®

Check for
updates

Modeling and Specification
of Bootstrapping and Registration Design
Patterns for IoT Applications

Mohamed Hadj Kacem®), Imen Tounsi, and Najeh Khalfi

ReDCAD laboratory, University of Sfax, Sfax, Tunisia
mohamed.hadjkacem@isimsf.rnu.tn, imen.tounsi@redcad.org
http://www.redcad.org/members/hadjkacemm/,
http://www.redcad.org/members/imen.tounsi/

Abstract. The architectures of software systems are becoming more
complex, large, and dynamic. The design of these architectures allows
architects to master building complex software systems. But, their infor-
mal description, may give rise to ambiguity, their understanding becomes
more and more difficult and leads to the incorrect implementation of
these software systems. There are many solutions allowing software archi-
tecture design. In this paper, we use software design patterns as a solu-
tion. This is due to their reusable software elements. Our principal objec-
tive is to propose other alternatives to the informal visual description of
software architectures. In past work, we have studied Service Oriented
Architectures. We used SOA design patterns with standard formal nota-
tions. This work is a continuation to the past one. We apply our approach
on design patterns for the Internet of Things. We introduce a refinement-
based approach for modeling IoT design patterns. It takes advantage of
graphical modeling and formal method. It is organized around two main
axes. The first axis is to provide modeling solutions in conformance with
the UML standard language. The second axis covers the general specifi-
cation of design pattern models with the Event-B method. As a result, we
propose a design support tool for IoT architectures based on IoT design
patterns. It allows modeling of correct-by-design software systems.

Keywords: Design patterns - UML modeling - Event-B method -
Pattern modeling - Formal specification

1 Introduction

The Internet of Things (IoT) is a complex domain of application that allows
objects to exist on the Internet. Creating systems in this domain is a challenge
because it involves both software and hardware, sensing and actuating devices,
a communication infrastructure, in addition to storage constraints. For this,
a variety of IoT design patterns have been proposed in various categories to
address variety of issues [7]. They propose solutions for common and recurring

© The Author(s) 2020
M. Jmaiel et al. (Eds.): ICOST 2020, LNCS 12157, pp. 55-66, 2020.
https://doi.org/10.1007/978-3-030-51517-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51517-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-51517-1_5

56 M. Hadj Kacem et al.

problems to architects and designers in the IoT domain. Most of these patterns
are presented visually and informally, there is no formal semantics associated
with them. Hence, their meanings may be imprecise. They can lead to their
misunderstanding and misuse.

To remedy this problem, we propose an approach that allows to model and
specify these patterns with a formal notation that allows to reuse them cor-
rectly. Our objective is to prove the relevance of these patterns. We illustrate
our approach with different pattern examples. We propose a graphical model-
ing of these patterns in order to describe both their structural and behavioral
features. Then, we propose a generic formal specification of these patterns using
the formal Event-B method. Finally, we develop a graphical editor describing
our approach using the Eclipse modeling platform.

The rest of this paper is organized as follows. Section 2 focuses on the struc-
tural modeling of IoT design patterns and Sect.3 focuses on the behavioral
modeling. In Sect. 4, we present an application to a case study of our approach.
Section 5 describes how to formally specify IoT design patterns with the Event-
B method. In Sect. 6, we present our tool, which implements the proposed app-
roach. Section 7 discusses related work. Section 8 concludes and gives future work
directions.

2 Structural Patterns Modeling

We provide a modeling solution for describing IoT design patterns using a visual
notation based on the graphical UML language in order to give readable mod-
els. We first describe a meta-model, then we present a model instance of the
design pattern. The metamodel extends the component diagram of UML 2.0
(Unified Modeling Language). The use of UML is motivated by four distinct
rationales: (i) It is a standard modeling language defined by OMG. (ii) It is used
to describe software architectures. (iii) Component diagrams of UML allow us to
represent structural features of patterns. (iv) Sequence diagrams of UML allow
us to represent behavioral features of patterns.

Structural features of patterns are generally specified by the types of entities.
The configuration of the entities is also described in terms of static relationships
between them [16]. We model structural features of design patterns with the
extended Component diagram. In the following, we present the proposed meta-
model. An example of a corresponding model is presented and illustrated with
case studies as follows.

2.1 Metamodel

The extended Component diagram describes, by a set of concepts, the structure
of an IoT architecture. We use it to describe the architecture of IoT design
patterns. More specifically, it is to define the entities that can be involved in
the pattern, their types and their dependencies (connections). The metamodel
presented in Fig.1 extends the metamodel of the component diagram of UML

Modeling of Bootstrapping and Registration IoT Design Patterns 57

2.0. In this metamodel, we concentrate on two categories of design patterns;
“Bootstrapping Design Patterns” and “Registration Design Patterns”.

“Bootstrapping Design Patterns” allow configuring new devices. They are
composed of “Medium Based Bootstrap Pattern” and “Remote Bootstrap Pat-
tern”. “Medium Based Bootstrap Pattern” allows to configure a new device
on-site through a removable storage medium inserted in the device. This sup-
port contains the necessary information for configuration. “Remote Bootstrap
Pattern” is a configuration pattern used in case that a device is placed far away
and is difficult to reach. The configuration in this case is done by downloading
configuration information from a bootstrap server.

“Registration Design Patterns” allow to register the attributes and the fea-
tures of a new device on the Back-end server. The registration is used to facil-
itate the communication and the interrogation with other connected objects.
There are many registration patterns. In this work, we present two patterns. So
“Registration Design Patterns” are composed of “Automatic Client Driven Reg-
istration Pattern” and “Server Driven Model Pattern”. The “Automatic Client
Driven Registration Pattern” allows the device to register on the Back-end server
via an API call. The “Server Driven Model Pattern” is used to create a device
model that includes its description and functionality.

The basic elements of the metamodel are:

Component and Object: Entities, that make up the architecture of an IoT
design pattern, can be either Components or Objects. All objects are com-
ponents, but not all components are necessarily objects. An object can be
connected to the internet, it can receive and send data.

Port: Entities can have Ports that constitute interaction points with their envi-
ronment. These Ports are related to one or more provided or required Inter-
faces.

Interface: The interfaces are the points of communication that allow interac-
tion with the environment. For an entity, there are two types of interfaces.
The Provided Interfaces describe the services provided by the component.
The Required Interfaces describe the required services that other components
must provide for the good functioning of component. These interfaces are
specified via the ports.

Connector: The communication path between Entities within an architecture
is called a Connector. It ensures the link between a Provided port and a
Required port to form a complete and coherent system.

Device: A device is an Object. It is the entry point of the physical environment,
it is used to process sensor data and to control actuators.

2.2 General Pattern Model

In this section, we present two general pattern models as instances of the pro-
posed metamodel. We have used different notations that can be used as a graph-
ical description of the entities presented in the model. We are based on the work
of Reinfurt et al. [8].

M. Hadj Kacem et al.

58

*

T

T

*0 B 0 |Suing : oweNIojEMOY
Kemajenao1Ad(q 103EN}0Y
. - FoL1u]
Bumg : owepoafqo-| * 0 P _ 1
QovjI] _|
3 "0 £0 S . 5 <
HLHES papiaoig ’ parmbay IS © SUEN 2
—
_ Hoq 1 JOSU9S Wb
[0 =
«T
v
uonensigoy SuLng : dWENOJUJ-
1 densjooguoneuriojuy
«T
<
109[q0
Suing :oweNI0109Uu0)- M Fung : SWeNWINPIA-
g ! !
&n
10305UU0)) £ Nﬁ WINPaNP5EI0ls
1
SULNS:OWENIOIAS(-
T -
D Q10
1oa108densjoog 1
T densjoog
T * A
Y 7z \Z
wanegdensioogaoway waneJdensioogpaseguimpay|

SUINEJUSISOqUONENSISOY

@

juduodwo))

suraneJudisog3urddensioog

Fig. 1. Metamodel of IoT design patterns

Modeling of Bootstrapping and Registration IoT Design Patterns 59

There are two possible general models depending on the location of the
device. If the device is placed locally, we use the “Medium Based Bootstrap
Pattern” as a solution to configure the new device. If it is placed at a distance,
we use the “Remote Bootstrap Pattern” as a solution. In Fig. 2, we represent the
general pattern model of the “Medium Based Bootstrap Pattern”. The solution
proposed by this pattern to configure a new local device is to use an object of
type Storage Medium containing information configuration. In Fig. 3, we repre-
sent the general pattern model of the “Remote Bootstrap Pattern”. The solution
proposed by this pattern to configure a new remote device is to use a component
of type BootstrapServer allowing the upload of the configuration information
using the PushBD connector.

@ « BootstrappingDesignPatterns »

« MediumBasedBootstrapPattern»

D «Device »

DeviceName @ « BootstrappingDesignPatterns »

: « StorageMedium »

MediumName Z {al| « RemoteBootstrapPattern»

« InformationBootstrap »]« BootstrapServer» D « Device »

DeviceName
InfoName «Connector »

PushDB

(o
E%}E

« Connector »
PushBD

Fig. 2. General pattern model of the Fig. 3. General pattern model of the
Medium Based Bootstrap Pattern Remote Bootstrap Pattern

In Fig. 4, we represent the general pattern model of the “Registration Design
Pattern”. The solution proposed by this pattern to register a new device. The
device is related to the BackEndServer with a connector named PushDA in order
to be registered on it via an API call. Meta-data entered by the device are
recorded in the RegistryDevice through the PushAR connector. The RegistryDe-
vice component has a connector named PushRDm to store a device template in
a database component named Device Model DataBase of the “Server Driven
Model pattern”. A device can integrate an object of type Sensor or an Actuator.
All objects of the patterns have ports to communicate with others.

60 M. Hadj Kacem et al.

g « RegistrationDesignPatterns »
DG;
«A icClientDri istration » - N
«ServerDrivenModel »
Devi Bl «BackEndServer»
«Device» 4 « Device Model
DeviceName S < AP, «Connector T «Guucpe» | Database »
«Conneetdf» ””’f’ « RegistryDevice » o
S (T 0—o— En(Crpt
NI 3) ||
5 ol 0O OO
2/ «Connectors « onnectpr »
« Connectof p PushAR LJ LJ PyshRDp
T
!
«Sensor » é) «Connecton»
Cometom | ° Sense ccomesors L7 Bl
ushDS” « Name » Paiai(e}
o—0—-
« Device I—IS Thi Actuat
« SmartThing »
Comee (== Gateway » s - «Actuator»
miben, «Connector» | 2 « ActuatorName »
ft’”’“ﬂ" <« ObjectName »
B O—0 -
b o) S
o—_ 0—o-0
«Connector » «Connector »
PushDDg PushDgSt J
«Connector » ‘
PushDAc (j\

Fig. 4. General pattern model of the Registration Design Pattern

3 Behavioral Patterns Modeling

To model behavioral features of the design patterns, we use the UML 2.3
sequence diagram. We describe through this diagram successive interactions
between the different entities of the IoT application in order to represent the
two categories of the design patterns. Figure5 represent the sequence diagram
that illustrates this behavior. We grouped the interactions into two phases.

— Configuration phase:

e Local configuration: In the configuration phase and at the “Medium
Based Bootstrap Pattern” level, the configuration is done by cutting
the storage medium configuration information (Storage Medium) to the
device.

¢ Remote configuration: The configuration at the “Remote Bootstrap
Pattern” is done by downloading information from a Bootstrap Server to
the device.

— Registration phase: In the registration phase, the device triggers a regis-
tration process on the Back-end Server. After the registration, the metadata
provided by the device are registered in the RegistryDevice. Subsequently, an
instance of the model of this device is stored in a Device Model Database.

If the device, go through the configuration and the registration phases, it
becomes able to create communication links with other connected objects. The
exchange of messages between them is done through a communication interme-
diary (Device Gateway). A connected object (smart thing) can interact directly
with the RegistryDevice to retrieve information about a device if it is offline.

Modeling of Bootstrapping and Registration IoT Design Patterns 61

Back End Registry Device || Data Base:
Storage Medium Bootstrap Server Server sisiry Device Model

Device ‘

Device Smart
Gateway Thing

| |
| I
| i
|
i

[Localization device = local]

Paste!information o Configuration phase
(Medium Based Bootstrap Pattern)
ACK

[Localization device = Remote]

- Registration phase
’V Information

(Server Driven Model Pattern)

T
1
|
|
|
i
H
|
i
|
i
i
\

&l

Pl
|
i
|
1
|
|
I [
|
1
i
1
|

i IR

ACK || Request - Registration /| Registration

- .

i ACK request /[1]Meta Data
| |

Configuration phase '
(Remote Bootstrap Pattern) B et

—

! Registration phase Storage RequeSt[Storage Device

'1 (Automatic Client Driven Model Pattern) ‘ Model L
é Information request

‘} Resp

| L Transmit

! Send Message Message

i

! Transmit Resp Send Resp

i

! Transmit Message Send Messagq
i Send Resp Transmit Resp

Fig. 5. Sequence diagram of the used IoT patterns

4 Case Study: Smart Home

To validate our approach, we chose to apply a case study in the IoT application
domain called “Smart Home”.

A smart home is usually made up of remote-controlled automated compo-
nents which can be doors, windows, lamps, etc. It can include several other
components that can be monitored and controlled remotely. Most of these com-
ponents can be controlled by a mobile device or a computer. In our case study,
we add a new device (a camera) to a smart home. This device makes it possible
to control the various rooms of the house. For example, if a door or a window
left open, the camera informs the user immediately through a notification sent
to their smartphone. It can also send alerts when it detects unknown faces.

First, the camera is added without any information to initiate its first con-
nection. We then apply the Meduim Based Bootstrap design pattern to have its
configuration information. This information is inserted into the device through
a memory card. Second, we go through the registration procedure on the main
server (BackEndServer). This procedure is done through the use of the two
patterns of the Registration Design Patterns category which are the automatic
client driven registration pattern and the server driven model pattern which
allow registering the device on the main server. Finally, the camera became able
to communicate and create connection links with its communication partners.
The camera communicates with the user’s smartphone to notify him of what is
happening in real-time.

We model this application through the use of the model shown in Fig. 6. The
camera is associated with an object of type “Device”, the memory card is defined
as an object of type “Storage Medium” and the Smart phone is associated as

62 M. Hadj Kacem et al.

@ «BootstrappingDesign Patterns » « RegistrationDesignPatterns »
« AutomaticClientDrivenRegistrationPattern » «ServerDrivenModel
« MeduimBasedBootstrapPattern » Pattern»
- «BackEndServer »
E] «Device»
Famira S o dduncetbr » « DeviceModel
“améra _Surveillance ataBas
- «Cofnector » « APL» « RegistryDevice » usfiDin DataBase »
PlshAD o |
: « StorageMeduim » H @7, @
¢ —o— HOF
CarteMémoire F—O « Corfecton { onnecor »
«Cofncctor » PushAR T PyshRDm
‘ Caméra_Name : Netatmo_Welcome | PyshDA L‘J
[Compatibilité : 108, Android | 6
c 5~ «Sensor» «Connector
- — lConnectons «Connector PushRS
l Connexion : Wifi | PushDSr P) i
[Definition : 192071080 | e
Devil -
Fonctionnalité : cof é «Comector « Device «SmartThing »
i i PushDgD Gateway » «Comnector » Smartphone
PushSDg
‘ AdressIP : 1275619855 ‘ B 00—
0 O
«Conncctor » «Comnector »|
PushDDg PushDgS

Fig. 6. Smart home case study

an object of type “SmartThing”. The propagation of events between objects is
done through a DeviceGateway.

5 Patterns Specification

UML, as semi-formal language offers several benefits to the definition of IoT
design patterns, such as visual and standard notation. This graphical aspect is
certainly interesting and useful to an architect, in the sense that graphic design is
easy. However, the fact that UML lack a precise semantics is a serious drawback
because this language did not allow checks which we must carry. So, pattern
models generated at the modeling approach can be ambiguous and imprecise.
In addition, during the modeling phase, the architect can easily fall into the
error. This is due to the absence of a precise formal semantics of UML that do
not provide rigorous tools for verification and proof. However, any error or any
bad modeling of a design pattern can cause serious problems that generate bad
consequences.

Thus, ensuring the reliability and the correctness of IoT design patterns is
a goal that we have fixed. For this, we propose an approach to formally specify
design patterns by using the formal method Event-B that is well suited to our
needs and goals. Thus, each diagram graphically modeled will be accompanied
by a formal semantics. This approach allows the validation of the modeling part
and ensure the verification of the relevant properties of design patterns.

Event-B method is well-suited for specifying IoT design patterns: (i) The
primary concept in doing formal developments in Event-B is that of a model. It
is made of several components of two kinds: machines and contexts. Machines
contain the dynamic parts of a model, whereas contexts contain the static parts

Modeling of Bootstrapping and Registration IoT Design Patterns 63

of a model [1]. Thanks to this classification, Event-B allows the specification of
structural and behavioral features of design patterns. (ii) Refinement techniques
proposed by this method allow us to build patterns gradually and at different
abstraction levels. (iii) Mathematical proofs allow verifying model consistency
and consistency between refinement levels. (iv) The most important reason to use
Event-B method is the availability of a supporting tool called the Rodin platform
[2]. Tt is an Eclipse-based tool set that provides effective support for modeling
and automated proof. The platform is open source and is further extendable
with plug-ins. A range of plug-ins have already been developed including ones
that support animation and model checking like the Prob plug-in [5] that we
used.

Extended Component diagram that model structural features of design pat-
terns are transformed to a context in the Event-B method in which we specify
entities of the architecture and their relations. The Sequence diagram is trans-
formed into a machine in Event-B in which we specify events made between
entities of the patterns. This transformation is proposed in order to attribute
formal notations to IoT design patterns for the purpose of checking their design
correctness in a second step. We explicitly defined a refinement strategy to follow.
This strategy is interesting because it defines the pattern development process
and improves the quality of the obtained models, and therefore the success of the
formal development process. We defined specification levels by using a step-wise
development approach.

6 Tool Support

We developed a graphical modeling tool that implements our approach; it ensures
an easy and efficient modeling way for users. With our tool, we aim to make
concrete the aforementioned concepts. The architect can model the solution of
the IoT design patterns using an Eclipse plug-in that we propose. The tool, in
its development, is based on EMF! (Eclipse Modeling Framework) [10]. This
was chosen since we use models, which are basic building units, to develop our
approach (Fig. 7).

7 Related Work

Research connected to design patterns in the field of software architecture, are
mainly classified into four branches of work according to their architectural style.
The first is about design patterns for Object-Oriented Architectures, the second
is about design patterns for Enterprise Application Integration (EAT), the third
is for Service Oriented Architectures (SOA) and the fourth one is for connected
object architectures.

Most of the proposed design patterns are described with a combination
of a text description and a graphical representation sometimes using a pro-
prietary notation in the aim of making them easy to understand. However,

! https://wiki.eclipse.org/Eclipse_Modeling_Framework.

https://wiki.eclipse.org/Eclipse_Modeling_Framework

64 M. Hadj Kacem et al.

File Edit Diagram Navigate Search Project Run Window Help

o
g o | @ BB v 3| 100%
[cefaut part diagram 53\ =8
i “[plete
Q) <<BootstrappingPattern>> g SeRegutrationbattens)- ke~
7 @ — (& Regi
<<MeduimBasedBootstrapPattern>> <<AutomaticClientDrivenRegistrationPattern>> @) <ServerDrivenModelPy g RegistrationPatterns
D <<Device>> & T <<ServerBackend>> ET<Devi D@ AutomaticClientDri
Pisrsirsaidiss AP ﬂ«bmeekegistry»j_ {\q_‘: Esevetackend
{ il erverBacken
:’ <<StorageMeduim>> F _O(%— Of}fc P 0 £]ap =
r v & BootstrappingPattems
artememoire T B
)
@(amén_Nnme Netatmo_Welcome
MeduimgesedBootstra
g
@(ompaubililé 105, Andrid = > stogemesiim
T | ;]
T <<Sensor>> =
Wi L oo = PR
- g O | Object
1920°1080 il € D Device
@ Fonctionnalité : contréler les piéces de maison e... _— SmartThing
(sl DeviceGateway
(@] acress 17310955 —] = 7 Sensor
P — O = Og > Link
F—o O >4 Tport
i o= Providelnterface
~| = Requiredinterface

& L | omAssemblage

Fig. 7. The tool editor

these descriptions make patterns ambiguous and may lack details. Some work
so have proposed the semi-formal representations of these patterns using mod-
eling languages [4]. Some other works use or provide formal languages based on
mathematical notation for a precise pattern specification [16]. However, these
approaches require knowledge of mathematics and first order logic to use them.
Some research has chosen to combine the semi-formal and formal representations
of patterns. This representation ensures a better understanding and precision of
patterns. Generally speaking, there is a consensus on the elements that make up
and define a design pattern. However, there is no consensus on the specification
of the patterns.

In past work [11,13] we focused on both the modeling, the formal specifi-
cation and the composition of SOA design patterns [12,14] and established the
link between them with an automatic transformation [15]. We used the SoaML
language for the pattern modeling that ease the understanding of pattern mod-
els. For the pattern specification, we used the Event-B formal method in order
to attribute formal notations to SOA design patterns for the purpose of checking
their design correctness.

In this work, we are interested with the IoT design patterns. In this con-
text we find several researchers who proposed a set of IoT design patterns in
various categories. Eloranta et al. [3] proposed patterns for the construction
of distributed control systems. Qanbari et al. [6] presented four patterns for
the supply, deployment, orchestration and monitoring shipboard applications.
Reinfurt et al. [7,9] have published patterns for device power supply, opera-
tion and communication modes and a number of IoT design models. All these
patterns are described with a visual and informal notation. There is no formal

Modeling of Bootstrapping and Registration IoT Design Patterns 65

semantics associated. There is no research work that deals with the modeling
of IoT patterns. In this paper, we present the modeling of IoT design patterns
proposed by Reinfurt et al. [7].

8 Conclusions

In this paper, we presented an approach that allows to model and specify con-
nected object architecture design patterns. In particular modeling the “Boot-
strapping Design Patterns” category and the “Registration Design Patterns”
category. The modeling phase consists of presenting models of the design pat-
terns in order to present a meta-model that presents an abstract view of a model
of the patterns. Subsequently, we described the structural and behavioral fea-
tures of the pattern. Then, we formally specified these design patterns using the
formal Event-B method. Finally, we developed a plug-in under the Eclipse Mod-
eling platform that offers a graphical editor for modeling IoT design patterns.
Currently, the transition from the SoaML modeling to the formal specification
is achieved manually, we are working on automating this phase by implementing
transformation rules.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: an
open toolset for modelling and reasoning in event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447-466 (2010)

3. Chandra, G.S.: Pattern language for IoT applications. In: PLoP Conference, USA
(2016)

4. Dong, J., Alencar, P., Cowan, D.D., Sheng, Y.: Composing pattern-based compo-
nents and verifying correctness. J. Syst. Softw. 80, 1755-1769 (2007)

5. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2-46

6. Qanbari, S., et al.: IoT design patterns: computational constructs to design, build
and engineer edge applications. In: 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IoTDI), pp. 277-282 (2016)

7. Reinfurt, L., Breitenbiicher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet
of things patterns for device bootstrapping and registration. In: Proceedings of the
22Nd European Conference on Pattern Languages of Programs, EuroPLoP 2017,
pp. 15:1-15:27. ACM, New York (2017)

8. Reinfurt, L., Breitenbiicher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet of
things patterns for devices. In: Proceedings of the Ninth International Conferences
on Pervasive Patterns and Applications (PATTERNS), pp. 117-126 (2017)

9. Reinfurt, L., Falkenthal, M., Breitenbiicher, U., Leymann, F.: Applying IoT pat-
terns to smart factory systems. Advanced Summer School on Service Oriented
Computing, Summer SOC (2017)

https://doi.org/10.1007/978-3-540-45236-2_46

66

10.

11.

12.

13.

14.

15.

16.

M. Hadj Kacem et al.

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

Tounsi, 1., Hadj Kacem, M., Hadj Kacem, A.: An approach for modeling and
formalizing SOA design patterns. In: Proceedings of the 22nd IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE 2013, pp. 330-335. IEEE Computer Society, Hammamet, June 2013
Tounsi, I., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: An approach for SOA
design patterns composition. In: Proceedings of the IEEE 8th International Confer-
ence on Service-Oriented Computing and Applications, (SOCA 2015), pp. 219-226.
IEEE Computer Society, Rome, Italy, October 2015

Tounsi, 1., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: A refinement-based app-
roach for building valid SOA design patterns. IJCC, Int. J. Cloud Comput. 4(1),
78-104 (2015). https://doi.org/10.1504/1JCC.2015.067705

Tounsi, 1., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: Transformation of com-
pound SOA design patterns. In: The 8th International Conference on Ambient
Systems, Networks and Technologies (ANT 2017)/The 7th International Confer-
ence on Sustainable Energy Information Technology (SEIT 2017), 16-19 May 2017,
Madeira, Portugal, pp. 408-415 (2017)

Tounsi, 1., Hrichi, Z., Hadj Kacem, M., Hadj Kacem, A., Drira, K.: Using SoaML
models and Event-B specifications for modeling SOA design patterns. In: Pro-
ceedings of the 15th International Conference on Enterprise Information Systems,
ICEIS 2013, Angers, France, pp. 294-301, July 2013

Zhu, H., Bayley, 1.: Laws of pattern composition. In: Dong, J.S., Zhu, H. (eds.)
ICFEM 2010. LNCS, vol. 6447, pp. 630-645. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16901-4_41

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1504/IJCC.2015.067705
https://doi.org/10.1007/978-3-642-16901-4_41
https://doi.org/10.1007/978-3-642-16901-4_41
http://creativecommons.org/licenses/by/4.0/

	Modeling and Specification of Bootstrapping and Registration Design Patterns for IoT Applications
	1 Introduction
	2 Structural Patterns Modeling
	2.1 Metamodel
	2.2 General Pattern Model

	3 Behavioral Patterns Modeling
	4 Case Study: Smart Home
	5 Patterns Specification
	6 Tool Support
	7 Related Work
	8 Conclusions
	References

