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Abstract. Maximum Satisfiability (MaxSat) solving is an active area of
research motivated by numerous successful applications to solving NP-
hard combinatorial optimization problems. One of the most successful
approaches to solving MaxSat instances arising from real world applica-
tions is the Implicit Hitting Set (IHS) approach. IHS solvers are complete
MaxSat solvers that harness the strengths of both Boolean Satisfiabil-
ity (SAT) and Integer Linear Programming (IP) solvers by decoupling
core-extraction and optimization. While such solvers show state-of-the-
art performance on many instances, it is known that there exist MaxSat
instances on which IHS solvers need to extract an exponential number
of cores before terminating. Motivated by the structure of the simplest
of these problematic instances, we propose a technique we call abstract
cores that provides a compact representation for a potentially exponen-
tial number of regular cores. We demonstrate how to incorporate abstract
core reasoning into the IHS algorithm and report on an empirical evalu-
ation demonstrating that including abstract cores into a state-of-the-art
IHS solver improves its performance enough to surpass the best perform-
ing solvers of the most recent 2019 MaxSat Evaluation.

Keywords: Combinatorial optimization · Maximum Satisfiability ·
MaxSat · Implicit Hitting Set · IHS

1 Introduction

Maximum Satisfiability (MaxSat), the optimisation extension of the Boolean
Satisfiability (SAT) problem, has in recent years matured into a competitive and
thriving constraint optimisation paradigm with several successful applications in
a variety of domains [7,8,11,16,18,19,31]. As a consequence, the development
of MaxSat solvers is an active area of research with the state-of-the-art solvers
evaluated annually in the MaxSat Evaluations [4,5].

In this work, we focus on improving the Implicit Hitting Set (IHS) app-
roach to complete MaxSat solving [4,14,29]. As witnessed by the results of the
annual evaluations, IHS solvers are, together with core-guided [2,20,24–26] and
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model improving [22] algorithms, one of the most successful approaches to solv-
ing MaxSat instances encountered in practical applications. IHS solvers decouple
MaxSat solving into separate core extraction and optimisation steps. By using
a Boolean Satisfiability (SAT) solver for core extraction and an Integer Linear
Programming (IP) optimizer, the IHS approach is able to exploit the disparate
strengths of these different technologies.

Through this separation IHS solvers avoid increasing the complexity of the
underlying SAT instance by deferring all numerical reasoning to the optimizer
[13]. One drawback of the approach, however, is that on some problems an
exponential number of cores need to be extracted by the SAT solver and given
to the optimizer. In this paper we identify a seemingly common pattern that
appears in the simplest problems exhibiting this exponential worse case. We
propose a technique, which we call abstract cores, for addressing problems with
this pattern. Abstract cores provide a compact representation for a potentially
exponential number of ordinary cores. Hence, by extracting abstract cores and
giving them to the optimizer we can in principle achieve an exponential reduction
in the number of constraints the SAT solver has to extract and supply to the
optimizer. The net effect can be significant performance improvements.

In the rest of the paper we formalize the concept of abstract cores and explain
how to incorporate them into the IHS algorithm both in theory and practice.
Finally, we demonstrate empirically that adding abstract cores to a state-of-the-
art IHS solver improves its performance enough to surpass the best performing
solvers of the 2019 MaxSat evaluation.

2 Preliminaries

MaxSat problems are expressed as cnf formulas F with weight annotations. A
cnf formula consists of a conjunction (∧) of clauses, each of which is a disjunction
(∨) of literals, a literal is either a variable v of F (a positive literal) or its negation
¬v (a negative literal). We will often regard F and clauses C as being sets of
clauses and literals respectively. For example l ∈ C, indicates that literal l is in
the clause C using set notation, and (x,¬y, z) denotes the clause (x ∨ ¬y ∨ z).

A truth assignment τ maps Boolean variables to 1 (true) or 0 (false).
It is extended to assign 1 or 0 to literals, clauses and formulas in the fol-
lowing standard way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C}, and
τ(F) = min{τ(C) |C ∈ F}, for literals l, clauses C, and cnf formulas F , respec-
tively. We say that τ satisfies a clause C (formula F) if τ(C) = 1 (τ(F) = 1),
and that the formula F is satisfiable if there exists a truth assignment τ such
that τ(F) = 1.

A MaxSat instance I = (F ,wt) is a cnf formula F along with a weight
function that maps every clause C ∈ F to a integer weight wt(C) > 0. Clauses
C whose weight is infinite wt(C) = ∞ are called hard clauses while those with a
finite weight are called soft clauses. I is said to be unweighted if all soft clauses
have weight 1. We denote the set of hard and soft clauses of F by FH and FS ,
respectively.
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An assignment τ is a solution to I if it satisfies FH (τ(FH) = 1). The cost of a
solution τ , cost(I, τ), is the sum of the weights of the soft clauses it falsifies, i.e.,
cost(I, τ) =

∑
C∈FS

(1 − τ(C)) ·wt(C). When the instance is clear from context
we shorten notation to cost(τ). A solution τ is optimal if it has minimum cost
among all solutions: i.e. if cost(τ) ≤ cost(τ ′) holds for all solutions τ ′. The task
in MaxSat solving is to find an (any) optimal solution. We will assume that at
least one solution exists, i.e., that FH is satisfiable.

To simplify our notation it will be useful to transform all of the soft clauses
in F so that they become unit clauses containing a single negative literal. If
C ∈ FS is not in the right form we replace it by the soft clause (¬b) and the
hard clause (C ∨ b), where b is a brand new variable and wt((¬b)) = wt(C).
This transformation preserves the set of solutions and their costs. We call the
variables in the resulting set of unit soft clauses blocking variables or b-variables
for short. Note that assigning a b-variable b the value true is equivalent to
falsifying its corresponding soft clause (¬b). We denote the set of b-variables of
the transformed formula by FB, and write wt(b) for a b-variable b to denote the
weight of its underlying soft clause wt(¬b). With this convention we can write
the cost of a solution τ more simply as cost(τ) =

∑
b∈FB

wt(b) · τ(b). For any
set B of b-variables we write cost(B) to denote the sum of their weights.

In the MaxSat context a core κ is defined to be a set of soft clauses κ ⊆ FS

that are unsatisfiable given the hard clauses, i.e.. κ ∪ FH is unsatisfiable. This
means that every solution τ , which by definition must satisfy FH , must falsify
at least one soft clause in κ. Given that the soft clauses are of the form (¬b) for
some b-variable b we can express every core as a clause κ =

∨
b∈κ b containing

only positive b-variables: one of these variables must be true. This clause is
entailed by FH . We can also express κ as a linear inequality

∑
{b|(¬b)∈κ} b ≥ 1

that is also entailed by FH . A MaxSat correction set hs is dually defined to be
a set of soft clauses hs ⊆ FS whose removal renders the remaining soft clauses
satisfiable with the hard clauses, i.e., (FS − hs) ∪ FH is satisfiable.

3 Implicit Hitting Set Based MaxSat Solving

Algorithm 1 shows the implicit hitting set (IHS) approach to MaxSat solving.
Our specification generalizes the original specification of [13]. In particular, we
use upper and lower bounds, terminating when these bounds meet, rather than
waiting until the optimizer returns a correction set as in [13]. We use this refor-
mulation as it makes it easier to understand our extension to abstract cores.

Starting from a lower bound of zero, an upper bound of infinity, and an
empty set of cores C (line 3), the algorithm computes a minimum cost hitting
set of its current set of cores C. This is accomplished by expressing each core
in C as its equivalent linear inequality

∑
b∈κ b ≥ 1 and using the optimizer to

find a solution hs with the smallest weight of true b variables (Fig. 1a). This
corresponds to computing the minimum weight of soft clauses that need to be
falsified in order to satisfy the constraints imposed by cores found so far. Hence,
cost(hs) must be a lower bound on the cost of any optimal solution: every solution
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must satisfy these constraints. This allows us to update the lower bound (line 6)
and exit the while loop if the lower bound now meets the upper bound. (Note
that since new cores are continually added to the optimizer’s model the lower
bound will never decrease).

The optimizer’s solution is then used to extract more cores that can be added
to the optimizer’s constrains for the next iteration. Core extraction is done by
the ex-cores procedure shown in Algorithm2. ex-cores extracts cores until it
finds a solution τ . If the solution has lower cost than any previous solution the
upper bound UB will be updated and this best solution stored in τbest . The set
of cores K extracted are returned and added to the optimizer’s model potentially
increasing the lower bound.

1 Basic-IHS (F ,wt)
Input: A MaxSat instance (F ,wt)
Output: An optimal solution τ

2 LB ← 0; UB ← ∞;
3 τbest ← ∅; C ← ∅ ;
4 while (true) do
5 hs ← Min-Hs(FB , C);
6 LB = cost(hs);

7 if (LB = UB) break;
8 K ← ex-cores (hs,UB , τbest );
9 if (LB = UB) break;

10 C ← C ∪ K

11 return τbest
Algorithm 1: IHS MaxSat

Min-Hs (FB , C):
minimize:

∑

b∈FB

wt(b) · b

subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C

b ∈ {0, 1} ∀b ∈ FB

return:

{b | b set to 1 in opt. soln}

(a) IP for optimizing with cores

The original IHS formulation [13] extracted only one core from each optimizer
solution, but this was shown to be a significant detriment to performance [15]
requiring too many calls to the optimizer. The procedure ex-cores gives one
simple way of extracting more than one core from the optimizer’s solution hs. It
can be extended in a variety ways to allow extracting large numbers (hundreds)
of cores from each optimizer solution [12,15,28]. In our implementation we used
such techniques.

ex-cores (Algorithm 2) uses a SAT solver and its assumption mechanism to
extract cores. It first initializes the assumptions to force the SAT solver to satisfy
every soft clause not in hs. More specifically, for every soft clause (¬b) not in
hs, ¬b is assumed, forcing the solver to satisfy this soft clause. Then it invokes
ex-cores-sub which iteratively calls the SAT solver to find a solution satisfying
FH along with the current set of assumptions. After each core is found its b-
variables are removed from the assumptions (line 11) so that on each iteration
we require the SAT solver to satisfy fewer soft clauses. Since FH is satisfiable,
eventually the SAT solver will be asked to satisfy so few soft clauses that it will
find a solution τ terminating the loop.

In the original IHS specification [13] IHS terminates with an optimal solution
when the optimal hitting set hs is a correction set. This condition will also cause
termination in our specification. In particular, before calling ex-cores the lower
bound LB is set to cost(hs) (Algorithm 1, line 6). If hs is a correction set, a
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1 ex-cores (hs,UB , τbest )
2 assumps = {¬b | b ∈ (FB − hs)};
3 return ex-cores-sub(assumps,UB , τbest )

4 ex-cores-sub (UB , τbest )
5 K ← {};
6 while true do

7 (sat? , κ, τ) ← sat-assume
(FH , assumps) ;

8 if (sat?) then
9 if (cost(τ) < UB) then τbest ← τ ; UB ← cost(τ);

10 return K;

11 else K ← K ∪ {κ}; assumps ← assumps − {¬b|b ∈ κ}
Algorithm 2: Extracting multiple cores from a single optimizer solution

solution τ will be found by the SAT solver in the first iteration of Algorithm2,
(line 7). That τ will have cost(τ) = cost(hs) as it cannot falsify any soft clause
not in hs and cannot have cost less than the lower bound. Hence, on ex-cores’s
return Algorithm 1 will terminate with UB = LB . As shown in [13] the opti-
mizer’s must eventually return a correction set. This means that the original
proof that IHS terminates, returning an optimal solution given in [13] continues
to apply our reformulated Algorithm1.

Algorithm 1 can also terminate before the optimizer returns a correction set.
In particular, τbest can be set to an optimal solution (Algorithm 2, line 9) well
before we can verify its optimality. In this case termination can occur as soon
as the optimizer has been given a sufficient number of cores to drive its lower
bound up to cost(τbest), even if the optimizer’s solution is not a correction set.
In fact, termination in the IHS approach always requires that the optimizer be
given enough constraints to drive the cost of its optimal solution up to the cost
of the MaxSat optimal solution.

Example 1. With FH = {(b1, b2), (b2, b3), (b3, b4)} and FS = {(¬b1), (¬b2),
(¬b3), (¬b4)} all having weight 1, Algorithm1 will first obtain hs = ∅ from
Min-Hs as there initially are no cores to hit. ex-cores will then SAT solve FH

under the assumptions ¬b1, ¬b2, ¬b3, ¬b4 trying to satisfy all softs not in hs.
This is unsat and any of a number of different cores could be returned. Say that
the core (b1, b2) is returned. ex-cores then attempts another SAT solve, this
time with the assumptions ¬b3 and ¬b4. Now the SAT solver returns the core
(b3, b4). Finally, the SAT solver will be called to solve FH under the empty set
of assumptions. Say that the solver finds the satisfying assignment τ = {¬b1, b2,
¬b3, b4} setting UB to 2 and τbest to τ . After returning to the main IHS routine,
Min-Hs will be asked to compute an optimal solution to the set of cores {(b1, b2),
(b3, b4)}. It might return hs = {b1, b4} and set LB = cost(hs) = 2. Now LB is
equal to UB and τbest can be returned since it is an optimal solution. Note that
in this example hs, is not a correction set.

As mentioned above IHS cannot terminate until its optimizer has been given
enough constraints to drive the cost of an optimal solution up to be equal to the
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cost of an optimal MaxSat solution. As shown in [12] in the worst case this can
require giving the optimizer an exponential number of constraints.

Example 2. Let n and r be integers with 0 < r < n. Consider the MaxSat
instance F n,r with FH

n,r = cnf(
∑n

i=1 bi ≥ r) and FS
n,r = {(¬bi) | 1 ≤ i ≤ n},

where cnf(
∑n

i=1 bi ≥ r) is a cnf encoding of the cardinality constraint stating
that at least r soft clauses must be falsified. The cost of every optimal solution
is thus r; the maximum number of soft clauses that can be satisfied is n − r;
and every subset of n − r + 1 soft clauses must be a core. Let C be the set of all
of such cores. From the results of [12] we have that if the optimizer is given all
cores in C it would yield solutions hs with cost(hs) = r; furthermore, if even one
core of C is missing from the optimizer the optimizer solutions hs would have
cost(hs) < r. This means that Algorithm 1 will have to extract

(
n

n−r+1

)
cores

for the optimizer before it can reach the cost of an optimal MaxSat solution and
terminate. When r is close to n/2 the number of cores required for termination
is exponential in n.

The results of the 2019 MaxSat Evaluation [4,5] witness this drawback
in practice. The drmx-atmostk set of instances in the evaluation contain 11
instances with the same underlying structure as Example 2. Out of these, the
IHS solver MaxHS [13,14], failed to solve 8 out of 11 when given an hour for each
instance, while the best performing solvers were able to solve all 11 instances in
under 10s.

4 Abstract Cores

Example 2 shows that a significant bottleneck for the IHS approach on some
instances is the large number of cores that have to be given to the optimizer.
Thus, a natural question to ask is whether or not there exists a more compact
representation of this large number of cores that can still be efficiently reasoned
with by the IHS algorithm. In this section we propose abstract cores as one such
representation. As we will demonstrate, each abstract core compactly represents
a large number of regular cores. By extracting abstract cores with the SAT solver
and then giving them to the optimizer, we can communicate constraints to the
optimizer that would have otherwise potentially required an exponential number
of ordinary core constraints.

The structure of the instances F n,r discussed in Example 2 provides some
intuition for abstract cores. In these instances the identity of the variables does
not matter, all that matters is how many are set to true and how many are set
to false. For example, in any core κ of F n,r we can exchange any soft clause
C ∈ κ for any other soft clause C ′ �∈ κ and the result will still be a core of F n,r.
In other words, every soft clause is exchangeable with every other soft clause
in these instances. While it seems unlikely that complete exchangeability would
hold for other instances, it is plausible that many instances might contain subsets
of soft clauses that are exchangeable or nearly exchangeable. In particular, in
any MaxSat instance the cost of a solution depends only on the number of soft



Abstract Cores in Implicit Hitting Set MaxSat Solving 283

clauses of each weight that it falsifies. The identity of the falsified soft clauses
does not matter except to the extent that FH might place logical constraints on
the set of soft clauses that can be satisfied together.1

Abstraction Sets. Suppose we have a set of b-variables all with the same weight
and we want to exploit any exchangeability that might exist between their cor-
responding soft clauses. This can be accomplished by forming an abstraction set.
An abstraction set, ab, is a set of b-variables that have been annotated by adding
|ab| new variables, called ab’s count variables, used to indicate the number of
true b-variables in ab (i.e. the number of corresponding falsified soft clauses).
The count variables allow us to abstract away from the identity of the particular
b-variables that have been made false. We let ab.c denote the sequence of ab’s
count variables, and let the individual count variables be denoted by ab.c[1],
. . ., ab.c[|ab|]. Every count variable has a corresponding definition, with the i’th
count variable being defined by the constraint ab.c[i] ↔ ∑

b∈ab b ≥ i. Note that
these definitions can be encoded into cnf and added to the SAT solver using
various known encodings for cardinality constraints [3,6,27,30].

Let AB be a collection of abstraction sets. We require that (1) the sets in
AB are disjoint (so no b-variable is part of two different abstraction sets) and
(2) that all of the b-variables in a specific abstraction set ab ∈ AB have the
same weight (variables in different abstraction sets can have different weights).
Let AB.c =

⋃
ab∈AB ab.c be the set of all count variables.

Definition 1. An abstract core is a clause C such that (1) all literals C are
either positive b-variables or count variables, ∀l ∈ C (l ∈ FB ∨ l ∈ AB.c); and
(2) C is entailed by FH and the conjunction of the count variable definitions,
i.e., FH ∧ (∧

ab.c[k]∈AB.c(ab.c[k] ↔ ∑
b∈ab b ≥ k

) |= C.

As pointed out in Sect. 2 every ordinary core is equivalent to a clause con-
taining only positive b-variables that is entailed by FH . Abstract cores, can be
ordinary cores containing only b-variables but they can also contain positive
count variables. Like ordinary cores they also must be entailed by FH (and the
count variable definitions that are required to give meaning to the count variables
they contain).

Example 3. Consider an instance F n,r defined in Example 2. Say we form an
single abstraction set, ab, from the full set of blocking variables FB

n,r. Then
F n,r will have among its abstract cores the unit clause (ab.c[r]) asserting that∑

b∈FB
n,r b ≥ r. This single abstract core is equivalent to the conjunction of

(
n

n−r+1

)
non-abstract cores. In particular, with n b-variables, asserting that at

least r must be true entails that every set of n − r + 1 b-variables must contain
at least one true b-variable. That is, (ab.c[r]) entails

(
n

n−r+1

)
different clauses

each of which is equivalent to a non-abstract core. It is not difficult to show that
entailment in the other direction also holds giving equivalence.

1 This notion of exchangeability is clearly related to symmetries and exploring this
connection is a worthwhile direction for future work.
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This example demonstrates the expressive power of abstract cores. More
generally, let C be an abstract core containing the count literals {ab1 .c[c1], . . . ,
abk .c[ck]}. Then, each abi .c[ci] is equivalent to the conjunction of

( |abi|
|abi|−ci+1

)

clauses. Hence, C is equivalent to the conjunction of
∏k

i=1

( |abi|
|abi|−ci+1

)
non-

abstract cores. In other words, abstract cores achieve the desideratum of provid-
ing a compact representation of a large number of cores. We address the second
desideratum of being able to reason efficiently with abstract cores in the IHS
algorithm in the next section. It can also be noted that core-guided solvers use
cardinality constraints and thus are able to generate abstract cores, although
they use these cores in a different way than our proposed approach.

1 Abstract-IHS (F ,wt);

2 LB ← 0; UB ← ∞; τbest ← ∅;
3 C ← ∅; AB ← ∅
4 while true do

5 hs ← Min-Abs(FB , AB, C)
6 LB = cost(hs);
7 AB ← update-abs(AB, K)

8 if (LB = UB) break;
9 K ← ex-abs-cores;

10 (hs, AB,UB , τbest );
11 if (LB = UB) break;

12 C ← C ∪ K;

13 return τbest

Algorithm 3: IHS with
abstract cores

Min-Abs (FB , AB, C)
minimize:

∑

b∈FB

wt(b) · b

subject to:

∑
x∈κ x ≥ 1 ∀κ ∈ C

∑
b∈ab b − k · ab.c[k] ≥ 0 ∀ab.c[k] ∈ AB.c

∑
b∈ab b − |ab| · ab.c[k] < k ∀ab.c[k] ∈ AB.c

b ∈ {0, 1} ∀b ∈ FB

ab.c[k] ∈ {0, 1} ∀ab.c[k] ∈ AB.c

return: {b | b set to 1 in opt. soln}

(a) IP for optimizing with abstract cores

5 Abstract Cores in IHS MaxSat Solving

Algorithm 3 shows the IHS algorithm extended with abstract cores. Its pro-
cessing follows the same steps as used earlier in the non-abstract IHS algo-
rithm (Algorithm 1). There are however, three changes: (1) the optimizer must
now solve a slightly different problem, (2) the abstraction sets are used in
ex-abs-cores when extracting new constraints for the optimizer and (3) a
collection of abstraction sets AB is maintained and dynamically updated by
update-abs (line 7). We will assume that update-abs is also responsible for
updating FH so that FH always includes all of the count variable definitions,⋃

ab.c[k]∈AB.c cnf(ab.c[k] ↔ ∑
b∈ab b ≥ k) as new abstraction sets are added. In

this way the other routines given below need only access FH assuming that it
already includes the count variable definitions.

New Optimization Problem: The optimization problem shown in Fig. 2a is very
similar to the previous minimum cost hitting set optimization (Fig. 1a). It con-
tinues to minimize the cost of the set of b-variables that have to be set to true in
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order to satisfy the constraints. Each abstract core κ ∈ C is a clause and thus is
equivalent to the linear constraint

∑
x∈κ x ≥ 1, just like the non-abstract cores.

The abstract cores can, however, contain count variables ab.c[k] each of which
has a specific definition. These definitions need to be given to the optimizer as
linear constraints. For each count variable ab.c[i] the constraints added are (a)∑

b∈ab b − k · ab.c[k] ≥ 0 and (b)
∑

b∈ab b − |ab| · ab.c[k] < k. That is, when
ab.c[k] is 1 (true) constraint (a) ensures that the sum of ab’s b-variables is ≥ k
and constraint (b) becomes trivial; and when ab.c[k] is 0 (false) constraint (a)
becomes trivial and constraint (b) ensures that the sum of ab’s b-variables is
< k. These definitions ensure the intended interaction between abstract cores

and count variables. For example, if the optimizer has the abstract core con-
straint b1 + ab.c[5]+ b2 ≥ 1 it must be able to reason that if it chooses to satisfy
this constraint by setting ab.c[5] = 1 then it must also set 5 of the b-variables
in ab to 1. The definitions allow this inference.

Extracting Abstract Cores: As before the optimizer’s solution is used to cre-
ate a set of assumptions for the SAT solver. Cores arise from the conflicts the
SAT solver finds when using these assumptions. For ordinary cores ex-cores
(Algorithm 2) used a set of negated b-variables as assumptions (ensuring that
the corresponding set of soft clauses must be satisfied). If the SAT solver finds
a conflict over these assumptions, the conflict will be a clause containing only
negated assumptions; i.e, a clause containing only positive b-variables. Such
clauses are ordinary cores. Hence, if we wish to extract abstract cores, we must
give the SAT solver assumptions that consist of negated b-variables and negated
count variables. Any conflicts that arise will then contain positive b-variables
and positive count variables and will thus be abstract cores.

In the non-abstract case, the optimizer’s solution hs specifies a set of b-
variables that can be set to true to obtain an optimal solution to the current set
of constraints. That is, hs provides a set of clauses that, if falsified, will most
cost effectively block the cores found so far. In the abstract case, the optimizer’s
solution is also a set of b-variables with the same properties. All that has changed
is the type of constraints the optimizer has optimized over.

Consider an abstraction set in the current set of abstractions ab ∈ AB.
Say that ab is the set of b-variables {b1, b2, b3, b4}. Further, suppose that the
optimizer returns the set hs = {b1, b4, b5} as its solution, and that the full
set of b-variables is FB = {b1, b2, b3, b4, b5, b6}. In the non-abstract case, the
SAT solver will be allowed to make b1, b4 and b5 true, while being forced to
make b2, b3, and b6 false. In particular, the SAT solver will be called with the
set of assumptions ¬b2, ¬b3 and ¬b6, i.e., the set {¬b | b ∈ (FB − hs)} (line 7,
Algorithm 2). Notice, that the SAT solver is being allowed to make specific b-
variables in ab∩hs true (namely b1 and b4), while being forced to make specific
b-variables in ab − (ab ∩ hs) false (namely b2 and b3). Given that we believe
the b-variables in ab to exchangeable, we can achieve abstraction by removing
these specific choices. In particular, instead of assuming that b2 and b3 are false
and forcing the SAT solver to satisfy these specific soft clauses, we can instead
assume ¬ab.c[3]. This means allowing at most two b-variables in ab to be true,
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1 ex-abs-cores (hs, AB,UB , τbest)
2 assumps ← {¬b | b ∈ FB − hs};
3 foreach ab ∈ AB do
4 assumps ← assumps − {¬b | b ∈ ab};
5 if |ab ∩ hs| = |ab| then continue;
6 assumps ← assumps ∪ {¬ab.c[|ab ∩ hs| + 1]};

7 K ← ex-cores-sub(assumps,UB , τbest);
8 optionally: K ← K ∪ ex-cores(hs,UB , τbest);
9 return K

Algorithm 4: Extracting Abstract cores from the optimizer solution

forcing the remaining |ab| − 2 ( = 2) b-variables to be false. Hence, the SAT
solver must satisfy at least two soft clauses from the set {(¬b1), (¬b2), (¬b3),
(¬b4)} corresponding to ab, but it is no longer forced to try to satisfy the specific
clauses (¬b2) and (¬b3). Hence, we can use {¬ab.c[3],¬b6} as the SAT solver’s
assumptions and thus be able to extract an abstract core. Note also that since
the weight of every b-variable in ab is the same, the SAT solver is still being asked
to find a solution of cost equal to cost(hs). Using this insight we can specify the
procedure ex-abs-cores used to extract abstract cores.

Algorithm 4 shows the procedure ex-abs-cores. Once it has set up its
assumptions this procedure operates exactly like ex-cores, calling the same
subroutine ex-cores-sub to iteratively extract some number of cores. It first
adds the negation of all b-variables not in hs: the optimizer wants to satisfy all
of these soft clauses. Then it performs abstraction. It removes the b-variables of
each abstraction set ab from the assumptions, and adds instead a single count
variable from ab. The optimizer’s solution has made k = |hs ∩ ab| of ab’s b-
variables true. So we permit the SAT solver to make this number of ab’s b-
variables true, but no more. This is accomplished by giving it the assumption
¬ab.c[k + 1]. Note that ¬ab.c[k + 1] ↔ ∑

b∈ab b ≤ k by the definition of the
count variables. Finally, if every b-variable of ab is in hs we need not add any-
thing to the set of assumptions (line 5): the SAT solver can freely make all of
ab’s b-variables true.

ex-abs-cores also has the option of additionally extracting a set of non-
abstract cores by invoking its non-abstract version (line 8). Abstract and non-
abstract cores can be freely mixed in Abstract-IHS. Due to the indeterminism in
the conflicts the SAT solver returns, the non-abstract cores need not be subsumed
by the abstract cores. Hence, in practice it is often beneficial to extract both.

The correctness of the IHS algorithm with abstract cores is easily proved.

Theorem 1. Let (F ,wt) be a MaxSat instance with FH being satisfiable and
assume that (a) the optimizer correctly returns optimal solutions to its set of
constraints, and (b) every conflict C over assumptions returned by the SAT solver
is a clause that is entailed by the formula it is solving. Then Abstract-IHS when
called on (F ,wt) must eventually terminate returning an optimal solution.
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Proof. First observe that the extra clauses E used to define the count variables
in AB.c do not change the set of solutions (models of FH) nor their costs as they
are definitions. In particular, any model τ of FH can be extended to a model of
FH ∪E by appropriately setting the value of each count variable, and any model
τE of FH∪E becomes a model of FH once we remove its assignments to the count
variables. In both cases the cost of the model is preserved. Therefore, we will
prove that Abstract-IHS eventually terminates returning an optimal solution to
(F ∪ E,wt) (with every clause in E being hard): this optimal solution provides
us with an optimal solution to (F ,wt).

From the definitions of the count variables in E and the soundness of the
abstract cores computed as assumption conflicts by the SAT solver, we see that
every constraint in the optimizer’s model is entailed by FH ∪ E. That is, every
solution of FH ∪E is also a solution of the optimizer’s constraints. Therefore, the
cost of the optimizer’s optimal solutions, LB , is always a lower bound on the cost
of an optimal solution of FH∪E. Furthermore, τbest is always a solution of FH∪E
as it is found by the SAT solver. Therefore, when UB = cost(τbest) = LB , τbest
must be an optimal solution. Hence we have that when Abstract-IHS returns a
solution, that solution must be optimal.

Furthermore, when the optimizer returns a solution hs to its model and hs
does not cause termination, then Abstract-IHS will compute a new abstract core
κ that hs does not satisfy. This follows from the fact κ is falsified by all solutions
that make false exactly the same set of un-abstracted b-variables and exactly
the same count of b-variables from each abstraction set as hs. Hence, once we
add κ to the optimizer we block the solution hs. There are only a finite number
of solutions to the optimizer’s constraints since the variables all 0/1 variables,
and every optimal MaxSat solution of FH ∪ E always satisfies the optimizer’s
model. Therefore, as more constraints are added to the optimizer it must even-
tually return one of these optimal MaxSat solutions causing Abstract-IHS to
terminate. ��
Example 4. Consider running Abstract-IHS on the formula used in Example 1:
FH = {(b1, b2), (b2, b3), (b3, b4)}, FS = {(¬b1), (¬b2), (¬b3), (¬b4)}, and all
weights equal to 1. First Min-Abs is called on an empty set of constraints, and it
returns hs = ∅. Say that update-abs creates a single abstraction set, AB = {ab},
with ab = {b2, b3} and that it is unchanged during the rest of the run.

Using hs, ex-abs-cores will initialize its assumptions to {¬b1, ¬ab.c[1], ¬b4}
and call the SAT solver. These assumptions are unsat . Let the conflict found
be the unit clause (ab.c[1]). In ex-cores-sub the next SAT call will be with
the assumptions {¬b1, ¬b4}. These assumptions are satisfiable and the solution
τ = {¬b1, b2, b3, ¬b4} is returned. The upper bound UB will be set to cost(τ) = 2
and τbest will be set to τ .

ex-abs-cores now returns and the optimizer is called with the set of abstract
cores C = {(ab.c[1])}. The optimizer can return two different optimal solutions
{b2} or {b3}, and say that it returns the first one hs = {b2}. This will set the
lower bound LB = cost(hs) = 1. Then ex-abs-cores will be called again and
from hs it will initialize its assumptions to {¬b1,¬ab.c[2],¬b4}, which is unsat
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with the unique conflict (b1, ab.c[2], b4). Hence, the next SAT call will be with an
empty set of assumptions and a solution will be found. Suppose that this solution
is the same as before, so that neither UB nor τbest is changed. ex-abs-cores
will then return and the optimizer called with the accumulated cores {(ab.c[1]),
(b1, ab.c[2], b4)}. There are different choices for the optimal solution, but say that
it returns {b2, b3} as its optimal solution. This will reset the lower bound LB to
2, the lower bound will meet the upper bound, and the MaxSat optimal solution
τbest = {¬b1, b2, b3,¬b4} will be found.

Abstract cores can decrease the worst-case number of cores the IHS algo-
rithm needs to extract. Consider the instances F n,r from Examples 2 and 3. As
discussed in Example 2 when r is close to n/2 these instances have an exponen-
tial number of non-abstract cores all of which must be extracted by the IHS
algorithm. If on the other hand all b-variables are placed into a single abstrac-
tion set ab as in Example 3, Abstract-IHS will generate the sequence of abstract
cores (ab.c[1]), . . . , (ab.c[r]) after which the optimizer will return a solution of
cost r that will be a correction sets allowing Abstract-IHS to terminate. More
generally, this strategy can be applied to any unweighted MaxSat instance.

Proposition 1. Let (F ,wt) be an unweighted MaxSat instance, i.e. w(C) = 1
for all C ∈ FS and construct an abstraction set ab containing all FB. Then
Algorithm3 needs to extract at most |Fs| cores before terminating.

The solving strategy of Proposition 1 in fact mimics the Linear UNSAT-SAT
algorithm [9,17] where the SAT solver solves the sequence of queries “can a
solution of cost 1 be found”, “can a solution of cost 2 be found”, etc. As inter-
esting future work, we note that the framework of abstract cores presented here
can be used to mimic the behaviour several of the recently proposed core-guided
algorithms [23,25,26].

Computing Abstraction Sets: When computing abstraction sets, there is an inher-
ent trade-off between the overhead and potential benefits from abstraction; too
large sets can lead to large cnf encodings for the count variable definitions, mak-
ing SAT solving very inefficient while with too small sets the algorithm reverts
back to non-abstract IHS with hardly any gain from abstraction.

Although the notion of exchangeability has intuitive appeal, it seems likely be
computationally hard to identify exchangeable b-variables that can be grouped
into abstraction sets. In our implementation we used a heuristic approach to
finding abstraction sets motivated by the F n,r instances (Example 1). In those
instances, each b-variable appears in many cores with each of the other b-
variables. We decided to build abstraction sets from sets of b-variables that
often appear in cores together. This technique worked in practice (see Sect. 6),
but a deeper understanding of how best to construct abstraction sets remains as
future work.

To find b-variables that appear in many cores with each other, we used the
set of cores found to construct a graph G. The graph has b-variables as nodes
and weighted edges between two b-variables representing the number of times
these two b-variables appeared together in a core. We then applied the Louvain
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Fig. 1. Cactus plot of solver performance on the unweighted (left) and weighted (right)
instances of MSEval 2019. The numbers in parenthesis are the number of instance
solved within the time and memory limits

clustering algorithm [10] to G obtain clusters of nodes such that the nodes in
a cluster have a higher weight of edges between each other (i.e. appear in cores
more often together) than with nodes in other clusters, these were then taken to
define an abstraction set. We also monitored how effective the cores found were
in increasing the lower bound generated by the optimizer. If the cores were fail-
ing to drive the optimizer’s lower bound higher, we computed new abstraction
sets by clustering the graph G, and updated AB with these new abstraction sets.
If clustering had already been performed and the extracted cores were still not
effective, the nodes of the b-variables in each abstraction set were merged into
one new node and G was reclustered. (The Louvain algorithm can compute hier-
archical clusters). Any new clusters so generated will either be new abstraction
sets or supersets of existing abstractions sets. New abstraction sets are formed
from these new clusters and added to AB. All subsets are removed from AB so
that future abstractions will be generated using the larger abstraction sets.

We also found that abstraction was not cost effective on instances where
the average core size was in the hundreds. The generated abstraction sets were
so large that the cnf encoding of their count variables definitions slowed the
SAT solver down too much. Finally, only we add the cnf encoding of the count
variable definitions ab.c[k] ↔ ∑

b∈ab b ≥ k to the SAT solver when ¬ab.c[k] first
appears in the set of assumptions. Furthermore, we only add the encoding in the
direction ab.c[k] ← ∑

b∈ab b ≥ k.

6 Experimental Evaluation

We have implemented two versions of abstract cores on top of the MaxHS
solver [12,14] using the version that had been submitted to the MaxSat 2019 eval-
uation (MSE 2019) [5]. The two new solvers are called maxhs-abs and maxhs-
abs-ex. maxhs-abs implements the abstraction method described above, using
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the Louvain algorithm to dynamically decide on the abstraction sets and extract-
ing both abstract and non-abstract cores in ex-abs-cores. We used the well
known totalizer encoding [6] to encode the count variable definitions into cnf.
In particular, each totalizer takes as input the b-variables of an abstraction set
ab, and the totalizer outputs become the count variables ab.c[k].

The maxhs-abs-ex solver additionally exploits the totalizer encodings by
using the technique of core exhaustion [20]. This technique uses SAT calls to
determine a lower bound on the number of totalizer outputs forced to be true.
This technique can sometimes force many of the abstraction set count variables.
We impose a resource bound of 60s on the process so exhaustion is not complete.

We compare the new solvers to the base maxhs (MSE 2019 version) as
well as to two other solvers: the MSE 2019 version of RC2 (rc2) [4,20], the
best performing solver in both the weighted and unweighted track and a new
solver in MSE 2019 called UWrMaxSat (UWr) [4,21]. Both implement the OLL
algorithm [1,25] and differ mainly in how the cardinality constraints are encoded
into cnf. As benchmarks, we used all 599 weighted and 586 unweighted instances
from the complete track of the 2019 MaxSat Evaluation, drawn from a variety of
different problem families. All experiments were run on a cluster of 2.4 GHz Intel
machines using a per-instance time limit of 3600 s and memory limit of 5 GB.

Figure 1 show cactus plots comparing the solvers on the unweighted (left) and
weighted (right) instances. Comparing maxhs and maxhs-abs we observe that
abstract core reasoning is very effective, increasing the number of unweighted
instances solved from 397 to 433 and weighted instances from 361 to 379 sur-
passing both rc2 and UWr in both categories. maxhs-abs-ex improves even
further with 438 unweighted and 387 weighted instances solved.

Table 1. The entry in cell (X, Y ) shows the number instances solved by solver X that
were not solved by solver Y in the format #Unweighted/#Weighted.

Solver maxhs-abs-ex maxhs-abs rc2 UWr maxhs

maxhs-abs-ex 7/8 26/37 29/46 60/42

maxhs-abs 2/0 27/33 31/43 55/35

rc2 10/26 16/30 12/29 61/50

UWr 8/27 15/32 7/21 61/52

maxhs 19/16 19/17 36/35 41/45

Table 1 gives a pair-wise solver comparison of the number of instances that
could be solved by one solver but not by the other. We observe that even though
the solvers can be ranked by number of instances solved, every solver was able
to beat every other solver on some instances (except that maxhs-abs did not
solve any weighted instances that maxhs-abs-ex could not). This speaks to the
diversity of the instances, and indicates that truly robust solvers might have to
employ a variety of different techniques.
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Fig. 2. Number of instances solved in the 25/48 families of unweighted instances
on which maxhs-abs-ex, rc2, and maxhs solved different amounts of instances: 1.
kbtree, 2. extension-enforcement, 3. optic, 4. logic-synthesis, 5. close-solutions, 6. min-
fill, 7. atcoss, 8. set-covering, 9. maxcut, 10. aes, 11. gen-hyper-tw, 12. frb, 13. bcp, 14.
HaplotypeAssembly, 15. scheduling, 16. CircuitTraceCompaction, 17. xai-mindset2, 18.
MaxSATQueriesinInterpretableClassifiers, 19. reversi, 20. aes-key-recovery, 21. uaq, 22.
MaximumCommonSub-GraphExtraction, 23. protein-ins, 24. drmx-atmostk, 25. fault-
diagnosis

Fig. 3. Number of instances solved in the 27/39 families of unweighted instances
on which maxhs-abs-ex, rc2, and maxhs solved different amounts of instances:
1. BTBNSL, 2. maxcut, 3. correlation-clustering, 4. auctions, 5. ParametricRBAC-
Maintenance, 6. ramsey, 7. set-covering, 8. timetabling, 9. relational-inference, 10. hs-
timetabling, 11. frb, 12. mpe, 13. railway-transport, 14. metro, 15. max-realizability,
16. MaxSATQueriesinInterpretableClassifiers, 17. haplotyping-pedigrees, 18. drmx-
cryptogen, 19. spot5, 20. af-synthesis, 21. min-width, 22. css-refactoring, 23. shiftdesign,
24. lisbon-wedding, 25. tcp, 26. rna-alignment, 27. drmx-atmostk

Figures 2 and 3 show a breakdown by family for the three solvers maxhs-
abs-ex, rc2 and maxhs. The plots show only those families where the solvers
exhibited different performance. We observe that rc2 and maxhs achieve quite
disparate performance with each one dominating the other on different families.
maxhs-abs-ex, on the other hand, is often able to achieve the same performance
as the better of the two other solvers on these different families.
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7 Conclusion

We proposed abstract cores for improving the Implicit Hitting Set (IHS) based
approach to complete MaxSat solving. More specifically, we address the large
worst-case number of cores that IHS needs to extract before terminating. An
abstract core is a compact representation of a (potentially large) set of (regular)
cores. We incorporate abstract core reasoning into the IHS algorithm, prove
correctness of the resulting algorithm and report on an experimental evaluation
comparing IHS with abstract cores to the best performing solvers of the latest
MaxSat Evaluation. The results indicate that abstract cores indeed improve
the empirical performance of the IHS algorithm, resulting in state-of-the-art
performance on the instances of the Evaluation.
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