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Abstract. In recent years there has been an increasing interest in study-
ing proof systems stronger than Resolution, with the aim of building
more efficient SAT solvers based on them. In defining these proof sys-
tems, we try to find a balance between the power of the proof system
(the size of the proofs required to refute a formula) and the difficulty of
finding the proofs. Among those proof systems we can mention Circular
Resolution, MaxSAT Resolution with Extensions and MaxSAT Resolu-
tion with the Dual-Rail encoding.

In this paper we study the relative power of those proof systems from a
theoretical perspective. We prove that Circular Resolution and MaxSAT
Resolution with extension are polynomially equivalent proof systems.
This result is generalized to arbitrary sets of inference rules with proof
constructions based on circular graphs or based on weighted clauses. We
also prove that when we restrict the Split rule (that both systems use)
to bounded size clauses, these two restricted systems are also equivalent.
Finally, we show the relationship between these two restricted systems
and Dual-Rail MaxSAT Resolution.

1 Introduction

The Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) problems are cen-
tral in computer science. SAT is the problem of, given a CNF formula, deciding if it
has an assignment of 0/1 values that satisfy the formula. MaxSAT is the optimiza-
tion version of SAT. Given a CNF formula, we want to know what is the maximum
number of clauses that can be satisfied by an assignment. SAT and the decision
version of MaxSAT are NP-Complete. Problems in many different areas like plan-
ning, computational biology, circuit design and verification, etc. can be solved by
encoding them into SAT or MaxSAT, and then using a SAT or MaxSAT solver.

Resolution based SAT solvers can handle huge industrial formulas successfully,
but on the other hand, seemingly easy tautologies like the Pigeonhole Principle
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require exponentially long Resolution refutations [8]. An important research direc-
tion is to implement SAT solvers based on stronger proof systems than Resolution.
To be able to do that, the proof systems should not be too strong, given that the
stronger a proof system is, the harder it is to find efficient algorithms to find refu-
tations for the formulas. This is related to the notion of automatizability [2,5].

In the last few years, a number of proof systems somewhat stronger than
Resolution have been defined. Among them are MaxSAT Resolution with Exten-
sion [13], Circular Resolution [1], Dual-Rail MaxSAT [9], Weighted Dual-Rail
MaxSAT [3,14] and Sheraly-Adams proof system [7,15]. All these systems have
polynomial size proofs of formulas like the Pigeonhole Principle. Atserias and
Lauria [1] showed that Circular Resolution is equivalent to the Sheraly-Adams
proof system. Larrosa and Rollón [13] showed that MaxSAT Resolution with
Extension can simulate Dual-Rail MaxSAT. In this paper, we show that MaxSAT
Resolution with Extension is equivalent to Circular Resolution. This equivalence
is parametric on the set of inference rules used by both proof systems.

Both Circular Resolution and MaxSAT Resolution with Extension use a rule
called Split or Extension, where from a clause A, we can obtain both A ∨ x
and A ∨ ¬x. We can add a restriction on this rule, and therefore on the proof
system. If we bound the number of literals of A to be used in the split rule by
k, for k ≥ 0, we can talk about MaxSAT Resolution with k-Extension, or about
k-Circular Resolution. In the present article, we also prove the equivalence of
both systems, k-Circular Resolution and MaxSAT Resolution with k-Extensions,
and improve the result of [13], proving that these restricted proof systems can
also simulate Dual-Rail MaxSAT and Weighted Dual-Rail MaxSAT.

This paper proceeds as follows. In the preliminarySect. 2we introduceCircular,
Weighted and Dual-Rail proofs. In Sect. 3, we prove some basic facts about these
proof systems. The equivalence of Circular Resolution and MaxSAT Resolution
with Extension is proved in Sect. 4. In Sect. 5, we describe a restriction of these two
proof systems, show that they are equivalent, and prove that they can simulate
Weighted Dual-Rail MaxSAT.

2 Preliminaries

We consider a set x1, . . . , xn of variables, literals of the form xi or ¬xi, clauses
A = l1 ∨· · ·∨ lr defined as sets of literals, and formulas defined as sets of clauses.
Additionally, we also consider weighted formulas, defined as multisets of the form
F = {(A1, u1), . . . , (Ar, ur)}, where the Ai’s are clauses and the ui’s are finite
(positive or negative) integers. These integers ui, when positive, describe the
number of occurrences of the clause Ai. When they are negative, as we will see,
they represent the obligation to prove these clauses in the future. Notice also
that we do not require Ai �= Aj , when i �= j, thus we deal with multisets. We
say that two weighted formulas are (fold-unfold) equivalent, noted F1 ≈ F2, if
for any clause A, we have

∑
(A,u)∈F1

u =
∑

(A,v)∈F2
v. Notice that, contrarily to

traditional Partial MaxSAT formulas, we do not use clauses with infinite weight.
An inference rule is given by a multi-set of antecedent clauses and a multi-set of

consequent clauses where any truth assignment that satisfies all the antecedents,
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also satisfies all the consequent clauses. Notice that the MaxSAT Resolution
rule was originally proposed to solve MaxSAT, and therefore, it satisfies additional
properties. The rule preserves the number of unsatisfied clauses, for any assign-
ment. Here, following the original idea of Ignatiev et al. [9], we use these MaxSAT
techniques to solve SAT.

Definition 1. These are some examples of inference rules defined in the litera-
ture (with possibly different names):

where, in the MaxSAT Resolution rule, if A = x1 ∨ · · · ∨ xr, then A denotes
the set of |A| clauses {¬x1, x1 ∨ ¬x2, x1 ∨ x2 ∨ ¬x3, . . . , x1 ∨ · · · ∨ xr−1 ∨ ¬xr}.

Notice that, in the previous definition, Symmetric Cut is a special case of
Cut where A = B. Similarly, it is also a special case of MaxSAT Resolution
where A = B, since x∨A∨A only contain tautologies that are removed. Notice
that 0-Split can be generalized to the k-Split rule where Split is applied
only to clauses A of length at most k. Below, we will also see that Split and
Extension (defined in Sect. 3) are in essence the same inference rule.

Traditionally, fixed a setR of inference rules, a set of hypothesesH and a goalC,
a proof of H � C is a finite sequence of formulas that starts with H, ends in C, and
such that any other formula is one of the consequent of an inference rule in R whose
antecedents are earlier in the sequence. These proofs can naturally be represented
as bipartite DAGs, where nodes are either formulas or inference rules and edges
denote the occurrence of a formula in the antecedents or the consequent of the rule.

In this paper we consider three distinct more complicated notions of proof, or
proof systems: Circular resolution [1], MaxSAT Resolution with Extension [13],
and Dual-Rail MaxSAT [9] or its generalization Weighted Dual-Rail MaxSAT [3].

All these proof systems will share the same inference rules, but they will use
them in distinct ways (despite they have the same name). Thus, for instance, in
the weighted context, the Cut rule will replace the premises x∨A and ¬x∨B by
the conclusion A ∨ B. Therefore, in the weighted context, after the application
of the cut, these premises are no longer available for further cuts.

All these proof systems are able to prove the Pigeonhole Principle in polyno-
mial size. In this paper we will study the relative power of these proof systems.

2.1 Circular Proofs

First, we introduce Circular Proofs as defined by Atserias and Lauria [1]:
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Definition 2 (Circular Proof). Fixed a set of inference rules R, a set of
hypotheses H and a goal C, a circular proof of H � C is a bipartite directed graph
(I, J,E) where nodes are either inference rules (R ∈ I) or formulas1 (A ∈ J),
and edges A → R ∈ E denotes the occurrence of clause A in the antecedents of
rule R and edges R → A ∈ E the occurrence of clause A in the consequent of R.

Given a flow assignment Flow : I → N
+ to the rules, we define the balance

of the clause as:

Bal(A) =
∑

R∈Nin(A)

Flow(R) −
∑

R∈Nout(A)

Flow(R)

where N in(A) = {R ∈ I | R → A} and Nout(A) = {R ∈ I | A → R} are the sets
of neighbours of a node.

In order to ensure soundness of a circular proof, it is required the existence
of a flow assignment satisfying Bal(A) ≥ 0, for any formula A ∈ J \ H, and
Bal(C) > 0, for the goal C.

Atserias and Lauria [1] define Circular Resolution as the circular proof system
where the set of inference rules is fixed to R = {Axiom, SymmetricCut,Split}
and prove its soundness.

We will assume that the set of inference rules allows us to construct a constant
size circular proof where formula A is derivable from A in one or more steps.
The inference rule Axiom is included in R for this purpose (in the third proof of
Fig. 1, x ∨ ¬x is proved, which shows that Axiom rule is indeed not necessary).
If A is the empty clause, we can use the Split rule or even the 0-split rule and
the Cut or the Symmetric Cut rules. If A is of the form A = x ∨A′, we have
two possibilities, as shown in Fig. 1.

Fig. 1. Three ways to proof A from A.

The length of a proof is defined as the number of nodes of the bipartite graph.

2.2 Weighted Proofs

Second, we also introduce Weighted Proofs, following the ideas of Larrosa and
Heras [12] and Bonet et al. [4,6] for positive weights and Larrosa and Rollón [13] for
1 We keep the name formula for consistency with the original definition, although they

are really clauses.
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positive and negative weights. The main idea is that, when we apply an inference
rule, we replace the antecedents by the consequent, instead of adding the conse-
quent to the set of proved formulas. As a consequence, formulas cannot be reused.
This is similar to the definition of Read Once Resolution [10]. We use weighted for-
mulas, i.e. multi-sets of clauses instead of sets of clauses and, or more compactly,
pairs (A, u) where integer u represents the number of occurrences of clauseA. This
makes sense since non-reusability of clauses implies that it is not the same hav-
ing one or two copies of the same clause. Allowing the use of negative weights, we
can represent clauses that are not proved yet and will be proved later. Notice that
these proof systems were originally designed to solve MaxSAT. Here, we use them
to construct proofs of SAT problems. Hence, the original formulas are unweighted,
and we only use weighted formulas in the proofs.

Definition 3 (Weighted Proof). Fixed a set of inference rules R, a set of
hypotheses H and a goal C, a weighted proof of H � C is a sequence F1 � · · · � Fn

of weighted formulas such that:

1. F1 = {(A, uA) | A ∈ H} for some arbitrary and positive weights uA ≥ 0.
2. Fn contains the goal (C, u) with strictly positive weight u > 0, and possibly

other clauses, all of them with positive weight.
3. For every proof step Fi � Fi+1, either

(a) (regular step) there exist an inference rule A1, . . . , Ar � B1, . . . , Bs ∈ R
and a positive weight u > 0 such that

Fi+1 = Fi \ {(A1, u), . . . , (Ar, u)} ∪ {(B1, u), . . . , (Bs, u)}
or,

(b) (fold-unfold step) Fi+1 ≈ Fi.

Alternatively, fold-unfold steps may be defined as the application of the Fold
and Unfold rules defined as:

(C, u)(C, v)
(C, u + v)

Fold
(C, u + v)

(C, u)(C, v)
Unfold

Notice that, in regular steps, weights are positive integers. Instead, in the Fold
and Unfold rules, u and v can be negative. Clauses with weight zero are freely
removed from the formula, as well as tautological clauses x ∨ ¬x ∨ A. Notice
that only one fold-unfold step is necessary between two regular steps, just to get
(A, u) for every antecedent A of the next regular step, u being the weight of this
next step. Moreover, only a constant-bounded number of Fold and Unfold
rule applications is needed in this fold-unfold step. This motivates the definition
of the length of a proof as its number of regular steps.

Larrosa and Heras [12] define MaxSAT Resolution as a method to solve
MaxSAT using positive weighted proofs with the MaxSAT Resolution rule.
Bonet et al. [4,6] prove the completeness of this method for MaxSAT. The
method is complete even if we restrict the hypotheses H to have weight one.
Notice that the weighted proof system with the Cut rule is incomplete if we



Equivalence Between Systems Stronger Than Resolution 171

restrict hypotheses to have weight one. In other words, resolution is incomplete
if we restrict hypotheses to be used only once like in Read Once Resolution [10].

Notice also that the MaxSAT resolution rule defined in [12] allows the weights
of the antecedents to be different. Our version using equal weights for both
antecedents is equivalent using the fold and unfold rules.

Recently, Larrosa and Rollón [13] define MaxSAT Resolution with Extension
as the weighted proof system using R = {MaxSATResolution,Split} as
inference rules. In fact, they use a rule called Extension that, as we will see
below, is equivalent to the Split rule. They only explicitly mention the Fold
rule, but notice that the Unfold is a special case of the Extension rule.

Traditionally, we say that formulas F1 subsumes another formula F2, noted
F1 ⊆ F2, if for every clause A2 ∈ F2, there exists a clause A1 ∈ F1 such that
A1 ⊆ A2. Instantiating a variable by true or false in a formula F2 results in a
formula F1 ⊆ F2 subsuming it. Moreover, for most proof systems, if F1 ⊆ F2

and we have a proof of F2, we can easily construct a shorter proof of F1. In the
case of weighted proofs, we have to redefine these notions.

Definition 4 (Subsumption). We say that a weighted formula F1 subsumes
another weighted formula F2 if, either

1. F2 = {(B1, v1), . . . , (Bs, vs)} and there is a subset {(A1, u1), . . . , (Ar, ur)} ⊆
F1 such that

∑r
i=1 ui ≥ ∑s

j=1 vj and, for all i = 1, . . . , r and j = 1, . . . , s,
Ai ⊆ Bj, or

2. We can decompose F1 ≈ F ′
1 ∪ F ′′

1 and F2 ≈ F ′
2 ∪ F ′′

2 such that F ′
1 subsumes

F ′
2 and F ′′

1 subsumes F ′′
2 .

We say that a set of inference rules R is closed under subsumption if when-
ever F2 �R F ′

2 in one step and F1 subsumes F2, there exists a formula F ′
1 such

that F1 �R F ′
1 in linear2 number of steps and F ′

1 subsumes F ′
2.

The definition of a proof system being closed under subsumption is a gener-
alization of the definition of being closed under restrictions. If F1 subsumes F2,
it is not necessarily true that F2 under a restriction is equal to F1. For instance,
if F1 = {a,¬x ∨ b} and F2 = {x ∨ a,¬x ∨ b}, F1 subsumes F2, but F1 is not the
result of applying a restriction to F2.

Notice that MaxSAT Resolution is not closed under subsumption. For
example, fromF2 = {(x∨a, 1), (¬x∨b, 1)} we deriveF ′

2 = {(a∨b, 1), (x∨a∨¬b, 1),
(¬x ∨ b ∨ a, 1)}. However, from F1 = {(a, 1), (¬x ∨ b, 1)} that subsumes F2 we
cannot derive any formula subsuming F ′

2. If in addition we also use Split, from
F1, we can derive F ′

1 = {(a ∨ b, 1), (a ∨ ¬b, 1), (¬x ∨ b, 1)} that subsumes F ′
2.

Lemma 1. Weighted proofs using R = {MaxSATResolution,Split}, R =
{Cut} or R = {Split} are all closed under subsumption.

The union of rule sets closed under subsumption is closed under subsumption.

2 Linear in the number of variables of F1.



172 M. L. Bonet and J. Levy

2.3 Weighted Dual-Rail Proofs

Third, we introduce the notion of Weighted Dual-Rail Proofs introduced
by Bonet et al. [3] based on the notion of Dual-Rail Proofs introduced in [9].
Weighted Dual-Rail MaxSAT proofs may be seen as a special case of weighted
proofs where all clause weights along the proof are positive.

The dual-rail encoding of the clauses H is defined as follows: Given a clause A
over the variables {x1, . . . , xn}, Adr is the clause over the variables {p1, . . . , pn,
n1, . . . , nn} that results from replacing in A the occurrences of xi by ¬ni, and
occurrences of ¬xi by ¬pi. The semantics of pi is “variable xi is positive” and
the semantics of ni is “the variable xi is negative”.

Definition 5 (Weighted Dual-Rail Proof). Fixed a set of hypotheses H, a
weighted dual-rail proof of H � is a sequence F1 � · · · � Fm of positively
weighted formulas over the set of variables {p1, . . . , pn, n1, . . . , nn}, such that:

1. F1 = {(Adr, uA) | A ∈ H} ∪ {(¬pi ∨ ¬ni, ui), (pi, vi), (ni, vi) | i = 1, . . . , n},
for some arbitrary positive weights uA, ui and vi.

2. ( , 1 +
∑n

i=1 vi) ∈ Fm.
3. For every step Fi � Fi+1, we apply the MaxSAT Resolution rule (regular

step) or the fold-unfold step like in weighted proofs.

(Unweighted) Dual-Rail MaxSAT is the special case were weights vi’s are
equal to one. In the original definition [9], weights uA’s and ui are equal to
infinite. The use of infinite weights and negative weights together introduce some
complications. Here, we prefer to use arbitrarily large, but finite weights, which
result in an equivalent proof system.

Notice that, contrarily to generic weighted proofs, here weights are all pos-
itive. Notice also that, since weights uA’s and ui are unrestricted, from clauses
{(¬pi∨¬ni, ui), (pi, vi), (ni, vi)} we can derive

∑n
i=1 vi copies of the empty clause

plus (pi∨ni, vi) for every i using the MaxSAT Resolution rule. We have to derive
at least one more empty clause to prove unsatisfiability.

3 Basic Facts

In this section we prove that MaxSAT Resolution with Extension [13] may be
formulated in different but equivalent ways.

First, notice that the Extension rule, defined in [13]:

does not fit to the weighted proof scheme (not all consequent formulas have
the same weight in the inference rule). However, it is easy to prove that, in the
construction of weighted proofs, this rule is equivalent to the Split rule:

Lemma 2. The Split and Extension rules are equivalent in weighted proof
systems.
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Proof. We can simulate a step of Split as:

(A, u)
Extension(A, u)

(A,−u) (x ∨ A, u) (¬x ∨ A, u)
Fold(x ∨ A, u) (¬x ∨ A, u)

Conversely, we can simulate a step of Extension as:

Unfold(A, u) (A,−u)
Split(A,−u) (x ∨ A, u) (¬x ∨ A, u)

�

Second, we will prove that MaxSAT Resolution with Extension may be for-
mulated using the Symmetric Cut rule instead of the MaxSAT Resolution
rule. As we have already said, the Symmetric Cut rule is a special case of
the MaxSAT Resolution rule, where A = B; i.e. all the clauses of the form
x∨A∨¬B disappear (see comments after Definition 1). Interestingly, this limited
form of MaxSAT Resolution is polynomially equivalent to the normal MaxSAT
Resolution in the presence of Split (or equivalently Extension).

Lemma 3. Weighted proofs using R = {MaxSATResolution, Split} are
polynomially equivalent to weighted proofs using R = {SymmetricCut, Split}.
Proof. Symmetric Cut is a particular case of MaxSAT resolution, where
A = B. Therefore, the equivalence is trivial in one direction.

In the opposite direction, we have to see how to simulate one step of
MaxSAT resolution with a linear number of Symmetric Cut and Split
steps. Let A = a1 ∨ · · · ∨ ar and B = b1 ∨ · · · ∨ bs.

(x ∨ A, u) (¬x ∨ B, u)
Split(x ∨ A ∨ ¬b1, u) (x ∨ A ∨ b1, u)

(¬x ∨ B, u)
Split(x ∨ A ∨ ¬b1, u) (x ∨ A ∨ b1 ∨ ¬b2, u) (x ∨ A ∨ b1 ∨ b2, u)

(¬x ∨ B, u) (s − 2) × Split(x ∨ A ∨ B, u)
(x ∨ A ∨ ¬b1, u) · · · (x ∨ A ∨ b1 ∨ · · · ∨ bs−1 ∨ ¬bs, u)

(¬x ∨ B, u)
r × Split(x ∨ A ∨ B, u) (¬x ∨ A ∨ B, u)

(x ∨ A ∨ B, u) (¬x ∨ B ∨ A, u)
Symmetric Cut(A ∨ B, u)

(x ∨ A ∨ B, u) (¬x ∨ B ∨ A, u)

In blue we mark the clauses that are added by the last inference step. �

Notice that in the previous proof, the equivalence doesn’t follow for the
subsystem where the number of literals on the formula performing the Split
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is bounded. So the previous argument does not show the equivalence between
MaxSAT Resolution plus k-Split and Symmetric Cut plus k-Split.

Lemmas 2 and 3 allow us to conclude:

Corollary 1. MaxSAT Resolution with Extension [13] is equivalent to weighted
proofs using rules R = {SymmetricCut, Split}.

The set R in Corollary 1 are precisely the rules used to define Circular Res-
olution [1] (except for the use of the Axiom rule that is added for a minor
technical reason). This simplifies the proof of equivalence of both proof systems.

4 Equivalence of Circular Resolution and MaxSAT
Resolution with Extension

In this Section we will prove a more general result: the equivalence between a
proof system based on circular proofs with a set of inference rules R and a proof
system based on weighted proofs using the same set of inference rules R.

First we prove the more difficult direction, how we can simulate a circular
proof with a weighted proof.

Lemma 4. Weighted proofs polynomially simulate Circular proofs using the
same set of inference rules.

Proof. Assume we have a circular proof (I, J,E) with formula nodes J , inference
nodes I, edgesE, hypotheses H ⊂ J and goalC ∈ J . Without loss of generality, we
assume that the hypotheses formulas do not have incoming edges: for any A ∈ H,
we haveN in(A) = ∅. Notice that removing these incoming edges in a circular proof
only decreases the balance of hypotheses formulas (that are already allowed to have
negative balance) and increases the balance of the origin of these edges.

Now, assign a total ordering µ : I ∪ J → {1, . . . , |I| + |J |} to each node with
the following restrictions: 1) hypotheses nodes H go before any other node, and
2) for every inference node R, the formulas it generates are placed after R in the
ordering µ. So, for any R ∈ I and A ∈ Nout(R) we have µ(R) < µ(A). Notice
that, if hypotheses nodes do not have incoming edges, there always exists such
an ordering.

We construct the weighted proof F0 � F|H| � · · · � F|I|+|J| defined by:

F0 = {(A,−Bal(A)) | A ∈ H}
Fm = {(A,F low(R)) | (A → R) ∈ E ∧ µ(A) ≤ m < µ(R)} ∪

{(A,−Flow(R)) | (A → R) ∈ E ∧ µ(R) ≤ m < µ(A)} ∪
{(A,F low(R)) | (R → A) ∈ E ∧ µ(R) ≤ m < µ(A)} ∪
{(A,Bal(A)) | A ∈ J \ H ∧ µ(A) ≤ m}

for any m ∈ {|H|, . . . , |I| + |J |}.
Notice that Fm only depends on the edges that connect a node smaller or

equal to m with a node bigger than m. Notice also that by definition of µ we
never have the situation (R → A) ∈ E ∧ µ(A) < µ(R).
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Now, we will prove that this is really a weighted proof.
Since all clauses from H only have outgoing edges, their balance is neg-

ative, and the weights in F0 are positive. Since, according to µ, the small-
est nodes are the hypotheses, and they do not have incoming edges, we have
F|H| = {(A,F low(R)) | (A ∈ H ∧ (A → R) ∈ E}. Moreover, as Bal(A) =
−∑

R∈Nout(A) Flow(R) ≤ 0, we can obtain F|H| from F0 by fold-unfold step.
For the rest of steps Fi � Fi+1 with i ≥ |H|, we distinguish two cases

according to the kind of node at position i + 1:

1. For formula nodes A ∈ J , with µ(A) = i + 1.
By definition of µ, for any R ∈ N in(A), we have µ(R) < µ(A). For the outgoing
nodes, we can decompose them into Nout(A) = I1 ∪ I2, where, for any R ∈ I1,
µ(R) > µ(A), and for any R ∈ I2, µ(R) < µ(A). In Fi, we have (A,F low(R)),
where R ∈ N in(A), and, for every R ∈ I2, we also have (A,−Flow(R)).
Applying the Fold and Unfold rules, we derive the set of clauses
{(A,F low(R)) | R ∈ I1} plus (A,m), where m =

∑
R∈N in(A) Flow(R) −

∑
R∈Nout(A) Flow(R) ≥ 0 is the balance of A.

2. Inference nodes R ∈ I, with µ(R) = i + 1.
In this case, for all consequent A ∈ Nout(R) of R, we have µ(A) > µ(R).
However, the antecedents can be decomposed into two subsets J1 = {A ∈
N in(R) | µ(A) < µ(R)} and J2 = {A ∈ N in(R) | µ(A) > µ(R)}. In Fi, we
only have the clauses of J1. In order to apply the same rule R with weights,
we have to also introduce the clauses of J2. This can be done applying the
Unfold rule that, from the empty set of antecedents, deduces (A,F low(R))
and (A,−Flow(R)), for any A ∈ J2. After that, we have no problem to apply
the same rule R with weight Flow(R), obtaining Fi+1.

�
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Example 1. Consider the third circular proof of Fig. 1. We construct the corre-
sponding weighted proof, as described in the proof of Lemma4, where nodes are
ordered from top to bottom according to µ, and all inference nodes have the
same flow:

Lemma 5. Circular proofs polynomially simulate weighted proofs using the
same set of inference rules.

Proof. Assume we have a weighted proof F1 � F2 � · · · � Fn, where F1 are
the hypotheses, and Fn contains the goal and the rest of clauses in Fn have
positive weights. We will construct a circular resolution proof with three kinds
of formula nodes: J1 called axiom nodes, J2 called auxiliary nodes (used only
in the base case) and J3 called normal nodes and inference nodes I such that
there exist a flow assignment Flow : I → N and balance Bal : J → N satisfying
1) the set of axiom nodes A ∈ J1 is the set of hypotheses in F1 and satisfy
Bal(A) = −∑

(A,c)∈F1
c 2) the auxiliary nodes all have positive balance and

3) for every clause (A, u) in Fn, there exists a unique normal node A ∈ J3 that
satisfies Bal(A) =

∑
(A,c)∈Fn

c. The construction is by induction on n.
If n = 1, for any hypothesis A of the weighted proof, let uA =

∑
(A,u)∈F1

u.
We construct the constant-size circular proof that proves A from A with an
axiom node A with balance −uA, a normal node A with balance uA, and the
necessary auxiliary nodes. (Recall that we assume that the set of inference rules
R allow us to infer A with balance uA, from A with balance −uA, for any clause
A, using a constant-size circular proof).

Assume now, by induction hypothesis, that we have constructed a circular
resolution corresponding to F1 � · · · � Fi. Depending on the MaxSAT resolution
rule used in the step Fi � Fi+1, we have two cases:

1. If the last MaxSAT inference is a Fold or Unfold, the same circular reso-
lution proof constructed for F1 � · · · � Fi works for F1 � · · · � Fi+1. Only in
the special case of unfolding ∅ � (A, u), (A,−u), if there is no formula node
corresponding to A, we add a lonely normal node A (that will have balance
zero) to ensure property 3).
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2. If it corresponds to any other rule R : A1, . . . , Ar � B1, . . . , Bs, we have
Fi = Fi−1 \ {(A1, u), . . . , (Ar, u)} ∪ {(B1, u), . . . , (Bs, u)}, for some weight u.
We add, to the already constructed circular resolution proof, a new inference
node R with flow Flow(R) = u. We add edges from the formula nodes cor-
responding to Ai’s to the node R. If they do not exist, we add new normal
nodes Bj ’s. Finally, we add an edge from R to every Bj . The addition of these
nodes has the effect of reducing the balance of Ai’s by u, and creating nodes
Bj with balance u, if they did not exist, or increasing the balance of Bj in
u, if it existed. By induction hypothesis, this makes property 3) hold for the
new circular resolution proof and Fi.

Notice that all clauses in F1 have strictly positive weight. Therefore, all axiom
formula nodes in J1 have negative balance and all nodes in J2 positive balance.
However, since clauses in Fi, for i �= 1, n may have negative weight, balance of
normal nodes in J3 can also be negative during the construction of the circular
resolution proof. Since all clauses in Fn have positive weight, at the end of the
construction process, all normal nodes will have positive balance. Therefore, at
the end of the process, the set of hypotheses H will be J1. �

Corollary 2. MaxSAT Resolution with Extension and Circular Resolution are
polynomially equivalent proof systems.

Proof. From Lemmas 2, 3, 4 and 5. �

5 Systems that Simulate Dual-Rail MaxSAT

In this Section, we analyze proof systems weaker than Circular Resolution and
MaxSAT Resolution with Extension. We replace the Split rule by the 0-Split
rule. Relaxing this rule forces us to use the non-symmetric version of the cut
rules, as the following example suggests.

Example 2. Weighted proofs and circular proofs using {SymmetricCut,
0-Split} are not able to prove the unsatisfiability of the following formulas

F1 = {¬x ∨ y, ¬y ∨ z, ¬z ∨ ¬x, x ∨ v, ¬v ∨ w, ¬w ∨ x}

F2 = {¬x, x ∨ y, ¬y}
The previous example suggests that we cannot base a complete proof system

in the Symmetric Cut rule, when we restrict the power of the Split rule. The
natural question is how to compare the power of the Cut and the MaxSAT
Resolution rule, when we are in the context of weighted proofs, and the rules
replace the premises by the conclusions.

Example 3. Consider the formula F1 = {x ∨ y, x ∨ ¬y, ¬x}.
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Assigning weight one to all the hypotheses clauses we can deduce the empty
clause with weight one using MaxSAT Resolution:

(x ∨ y, 1), (¬x, 1), (x ∨ ¬y, 1) � (y, 1), (¬x ∨ ¬y, 1), (x ∨ ¬y, 1)
� (y, 1), (¬y, 1) � ( , 1)

In the first step of this proof, since we are working with weighted proofs,
after using x ∨ y and ¬x, these clauses disappear, and instead we obtain y and
¬x ∨ ¬y.

To simulate such a step with the Cut in the replacement form, we also use
x ∨ y and ¬x, but only obtain y. In the following steps, we don’t have ¬x ∨ ¬y,
but we can use ¬x, that subsumes it. However, we need to use clause ¬x twice
(or ¬x with weight 2), one for the application of the first cut rule, and the other
one to do the job of ¬x ∨ ¬y. Repeating the same idea for the rest of the steps,
we obtain the following proof with the Cut in the context of replacement rule
with weights:

(x ∨ y, 1), (¬x, 2), (x ∨ ¬y, 1) � (y, 1), (¬x, 1), (x ∨ ¬y, 1)
� (y, 1), (¬y, 1) � ( , 1)

In this example, a deeper reorganization of the proof (cutting first y and then
x) allows us to derive the empty clause with weights one for all the premises:

(x ∨ y, 1), (¬x, 1), (x ∨ ¬y, 1) � (x, 1), (¬x, 1) � ( , 1)

However, this is not always possible. For some unsatisfiable formulas, if we assign
weight one to all the premises, we cannot obtain the empty clause using the
Cut rule replacing premises by conclusions. This fact is deeply related to the
incompleteness of the Read Once Resolution [10]. For instance, consider the
unsatisfiable formula {x1 ∨x2, x3 ∨x4,¬x1 ∨¬x3, ¬x1 ∨¬x4, ¬x2 ∨¬x3, ¬x2 ∨
¬x4} from [11]. In the context of weighted proofs, using the replacement Cut
rule, we need to start with clauses with weight bigger than one in order to prove
unsatisfiability. On the other hand, using MaxSAT Resolution all hypotheses
may have weight one, since Bonet et al. [4,6] prove that, for any unsatisfiable
formula, we can derive the empty clause with the MaxSAT Resolution rule
and weight one for all the premises.

The previous example suggests us how we can simulate a weighted proof
using MaxSAT Resolution with a weighted proof using Cut, at the cost of
increasing the weights of the initial clauses.

Lemma 6. Let R be a set of inference rules closed under subsumption.
Weighted proofs using {Cut} ∪ R are polynomially equivalent to weighted

proofs using {MaxSATResolution} ∪ R.

Proof. In one direction the proof is trivial, since MaxSAT Resolution has the
same consequent as the Cut rule plus some additional clauses.

In the other direction, let n be the number of variables of the formula. Let
F1 � · · · � Fm be a weighted proof using {MaxSAT Resolution}∪R. We can
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find an equivalent proof F ′
1 � · · · � F ′

m′ using {Cut}∪R, where m′ = mO(n),
such that 1) F ′

1 = {(A, v) | (A, u) ∈ F1 ∧ v ≤ km u}, where k = O(n) and
2) F ′

m′ subsumes Fm.
For the base case m = 1, it is trivial.
For the induction case m > 1, let F1 � . . . Fm+1 be the proof with MaxSAT

Resolution and let F ′
1 � · · · � F ′

m′ be the proof with Cut given by the
induction hypothesis for the first m steps. There are three cases:

1. If the last inference step Fm � Fm+1 is a Fold, Unfold, then the same
proof already works since F ′

m also subsumes Fm+1.
2. If this last step applies any rule from R, by closure under subsumption of R,

applying a linear number of rules of R we can construct F ′
m′ � · · · � Fm′+O(n),

where F ′
m′+O(n) subsumes Fm+1.

3. If the last inference step is an application of the MaxSAT Resolution rule,
let

Fm = F ∪ {(x ∨ A, u), (¬x ∨ B, u)} and
Fm+1 = F ∪ {(A ∨ B, u), (x ∨ A ∨ B, u), (¬x ∨ B ∨ A, u)}.

Let r = 1 + max{|A|, |B|} = O(n) and let F ′′
1 � · · · � F ′′

m′ the same
proof as F ′

1 � · · · � F ′
m′ , where every weight has been multiplied by r.

By induction hypothesis, F ′
m′ subsumes Fm. Hence, F ′′

m′ contains a clause
(A′, r u1) corresponding to (x ∨ A, u), where A′ ⊆ x ∨ A and u′ ≥ u, and a
clause (B′, r u2) corresponding to (¬x∨B, u), where B′ ⊆ ¬x∨B and u2 ≥ u.
If x �∈ A′ or ¬x �∈ B′, applying the Unfold rule to F ′′

n we can split these
clauses into clauses subsuming {(A ∨B, u), (x ∨A ∨B, u), (¬x ∨B ∨A, u)}
with higher weights. Otherwise, we apply the Unfold rule to obtain r copies
of (A′, u) and r copies of (B′, u), plus some useless clauses. The application
of the Cut rule to one copy of (A′, u) and one of (B′, u) results in a clause
that subsumes (A ∪ B, u). There are also at least |B| more copies of (A′, u)
that will subsume the clauses (x ∨ A ∨ B, u), and at least |A| more copies of
(B′, u) that will subsume the clauses (¬x ∨ B ∨ A, u).

Notice that the length of the proof ismultiplied byO(n).Theweights aremultiplied
by Om(n), hence its logarithmic representation is multiplied by mO(log n). �

Corollary 3. The circular proofs system using {Cut, k-Split} is polynomially
equivalent to theweighted proofs systemusing {MaxSATResolution, k-Split}.
Proof. From Lemma 6 and Lemmas 4 and 5.

In [13], it is proved that MaxSAT Resolution with Extension can simulate
Dual-Rail MaxSAT. Next we prove that even using 0-Split instead of Split,
it can simulate Weighted Dual-Rail, and as a consequence the weaker system
Dual-Rail MaxSAT.

Theorem 1. The weighted proof system using R = {MaxSATResolution,
0-Split} polynomially simulates the Weighted Dual-Rail MaxSAT proof system.
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Proof. Let F1 � · · · � Fm be a proof in weighted dual-rail MaxSAT. Let Ardr

be the reverse of the dual-rail encoding, i.e. the substitution of variable pi by
xi and of ni by ¬xi. Applying this translation we get Frdr

1 = {(A, uA) | A ∈
H} ∪ {(xi, vi), (¬xi, vi) | i = 1, . . . , n} and Frdr

n = {( , 1 +
∑n

i=1 vi)} ∪F where
all clauses in F have positive weight. Moreover, all steps in the proof satisfy
Frdr

i � Frdr
i+1, since all MaxSAT cuts between pi and ¬pi, or between ni and ¬ni

will become cuts of xi and ¬xi. Notice that clauses ¬pi ∨ ¬ni are translated
back as xi ∨ ¬xi, hence tautologies and removed. Cuts in F1 � · · · � Fm with
¬pi ∨ ¬ni, when translated back, have not any effect (they replace pi by ¬ni or
ni by ¬pi, hence xi by xi), thus they are removed. We can construct then the
following weighted proof using R:

{(A, uA) | A ∈ H}
� {(A, uA) | A ∈ H} ∪ {( ,−∑n

i=1 vi), ( , vi) | i = 1, . . . , n} Unfold
� {(A, uA) | A ∈ H} ∪ {( ,−∑n

i=1 vi), (xi, vi), (¬xi, vi) | i = 1, . . . , n} 0-Split
= Frdr

1 ∪ {( ,−∑n
i=1 vi)}

· · ·
� Frdr

n ∪ {( ,−∑n
i=1 vi)}

= {( , 1 +
∑n

i=1 vi)} ∪ F ∪ {( ,−∑n
i=1 vi)} Fold

� {( , 1)} ∪ F

that is a valid weighted proof for H � . �

Corollary 4. The circular proof system using R = {Cut, 0-Split} polynomi-
ally simulates the Weighted Dual-Rail MaxSAT proof system.

Proof. Weighted Dual-Rail MaxSAT is polynomially simulated by weighted
proofs using {MaxSATResolution, 0-Split}, by Theorem 1. This is simu-
lated by weighted proofs using {Cut, 0-Split}, by Lemma 6. And this is simu-
lated by circular proofs using {Cut, 0-Split}, by Lemma 4.

6 Conclusions

We have shown how circular proofs and weighted proofs (with positive and neg-
ative weights), both parametric in the set of inference rules, are equivalent proof
systems. We have also shown that if Split is one of such inference rules, then it
does not matter if the other rule is Cut, MaxSAT Resolution or Symmet-
ric Cut. In all the cases, we get polynomially equivalent proof systems. This
proves the equivalence of Circular Resolution [1] and MaxSAT Resolution with
extensions [13].

In these formalisms, if we restrict the Split rule to clauses of length zero (as
� x,¬x), together with the Cut rule, we still get a strong enough proof system

enable to simulate Weighted Dual-Rail MaxSAT [3,9] and to get polynomial
proofs of the pigeonhole principle.
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