boolean formulas (QBF) have been intensively studied in the past
decade, both practically and theoretically. On the practical side, there have been
huge improvements in QBF solving [30]. These build on the success of SAT solv-
ing [36], but also incorporate new ideas genuine to the QBF domain, such as
expansion solving [21] and dependency schemes [32]. Due to its PSPACE com-
pleteness, QBF solving is relevant to many application domains that cannot be
efficiently encoded into SAT [17,23,26]. On the theoretical side, there is a sub-
stantial body of QBF proof complexity results (e.g. [3,6,8–10]), which calibrates
the strength of solvers while guiding their development.

In QBF solving, a severe technical complication is that variable dependencies
stemming from the linear order of quantification1 must be respected when assign-
ing variables. In contrast, a SAT solver can assign variables in any order, granting
1 The standard input for solvers is a prenex QBF.
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complete freedom to decision heuristics, which are crucial for performance. As
a remedy, QBF researchers have developed dependency schemes. Dependency
schemes try to determine algorithmically which of the variable dependencies are
essential, thereby identifying spurious dependencies which can be safely disre-
garded. The result is greater freedom for decision heuristics.

Practical QBF solving utilises dependency schemes, for example the solvers
DepQBF [24] and Qute [27,28], and experiments show dependency-aware solving
is particularly competitive on QBFs with high quantifier complexity [20,25].

The performance gains are also underlined by theoretical findings. There is a
sequence of results [7,29,35] that establish how and when dependency schemes
are sound to use with a QBF proof system, such as the central QBF resolution
systems Q-resolution [22] and long-distance Q-resolution [2]. In [6] it is demon-
strated that using the reflexive resolution path dependency scheme (Drrs [35])
in Q-resolution can exponentially shorten proofs.

While dependency schemes aim to algorithmically determine spurious depen-
dencies, dependency quantified Boolean formulas (DQBF) allow to directly
express variable dependencies by specifying, for each existential variable x, a
dependency set of universal variables on which x depends. This is akin to the
use of Henkin quantifiers in first-order logic [18]. Compared to QBFs, DQBFs
boost reasoning power and enable further applications (cf. [33] for an overview).
The price of succinct encodings is an increase of the complexity of the satisfia-
bility problem from PSPACE (for QBF) to NEXP (for DQBF) [1].

It seems natural that there should be a relationship between dependency
schemes and DQBF, and indeed the paper [7] suggests that dependency schemes
for QBF should be viewed as truth-preserving mappings from QBF to DQBF.

Now, is there even a need for dependency schemes for DQBF? The answer
is yes: also for DQBFs it is possible that the dependency sets contain spurious
dependencies, which can be safely eliminated [37]. Indeed, Wimmer et al. [37]
showed that several dependency schemes for QBF, including Drrs, can be lifted
to DQBF. They also demonstrate that using dependency schemes for DQBF
preprocessing can have a significant positive impact on solving time.

However, in contrast to QBF, there are currently no results on how DQBF
dependency schemes can be incorporated into DQBF proof systems, and how
this affects their proof-theoretic strength.

This paper contributes to the theory of DQBF dependency schemes on three
main fronts.

A. A proof complexity framework for DQBF dependency schemes. We
extend the interpretation of QBF dependency schemes proposed in [7] to DQBF.
The result is a framework in which a sound DQBF dependency scheme D can be
straightforwardly incorporated into an arbitrary DQBF proof system P, yielding
the parametrised system P(D). More precisely, in our framework a proof of Φ in
P(D) is simply a P proof of D(Φ), where D is a mapping between DQBFs.

A major benefit of this approach is that the rules of the proof system remain
independent of the dependency scheme, which essentially plays the role of a pre-
processor. Moreover, soundness of a dependency scheme is characterised by the
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natural property of full exhibition [4,34], independently of proofs. This is a wel-
come feature, since even defining sound parameterisations on the QBF fragment
has been fairly non-trivial, e.g. for the long-distance Q-resolution calculus [4,29].

We also extend the notion of genuine proof size lower bounds [12,14] to
DQBF proof systems. Since DQBF encompasses QBF, proof systems are sus-
ceptible to lower bounds from QBF proof complexity. We define a precise con-
dition by which hardness from the QBF fragment is factored out. As such, our
framework fosters the first dedicated DQBF proof complexity results.

B. The tautology-free dependency scheme. We define and analyse a
new DQBF dependency scheme called the tautology-free dependency scheme
(Dtf). Our scheme builds on the reflexive resolution path dependency scheme
(Drrs) [35], originally defined for QBFs, which prior to this paper was the
strongest known DQBF scheme. Dtf improves on Drrs by disallowing certain
kinds of tautologies in resolution paths, thereby identifying further spurious
dependencies.

We show that Dtf is fully exhibited, and therefore sound, by reducing its full
exhibition to that of Drrs. For this, we point out that the full exhibition of Drrs

on DQBF is an immediate consequence of results of Wimmer et al. [37].

C. Exponential separations of (D)QBF proof systems. To demonstrate
the strength of our new scheme Dtf, we show that it can exponentially shorten
proofs in DQBF proof systems. As a case study, we consider the expansion
calculus ∀Exp+Res. The choice of ∀Exp+Res is motivated by two considerations:
(1) it is a natural calculus, whose QBF fragment models expansion solving [21],
and (2) other standard QBF resolution systems such as Q-resolution and long-
distance Q-resolution do not lift to DQBF [11].

For ∀Exp+Res parameterised by dependency schemes we show that

∀Exp+Res < ∀Exp+Res(Drrs) < ∀Exp+Res(Dtf) (1)

forms a hierarchy of DQBF proof systems of strictly increasing strength.
Since there exist no prior DQBF proof complexity results whatsoever, this

entails proving exponential proof-size lower bounds in the first two systems. We
obtain these by introducing two new DQBF versions of the equality formulas
(originally QBFs [8,13]). Together with the corresponding upper bounds, this
yields the separations in (1). We highlight that these are genuine separations in
the precise sense of our DQBF framework, whereby hardness due to the QBF
fragment is factored out.

Finally, we show that our new dependency scheme Dtf is also relevant for
QBFs: we prove that Q-resolution parameterised by Dtf is exponentially stronger
than Q-resolution with Drrs. Thus Dtf currently constitutes the strongest known
dependency scheme for Q-resolution.

Organisation. Section 2 defines DQBF preliminaries. In Sect. 3 we explain
dependency schemes. Section 4 details how to parameterise DQBF proof sys-
tems by dependency schemes. In Sect. 5 we define our new scheme Dtf and show
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its soundness. In Sect. 6 we prove the proof complexity upper and lower bounds
needed for the strict hierarchy in (1). Section 7 applies Dtf to QBF and shows
that it is stronger than Drrs when used with Q-resolution.

2 Preliminaries

DQBF Syntax. We assume familiarity with the syntax of propositional logic
and the notion of Boolean formula (simply formula). A variable is an element z
of the countable set V. A literal is a variable z or its negation z. The negation of
a literal a is denoted a, where z := z for any variable z. A clause is a disjunction
of literals. A conjunctive normal form formula (CNF) is a conjunction of clauses.
The set of variables appearing in a formula ψ is denoted vars(ψ). For ease, we
often write clauses as sets of literals, and CNFs as sets of clauses. For any clause
C and any set of variables Z, we define C�Z := {a ∈ C : var(a) ∈ Z}.

A dependency quantified Boolean formula (DQBF) is a sentence of the form
Ψ := Π ·ψ, where Π := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn

) is the quantifier prefix
and ψ is a CNF called the matrix. In the quantifier prefix, each existential
variable xi is associated with a dependency set Sxi

, which is a subset of the
universal variables {u1, . . . , um}. With vars∀(Ψ) and vars∃(Ψ) we denote the
universal and existential variable sets of Ψ , and with vars(Ψ) their union. We
deal only with closed DQBFs, in which vars(ψ) ⊆ vars(Ψ). We define a relation
deps(Ψ) on vars∀(Ψ) × vars∃(Ψ), where (u, x) ∈ deps(Ψ) if, and only if, u ∈ Sx.

The set of all DQBFs is denoted DQBF. A QBF is a DQBF whose dependency
sets are linearly ordered with respect to set inclusion, i.e. Sx1 ⊆ · · · ⊆ Sxn

. The
prefix of a QBF can be written as a linear order in the conventional way. The
set of all QBFs is denoted QBF.

DQBF Semantics. An assignment α to a set Z of Boolean variables is a
function from Z into the set of Boolean constants {0, 1}. The domain restriction
of α to a subset Z ′ ⊆ Z is written α�Z′ . The set of all assignments to Z is
denoted 〈Z〉. The restriction of a formula ψ by α, denoted ψ[α], is the result
of substituting each variable z in Z by α(z), followed by applying the standard
simplifications for Boolean constants, i.e. 0 �→ 1, 1 �→ 0, φ ∨ 0 �→ φ, φ ∨ 1 �→ 1,
φ∧ 1 �→ φ, and φ∧ 0 �→ 0. We say that α satisfies ψ when ψ[α] = 1, and falsifies
ψ when ψ[α] = 0.

A model for a DQBF Ψ := Π ·ψ is a set of functions f := {fx : x ∈ vars∃(Ψ)},
fx : 〈Sx〉 → 〈{x}〉, for which, for each α ∈ 〈vars∀(Ψ)〉, the combined assignment
α ∪ {fx(α�Sx

) : x ∈ vars∃(Ψ)} satisfies ψ. A DQBF is called true when it has a
model, otherwise it is called false. When two DQBFs share the same truth value,
we write Ψ

tr≡ Ψ ′.

DQBF Expansion. Universal expansion is a syntactic transformation that
removes a universal variable from a DQBF. Let Ψ be a DQBF, let u be a uni-
versal, and let y1, . . . , yk be the existentials for which u ∈ Syi

. The expansion of
Ψ by u is obtained by creating two ‘copies’ of Ψ . In the first copy, u is assigned
0 and each yi is renamed yu

i . In the second copy, u is assigned 1 and each yi is
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renamed yu
i . The two copies are then combined, and u is removed completely

from the prefix. Formally, exp(Ψ, u) := Π ′ · ψ′, where Π ′ is obtained from Π by
removing ∀u and replacing each ∃yi(Syi

) with ∃yu
i (Syi

\{u})∃yu
i (Syi

\{u}), and

ψ′ := ψ[u �→ 0, y1 �→ yu
1 , . . . , yk �→ yu

k ] ∧ ψ[u �→ 1, y1 �→ yu
1 , . . . , yk �→ yu

k ] .

Universal expansion is known to preserve the truth value, i.e. Ψ
tr≡ exp(Ψ, u).

Expansion by a set of universal variables U is defined as the successive expansion
by each u ∈ U (the order is irrelevant), and is denoted exp(Ψ,U). Expansion by
the whole set vars∀(Ψ) is denoted exp(Ψ), and referred to as the total expansion
of Ψ . The superscripts in the renamed existential variables are known as anno-
tations. Annotations grow during successive expansions. In the total expansion,
each variable is annotated with a total assignment to its dependency set.

3 DQBF Dependency Schemes and Full Exhibition

In this section, we lift the ‘DQBF-centric’ interpretation of QBF dependency
schemes [7] to the DQBF domain, and recall the definition of full exhibition.

How Should We Interpret Variable Dependence? Dependency schemes
[32] were originally introduced to identify so-called spurious dependencies: some-
times the order of quantification implies that z depends on z′, but forcing z to be
independent preserves the truth value. Technically, a dependency scheme D was
defined to map a QBF Φ to a set of pairs (z′, z) ∈ vars(Φ) × vars(Φ), describing
an overapproximation of the dependency structure: (z′, z) ∈ D(Φ) means that
the dependence of z on z′ should not be ignored, whereas (z′, z) /∈ D(Φ) means
that it can be. The definition was tailored to QBF solving, in which variable
dependencies for both true and false formulas come into play.

The DQBF-centric interpretation [7] followed somewhat later. There, the goal
was a dependency scheme framework tailored to refutational QBF proof systems.
Refutational systems work only with false formulas, and this allows a broad
refinement: the dependence of universals on existentials can be ignored. As such,
it makes sense to consider merely the effect of deleting some universal variables
from the existential dependency sets. Thus, a dependency scheme becomes a
mapping from QBF into DQBF.

Likewise, in this work we seek a framework tailored towards refutational proof
systems. Hence we advocate the same approach for the whole domain DQBF. A
DQBF dependency scheme will be viewed as a mapping to and from DQBF, in
which the dependency sets may shrink. The notion of shrinking dependency sets
is captured by the relation following.

Definition 1. We define the relation ≤ on DQBF×DQBF as follows: Π ′ · φ ≤
Π · ψ if, and only if, φ = ψ, vars∃(Ψ ′) = vars∃(Ψ), and the dependency set of
each existential in Π ′ is a subset of that of Π.

In this paper, we only consider poly-time computable dependency schemes.
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Definition 2 (dependency scheme). A dependency scheme is a polynomial-
time computable function D : DQBF → DQBF for which D(Ψ) ≤ Ψ for all Ψ .

Under this definition, a spurious dependency according to D is a pair (u, x)
such that u is in the dependency set for x in Ψ , but not in D(Ψ). A natural
property of dependency schemes, identified in [37], is monotonicity.2

Definition 3 (monotone (adapted from [37])). We call a dependency
scheme D monotone when Ψ ′ ≤ Ψ implies D(Ψ ′) ≤ D(Ψ), for all Ψ and Ψ ′.

A fundamental concept in the DQBF-centric framework, which has strong
connections to soundness in related proof systems [6], is full exhibition. First
used by Slivovsky [34], the name was coined later in [4], describing the fact that
there should be a model which ‘fully exhibits’ all spurious dependencies. ‘Full
exhibition’ is synonymous with ‘truth-value preserving’.

Definition 4 (full exhibition [4,34]). A dependency scheme D is called fully

exhibited when Ψ
tr≡ D(Ψ), for all Ψ .

4 Parametrising DQBF Calculi by Dependency Schemes

In this section we show how to incorporate dependency schemes into DQBF proof
systems. In the spirit of so-called ‘genuine’ lower bounds [12], we also introduce
a notion of genuine DQBF hardness.

Refutational DQBF Proof Systems. We first define what we mean by a
DQBF proof system. With FDQBF we denote the set of false DQBFs. We con-
sider only refutational proof systems, which try to show that a given formula is
false. Hence, ‘proof’ and ‘refutation’ can be considered synonymous.

Following [15], a DQBF proof system over an alphabet Σ is a polynomial-time
computable onto function P : Σ∗ → FDQBF. In practice, we do not always want
to define a proof system explicitly as a function on a domain of strings. Instead,
we define what constitutes a refutation in the proof system P, and then show: (1)
Soundness: if Ψ has a refutation, it is false (the codomain of P is FDQBF); (2)
Completeness: every false DQBF has a refutation (P is onto); (3) Checkability:
refutations can be checked efficiently (P is polynomial-time computable).

Two concrete examples of DQBF proof systems from the literature are the
fundamental expansion-based system ∀Exp+Res [7], and the more sophisticated
instantiation-based system IR-calc [7].

Incorporating Dependency Schemes. A dependency scheme, interpreted as
a DQBF mapping as in Definition 2, can be combined with an arbitrary proof
system in a straightforward manner.

Definition 5 (P(D)). Let P be a DQBF proof system and let D be a dependency
scheme. A P(D) refutation of a DQBF Ψ is a P refutation of D(Ψ).
2 A different notion of monotonicity for dependency schemes is defined in [29].
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The proof system P(D) essentially utilises the dependency scheme as a pre-
processing step, mapping its input Ψ to the image D(Ψ) before proceeding with
the refutation. In this way, the application of the dependency scheme D is sep-
arated from the rules of the proof system P, and consequently the definition of
P need not be explicitly modified to incorporate D (cf. [4,35]).

Of course, we must ensure that our preprocessing step is correct; we do not
want to map a true formula to a false one, which would result in an unsound
proof system. Now it becomes clear why full exhibition is central for soundness.

Proposition 6. Given a DQBF proof system P and a dependency scheme D,
P(D) is sound if, and only if, D is fully exhibited.

Proof. Suppose that D is fully exhibited. Let π be a P(D) refutation of a
DQBF Ψ . Then π is a P refutation of D(Ψ), which is false by the soundness
of P. Hence Ψ is false by the full exhibition of D, so P(D) is sound.

Suppose now that D is not fully exhibited. By definition of dependency
scheme, for each DQBF Ψ we have Ψ ≥ D(Ψ). It follows that D preserves falsity,
so there must exist a true DQBF Ψ for which D(Ψ) is false. Then there exists a
P refutation of D(Ψ) by the completeness of P, so P(D) is not sound. ��

Note that completeness and checkability of P are preserved trivially by any
dependency scheme, so we can even say that P(D) is a DQBF proof system if,
and only if, D is fully exhibited. Thus full exhibition characterises exactly the
dependency schemes whose incorporation preserves the proof system.

Simulations, Separations and Genuine Lower Bounds. Of course, the
rationale for utilising a dependency scheme as a preprocessor lies in the potential
for shorter refutations. We first recall the notion of p-simulation from [15]. Let P
and Q be DQBF proof systems. We say that P p-simulates Q (written Q ≤p P)
when there exists a polynomial-time computable function from Q refutations to
P refutations that preserves the refuted formula.

Since a p-simulation is computed in polynomial time, the translation from
Q into P incurs at most a polynomial size blow-up. As such, the conventional
approach to proving the non-existence of a p-simulation is to exhibit a family
of formulas {Ψn}n∈N that has polynomial-size refutations in Q, while requiring
super-polynomial size in P.

Now, it is of course possible that the hard formulas {Ψn}n∈N are QBFs.
While this suffices to show that Q �p P, it is not what we want from a study of
DQBF proof complexity; it is rather a statement about the QBF fragments of
the systems P and Q. In reality the situation is even more complex. The lower
bound may stem from QBF proof complexity even when {Ψn}n∈N are not QBFs.
More precisely, there may exist an ‘embedded’ QBF family {Φn}n∈N which is
already hard for P, where ‘embedded’ means Φn ≤ Ψn. Under the reasonable
assumption that decreasing dependency sets cannot increase proof size,3 any
DQBF family in which {Φn}n∈N is embedded will be hard for P.

3 This holds for all known DQBF proof systems.
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For that reason, we introduce a notion of genuine DQBF hardness that dis-
misses all embedded QBF lower bounds.

Definition 7. Let P and Q be DQBF proof systems. We write Q �
∗
p P when

there exists a DQBF family {Ψn}n∈N such that:

(a) {Ψn}n∈N has polynomial-size Q refutations;
(b) {Ψn}n∈N requires superpolynomial-size P refutations;
(c) every QBF family {Φn}n∈N with Φn ≤ Ψn has polynomial-size P refutations.

We write P <∗
p Q when both P ≤p Q and Q �

∗
p P hold.

Hence, P <∗
p Q means that Q simulates P, but P does not simulate Q, and

the hardness result for P is a genuine DQBF lower bound. Prior to this paper,
there were no such hardness results in the DQBF literature.

5 The Tautology-Free Dependency Scheme

In this section we define the tautology-free dependency scheme Dtf and show that
it is fully exhibited.

For any DQBF Ψ , we denote by I∃(Ψ) the set of independent existential
variables, i.e. I∃(Ψ) := {x ∈ vars∃(Ψ) : Sx = ∅} is the set of existentials whose
dependency sets are empty. For any k ∈ N, we define [k] := {n ∈ N : n ≤ k}.

Definition 8 (Drrs [35] and Dtf). The reflexive resolution path dependency
scheme (Drrs) is defined as the mapping Ψ �→ Ψ ′, where

Ψ := ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn
) · ψ ,

Ψ ′ := ∀u1 · · · ∀um∃x1(S′
x1

) · · · ∃xn(S′
xn

) · ψ ,

and S′
i is the set of universal variables u ∈ Si for which there exists a sequence

C1, . . . , Ck of clauses in ψ and a sequence p1, . . . , pk−1 of existential literals
satisfying the following conditions:

(a) u ∈ C1 and u ∈ Ck;
(b) for some j ∈ [k − 1], xi = var(pj);
(c) for each j ∈ [k − 1], pj ∈ Cj, pj ∈ Cj+1, and u ∈ Svar(pj);
(d) for each j ∈ [k − 2], var(pj) �= var(pj+1).

The tautology-free dependency scheme (Dtf) adds to Drrs the condition

(e) for each j ∈ [k − 1], (Cj ∪ Cj+1)�I∃(Ψ) is non-tautological.

Let us give an example, illustrating that Dtf is stronger than Drrs.

Example 9. Consider the DQBF Ψ = ∃x∀u∃z · C1 ∧ C2, where C1 = x ∨ u ∨ z
and C2 = x ∨ u ∨ z. The sequence of clauses C1, C2 and the sequence consisting
of the single literal p1 = z show that (u, z) ∈ deps(Drrs(Ψ)). However, the same
sequence of clauses violates condition (e) of Definition 8 because (C1 ∪ C2)�I∃(Ψ)

is a tautology on x ∈ I∃(Ψ). Since there are no other sequences that satisfy (a),
we conclude that (u, z) �∈ deps(Dtf(Ψ)). ��
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Proposition 10. Dtf is a monotone dependency scheme.

Proof. It is easy to see that Dtf(Ψ) ≤ Ψ for each Ψ . It remains to verify
polynomial-time computability and monotonicity.

Polynomial-Time Computability. As there are polynomially many pairs, it suf-
fices to show that whether (u, x) is in deps(Ψ) can be decided in polynomial time
for each pair (u, x). Consider the directed graph Gu

Ψ = (VΨ , Eu
Ψ ) with the vertex

set VΨ = {(C, a) : C ∈ Ψ, a ∈ C} and with an edge from (C, a) to (D, e) if e ∈ C,
u ∈ Svar(e), var(a) �= var(e), and (C ∪ D)�I∃(Ψ) is non-tautological.

We claim that (u, x) ∈ deps(Ψ) if, and only if, there is a literal a, var(a) = x,
and clauses C,C ′, C ′′ such that u ∈ C ′′, (C ′, a) is reachable from (C, u) and
(C ′′, e) is reachable from (C ′, a) for some e. Indeed, it is easy to verify that the
concatenation of a pair of such paths directly translates to the required sequences
from Definition 8, and vice versa. Clearly, Gu

Ψ can be constructed in polynomial
time, hence we can test all candidates (C, u), compute all middle points (C ′, a)
reachable from them, and check whether some (C ′′, e) is reachable from any of
them, all in polynomial time.

Monotonicity. Let Ψ, Ψ ′ be DQBFs with Ψ ′ ≤ Ψ , let (u, x) ∈ deps(Dtf(Ψ ′)). We
show that (u, x) ∈ deps(Dtf(Ψ)). It follows that Dtf(Ψ ′) ≤ Dtf(Ψ).

There exists a sequence of clauses C1, . . . , Ck and a sequence of literals
p1, . . . , pk−1 satisfying conditions (a) to (e) in Definition 8 with respect to
(u, x) ∈ deps(Ψ ′). We show that the same sequences satisfy conditions (a) to
(e) with respect to (u, x) ∈ deps(Ψ), which implies (u, x) ∈ deps(Dtf(Ψ)).

Conditions (a), (b) and (d) are satisfied trivially. Since Ψ ′ ≤ Ψ , each depen-
dency set Svar(pi) in Ψ is a superset of the corresponding dependency set S′

var(pi)

in Ψ ′, so condition (c) is satisfied. Condition (e) is satisfied since the set of
independent variables I∃(Ψ) is a subset of I∃(Ψ ′). ��

Wimmer et al. [37] essentially showed that Drrs is fully exhibited, even though
they did not use that term. Theorems 3 and 4 in [37] together imply that all
spurious dependencies can be removed one by one in any order without changing
the truth value (as is remarked at the start of Sect. 3.1 in that paper).

Theorem 11 (Wimmer et al. [37]). Drrs is fully exhibited.

We show full exhibition of Dtf by reduction to full exhibition of Drrs.

Theorem 12. Dtf is fully exhibited.

Proof. Since Dtf(Ψ) ≤ Ψ , we only need to show that if Ψ is true, then Dtf(Ψ) is
true. Assume Ψ is true; then there is an assignment σ ∈ 〈I∃(Ψ)〉 such that Ψ [σ] is
true. We claim that (u, x) ∈ deps(Drrs(Ψ [σ])) implies (u, x) ∈ deps(Dtf(Ψ)). Con-
sider sequences C1, . . . , Ck and p1, . . . , pk−1 witnessing (u, x) ∈ deps(Drrs(Ψ [σ])).
For each Ci there is C ′

i ∈ Ψ , such that Ci = C ′
i[σ], i.e. C ′

i ⊆ Ci ∪σ, where σ is the
largest clause falsified by σ. It is readily verified that the sequences C ′

1, . . . , C
′
k

and p1, . . . , pk−1 witness (u, x) ∈ deps(Dtf(Ψ)). In particular, no tautologies can
appear among (C ′

i ∪ C ′
i+1)�I∃(Ψ), because all C ′

i agree with σ on the variables
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of I∃(Ψ). Hence, we get Drrs(Ψ [σ]) ≤ Dtf(Ψ)[σ]. By full exhibition of Drrs, we
have that Drrs(Ψ [σ]) is true, which means Dtf(Ψ)[σ] is true, and hence Dtf(Ψ) is
true. ��
Example 13. Consider Ψ from Example 9. It is easy to see that Ψ is true. As
shown in Example 9, Dtf(Ψ) = ∃x∃z∀u · (x ∨ z ∨ u) ∧ (x ∨ z ∨ u). We can see
that the assignment x �→ 1, z �→ 0 is a model of Dtf(Ψ), which is therefore true,
in line with full exhibition of Dtf. ��

6 Proof Complexity of ∀Exp+Res(D)

Among the first DQBF proof systems to be introduced, the expansion based sys-
tem ∀Exp+Res [7,21] is arguably the most natural. In this section we investigate
its proof complexity under parametrisation by dependency schemes; that is, we
investigate the proof complexity of P(D) where P is ∀Exp+Res. Our main result
is the following theorem.

Theorem 14. ∀Exp+Res <∗
p ∀Exp+Res(Drrs) <∗

p ∀Exp+Res(Dtf).

The simulations present in Theorem 14 follow from two observations, namely
(1) Dtf(Ψ) ≤ Drrs(Ψ) (by definition), and (2) Ψ ′ ≤ Ψ guarantees that ∀Exp+Res
refutations of Ψ ′ are no larger than those of Ψ . Indeed, given a refutation of Ψ ,
restricting the annotations to the dependency sets of Ψ ′ produces a refutation of
Ψ ′ of the same size. We refer to this property as the monotonicity of ∀Exp+Res.

The challenge is to show the genuine separations (Theorems 20 and 26). We
note that the QBF analogue of the first separation is known [6]. The question
(and indeed the notion) of a genuine separation was not previously considered.

The DQBF Proof System ∀Exp+Res. We recall the propositional resolution
proof system [31]. A resolution refutation of a CNF ψ is a sequence C1, . . . , Ck

of clauses where Ck is empty and each Ci is derived by one of the following rules:

A Axiom: Ci is a clause in ψ;
R Resolution: Ci = A ∨ B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i.

The DQBF proof system ∀Exp+Res, with which we shall concern ourselves for
the remainder of the section, is built upon resolution. Perhaps the most obvious
way to decide DQBF is to reduce it to propositional logic by expanding out all
the universal variables, based on the fact that Ψ is true if, and only if, the matrix
of exp(Ψ) is satisfiable. This is exactly how ∀Exp+Res works. The input DQBF
is first expanded, and then refuted in resolution.

Definition 15 (∀Exp+Res [7,21]). A ∀Exp+Res refutation of a DQBF Ψ is a
resolution refutation of the matrix of exp(Ψ).

It is known that ∀Exp+Res is sound, complete and checkable on DQBFs [7].
Note that a ∀Exp+Res refutation of Ψ may be small even if its expansion exp(Ψ)
is large, since the underlying resolution refutation of exp(Ψ) need not necessarily
introduce every clause as an axiom.
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Given that fully exhibited dependency schemes like Dtf and Drrs (Theo-
rem 12) can be incorporated into an arbitrary DQBF proof system P (Proposi-
tion 6), we obtain the DQBF proof systems ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf).

Next we show the two genuine separations that together constitute a proof
of Theorem 14.

Separation of ∀Exp+Res and ∀Exp+Res(Drrs). Our separating formulas are
DQBFs based on the equality QBFs [8]. Our modification exploits a refined
dependency structure and utilises the following notation: the matrix-clause prod-
uct of a CNF ψ and a clause C is the CNF ψ ⊗ C := {D ∪ C : D ∈ ψ}.

Definition 16 (EQ0
n (adapted from [8])). EQ0

n := ΠEQ
n · ψEQ

n , where

ΠEQ
n := ∀u1 · · · ∀un∃x1(∅) · · · ∃xn(∅)∃z1(u1) · · · ∃zn(un) ,

ψEQ
n := (z1 ∨ · · · ∨ zn) ∧

∧n

i=1

(
(xi ∨ ui ∨ zi) ∧ (xi ∨ ui ∨ zi)

)
.

Since the dependency sets of EQ0
n are strict subsets of those of the original

equality formulas (in which each zi depends on each uj), the QBF lower bound
for ∀Exp+Res [5] does not suffice for EQ0

n. Nonetheless, a similar argument works,
based on the fact that no small subset of clauses in the expansion is unsatisfiable.

Theorem 17. {EQ0
n}n∈N requires exponential-size ∀Exp+Res refutations.

Proof. The total expansion of EQ0
n is the CNF ψ∧∧n

i=1

(
(xi ∨ zui

i ) ∧ (xi ∨ zui
i )

)
,

where ψ is the conjunction of all clauses of the form (za1
1 ∨ · · · ∨ zan

n ) with
var(ai) = ui. We show that removing any of the 2n clauses from ψ makes the
total expansion satisfiable. It follows that any resolution refutation of exp(EQ0

n)
must have 2n axiom clauses.

Suppose that some clause A is absent from ψ, and let us assume without
loss of generality that A := (zu1

1 ∨ · · · ∨ zun
n ), i.e. the clause corresponding to

ui �→ 1 for each i (the general case is symmetrical). Now, assigning each zui
i �→ 1

satisfies every clause in ψ except A. Assigning each zui
i �→ 0 satisfies each clause

(xi ∨ zui
i ). Finally, assigning each xi �→ 1 satisfies each clause (xi ∨ zui

i ). ��
The corresponding upper bound for EQ0

n in ∀Exp+Res(Drrs) does follow from
that of the original equality QBFs (by the monotonicity of Drrs and ∀Exp+Res).
We give a full proof nonetheless, since we will use the details later. The main
point is that Drrs identifies all pairs as spurious dependencies.

Proposition 18 ([6]). For all n, the dependency sets of Drrs(EQ0
n) are empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses
C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to
(d) of Definition 8 with respect to (ui, zi) ∈ deps(EQ0

n). Since zi is the unique
variable whose dependency set contains ui, we must have k = 2, by conditions
(c) and (d). By condition (a), we have ui ∈ C1, so C1 = (xi ∨ ui ∨ zi), and
by condition (c) we have p1 = zi. Also by condition (c) we have zi ∈ C2, so
C2 = (z1 ∨ · · · ∨ zn). We therefore reach a contradiction, since ui /∈ C2 violates
condition (a). ��
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Fig. 1. The prelude to a linear-size ∀Exp+Res refutation of Φ0
n. In order to reduce

exp(Φ0
n) to exp(Drrs(EQ0

n−1)), we need only derive the clause (z1 ∨ · · · ∨ zn−1).

Theorem 19 ([6]). {EQ0
n}n∈N has linear-size ∀Exp+Res(Drrs) refutations.

Proof. By Proposition 18, the total expansion of Drrs(EQ0
n) is obtained simply

by removing the universal literals; that is, the matrix of exp(Drrs(EQ0
n)) is

(z1 ∨ · · · ∨ zn) ∧
∧n

i=1

(
(xi ∨ zi) ∧ (xi ∨ zi)

)
. (2)

It is easy to see that this CNF has linear-size resolution refutations. First, resolve
each pair (xi ∨ zi), (xi ∨ zi) over xi, and resolve the resulting unit clauses (zi)
with the remaining clause to obtain the empty clause. ��

Theorems 17 and 19 together imply that ∀Exp+Res does not p-simulate
∀Exp+Res(Drrs). It remains to show that the lower bound is genuine.

Theorem 20. ∀Exp+Res �
∗
p ∀Exp+Res(Drrs).

Proof. It is easy to see that the largest QBF Φ0
n that is smaller than EQ0

n has
exactly one non-empty dependency set. Let us assume without loss of generality
that this is Szn

= {un}. We will show that Φ0
n has a linear-size ∀Exp+Res

refutation. Hence, by the monotonicity of ∀Exp+Res, any family of QBFs smaller
than {EQ0

n}n∈N has linear-size ∀Exp+Res refutations. Thus, by Theorems 17
and 19, {EQ0

n}n∈N satisfies all the conditions of Definition 7.
It remains to show that Φ0

n has a linear-size ∀Exp+Res refutation, or equiv-
alently, that exp(Φ0

n) has a linear-size resolution refutation. It is readily verified
that exp(Φ0

n) contains every clause in exp(Drrs(EQ0
n−1)) except (z1 ∨ · · · ∨ zn−1).

Figure 1 illustrates that this clause can be derived from exp(Φ0
n) in a constant

number of resolution steps. Since exp(Drrs(EQ0
n−1)) has a linear-size resolution

refutation by Theorem 19, so does exp(Φ0
n). ��

Separation of ∀Exp+Res(Drrs) and ∀Exp+Res(Dtf). For our second separation,
we introduce another DQBF family. This time, we refine the prefix of an existing
modification of the equality formulas.
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Definition 21 (EQ1
n (adapted from [13])). For each natural number n,

EQ1
n := ΠEQ

n ∃r(∅)∃s({u1, . . . , un}) ·
(
ψEQ

n ⊗ (r ∨ s)
) ∧ (

ψEQ
n ⊗ (r ∨ s)

) ∧ (r ∨ s) ∧ (r ∨ s) .

The main idea is that the addition of the fresh variables r and s is enough
to obfuscate all the spurious dependencies for Drrs. As such, preprocessing with
Drrs has no effect, and hardness can be proved via the ∀Exp+Res lower bound
for EQ0

n (Theorem 17).

Proposition 22. For each n, Drrs(EQ1
n) = EQ1

n.

Proof. To prove the proposition, we must find sequences satisfying conditions
(a) to (d) of Definition 8 with respect to both (ui, zi), (ui, s) ∈ deps(EQ1

n) for
each i. In fact, for both pairs (ui, zi) and (ui, s), the sequence of clauses

(r ∨ xi ∨ ui ∨ zi ∨ s), (r ∨ z1 ∨ · · · ∨ zn ∨ s), (r ∨ xi ∨ ui ∨ zi ∨ s)

and the sequence of literals zi, s suffice. ��
Theorem 23. {EQ1

n}n∈N requires exponential-size ∀Exp+Res(Drrs) refutations.

Proof. Consider the assignment α defined by r �→ 0, s �→ 0. It is easy to see
that EQ1

n[α] = EQ0
n. Now consider the ‘expanded’ assignment αU defined by

r �→ 0, sσ �→ 0 for each σ ∈ 〈{u1, . . . , un}〉. It is less easy to see, but readily veri-
fied, that exp(EQ1

n)[αU ] = exp(EQ1
n[α]) = exp(EQ0

n). Let π be a ∀Exp+Res(Drrs)
refutation of EQ1

n; that is, a resolution refutation of exp(Drrs(EQ1
n)). By Propo-

sition 22, π is a resolution refutation of exp(EQ1
n). Since resolution is closed

under restrictions, π[αU ] is a resolution refutation of exp(EQ1
n)[αU ] = exp(EQ0

n)
with

∣∣π[αU ]
∣∣ ≤ |π|. By Theorem 17, 2n ≤ ∣∣π[αU ]

∣∣ ≤ |π|. ��
The situation is quite different for the tautology-free dependency scheme Dtf.

Here, the simple detection of consecutive-clause tautologies in the variable r is
enough to identify all spurious dependencies, resulting in linear-size refutations.

Proposition 24. For each n, the dependency sets of Dtf(EQ1
n) are all empty.

Proof. Aiming for contradiction, suppose that there exists a sequence of clauses
C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions (a) to (e)
of Definition 8 with respect to (uj , y) ∈ deps(EQ1

n), for some y ∈ {zj , s}.
By condition (c), none of the var(pi) is r. Hence, if some Ci is either (r ∨ s)

or s ∨ r, we must have i = 1 or i = k, violating condition (a). Therefore those
clauses do not appear in the sequence. It follows that none of the var(pi) is s, for
otherwise we would have consecutive clauses Ci and Ci+1 whose resolvent over
s contains complementary literals in r, violating condition (e).

Hence each var(pi) = zj , and we must have k = 2, by conditions (c) and (d).
Now we reach a contradiction as in the proof of Proposition 18, despite the
addition of literals in r and s. By condition (a), we have ui ∈ C1, and we deduce
that ui /∈ C2, contradicting condition (a). ��
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Theorem 25. {EQ1
n}n∈N has linear-size ∀Exp+Res(Dtf) refutations.

Proof. By Proposition 24, the total expansion of Dtf(EQ1
n) is obtained by remov-

ing universal literals, hence exp(Dtf(EQ1
n)) is the CNF

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) ∧

(r ∨ z1 ∨ · · · ∨ zn ∨ s) ∧
∧n

i=1

(
(r ∨ xi ∨ zi ∨ s) ∧ (r ∨ xi ∨ zi ∨ s)

)
∧ (r ∨ s) .

By resolution of (r ∨ s) over r with each clause containing r, and likewise of
(r ∨ s) with each clause containing r, we obtain all clauses in the CNF

(exp(Drrs(EQ0
n)) ⊗ (s)) ∧ (exp(Drrs(EQ0

n)) ⊗ (s)) ,

where exp(Drrs(EQ0
n)) is the CNF (2) from the proof of Theorem 19. By res-

olution over s we obtain exp(Drrs(EQ0
n)) itself, which has a linear-size resolu-

tion refutation by Theorem 19. It is easy to see that the whole refutation of
exp(Dtf(EQ1

n)) is of linear size. ��
Theorem 26. ∀Exp+Res(Drrs) �

∗
p ∀Exp+Res(Dtf).

Proof. It is easy to see that the largest QBF Φ1
n that is smaller than EQ1

n has
Ss = {u1, . . . , un} and exactly one other non-empty dependency set Szi

= {ui},
where i = n without loss of generality. We will prove that Φ1

n has linear-size
∀Exp+Res(Drrs) refutations. We therefore prove the theorem, since by Theo-
rems 23 and 25, and the monotonicity of ∀Exp+Res(Drrs), {EQ1

n}n∈N satisfies
all the conditions of Definition 7.

A ∀Exp+Res(Drrs) refutation of Φ1
n is a ∀Exp+Res refutation of Drrs(Φ1

n). By
definition, Drrs(Φ1

n) ≤ Φ1
n. Now, Φ1

n has linear-size ∀Exp+Res refutations: it is
readily verified that exp(EQ1

n), which has linear-size resolution refutations, can
be derived from exp(Φ1

n) in a linear number of resolution steps. Hence Drrs(Φ1
n)

has linear-size ∀Exp+Res refutations, by the monotonicity of ∀Exp+Res; i.e. Φ1
n

has linear-size ∀Exp+Res(Drrs) refutations. ��

7 Tautology-Free Dependencies for QBF

We now turn our attention to dedicated QBF proof complexity, in particu-
lar to the QBF proof systems Q-Res(D) [35] that were introduced to model
dependency-aware QBF solving. We show the following.

Theorem 27. Q-Res(Dtf) is exponentially stronger than Q-Res(Drrs).

Since Drrs was state-of-the-art for Q-Res(D), Theorem 27 shows that Dtf is
currently the strongest known dependency scheme applicable to dependency-
aware QBF solving. We recall the definition of the QBF proof system Q-Res(D).
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Definition 28 (Q-Res(D) [22,35]). A Q-Res refutation of a DQBF Ψ is a
sequence C1, . . . , Ck of clauses in which Ck is empty and each Ci is derived
by one of the following rules:

A Axiom: Ci is a non-tautological clause in the matrix of Ψ ;
R Resolution: Ci = A ∨ B, where Cr = A ∨ x and Cs = B ∨ x, for some r, s < i

and some x ∈ vars∃(Φ), and Ci is not a tautology.
U Universal reduction: Ci ∨ a = Cr for some r < i and some literal a with

var(a) = u ∈ vars∀(Ψ) and (u, x) /∈ deps(Ψ) for each x ∈ vars(Ci).

Given a QBF dependency scheme D, a Q-Res(D) refutation of a QBF Φ is a
Q-Res refutation of D(Φ).

Q-Res(Dtf) is complete for QBF by [22], and soundness follows by full exhibition.

Theorem 29. Q-Res(Dtf) is a QBF proof system.

QBF Separation of Q-Res(Drrs) and Q-Res(Dtf). Our separating formulas are
the QBFs on which our DQBF modification EQ1

n (Definition 21) was based. An
exponential lower bound for these formulas in Q-Res(Drrs) was shown in [13].

Definition 30 (EQ2
n [13]). For each natural number n,

EQ2
n := ∃r∃x1 · · · ∃xn∀u1 · · · ∀un∃z1 · · · zn∃s ·

(
ψEQ

n ⊗ (r ∨ s)
) ∧ (

ψEQ
n ⊗ (r ∨ s)

) ∧ (r ∨ s) ∧ (r ∨ s)

Theorem 31 ([6]). {EQ2
n}n∈N requires exponential-size Q-Res(Drrs)

refutations.

We show that EQ2
n have linear-size refutations in Q-Res(Dtf). The proof is

along similar lines as our upper bound for EQ1
n in ∀Exp+Res(Dtf). We first show

that Dtf identifies the full set of spurious dependencies, which gives rise naturally
to short refutations.

Proposition 32. For each n, the dependency sets of Dtf(EQ2
n) are all empty.

Proof. Aiming for contradiction once again, suppose that there exists a sequence
of clauses C1, . . . , Ck and a sequence of literals p1, . . . , pk−1 satisfying conditions
(a) to (e) of Definition 8 with respect to (ui, y) ∈ deps(EQ1

n), for some variable
y ∈ {z1, . . . , zn, s}.

As in the proof of Proposition 24, we can deduce that variables r and s do
not appear in the sequence of literals. By condition (a) we have u ∈ C1. By
condition (c) we have p1 = zi and C2 = (z1 ∨ · · · ∨ zn ∨ a), with var(a) = s. By
conditions (c) and (d), we have p2 = zj for some j �= i. By condition (c) zj ∈ C2,
and by conditions (c) and (d) we must have k = 2. This violates condition (a),
since ui /∈ C2. ��
Theorem 33. {EQ2

n}n∈N has linear-size Q-Res(Dtf) refutations.
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Proof. By Proposition 32, deps(Dtf(EQ2
n)) is the empty relation. It follows that

all universal literals in the matrix may be removed by universal reduction. Hence,
with a single axiom and universal reduction step per clause, we derive the clauses
of exp(Dtf(EQ1

n)) from the proof of Theorem 25. Each step of the linear-size
resolution refutation described there is also available in Q-Res(Dtf). ��

8 Conclusions

We conclude with an interesting observation and a question for future research.
The family {EQ0

n}n∈N from Definition 16 is an adaptation of the equality QBFs
{EQn}n∈N from [8], obtained by shrinking the dependency set of each zi to
just {ui}. While in QBF {EQn}n∈N requires exponentially long proofs in both
∀Exp+Res and Q-Res [5,8], in DQBF {EQ0

n}n∈N remains hard only for ∀Exp+Res.
Indeed, even though Q-Res is incomplete for DQBF, it is sound, and {EQ0

n}n∈N

has linear-size Q-Res refutations. This suggests that there may be some hid-
den proof-complexity relationship between ∀Exp+Res and Q-Res in DQBF, even
though Q-Res is incomplete there.

We have presented the strongest known dependency scheme Dtf. A natural
question is whether some even stronger dependency schemes for (D)QBF exist.
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