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Abstract. A simulation tool that supports developers to build scenarios auto-
matically in multiple simulation platforms is proposed. As an essential part of
this simulator, this study proposed an activity schedule generator to mimic the
daily life of elderly people living alone. This generator outperforms existing
methods of activity schedule planning in three aspects: 1) it is adaptive to the
layout of a simulated smart house; 2) there is no unspecified time in the timeline
of generated schedules; and 3) it generates stable, but not tedious schedules for a
number of days. A real-time location data generator is proposed to convert
generated schedules to simulated real-time location data of the resident, and a
proposed interface converts these simulated location data to simulated records of
virtual passive infrared (PIR) sensors, which can be used to optimize placement
of PIR sensors in a smart house.

Keywords: Elderly people living alone � Smart home simulator � Activity of
daily living � Motivation � Automatic scenario generation

1 Introduction

The elderly population is increasing worldwide. An estimated 617.1 million people are
aged 65 and over in 2015, and this number is projected to increase to 1 billion in 2030,
and 1.6 billion in 2050 [1]. More than 20% of men and 40% of women aged 65 and
older chose an independent lifestyle in many countries [2]. Pimouguet et al. [3] indi-
cated living alone shortened life expectancy by 0.6 years for elderly people. Elderly
individuals living alone would benefit from specialized care, but a shortage in the
global workforce of aged-care workers [4] has made this difficult.

Under these conditions, smart houses with a sensor network and domestic robots
have been built to address the aged-care worker shortage. The sensor networks provide
real-time health monitoring [5] and a means of detecting emergencies [6], while mobile
domestic robots provide location-based support [7] and services [8] for residents. To
ensure the effectiveness of the sensor networks and robots, real test beds were built to
conduct experiments for collecting data. However, building a test bed is expensive, and
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simulations are necessary for smart house developers to test and verify their ideas
before building a real one.

Developers typically conduct simulations using the following three steps.
(1) Manually create a simulation scenario by first building a house and resident body
models and defining the activity schedules and movement routes of the virtual resident
or controlling the virtual resident manually. (2) Place virtual sensors, devices, or robots
to record data and/or operation performances. (3) Analyze recorded data or operation
performances and evaluate simulation design. As a typical simulation constructed in
step (1) requires a lot of time, developers can only prepare a limited number of
scenarios. Moreover, the developers may use multiple simulators for different purposes,
e.g., using CST Microwave Studio to test the communication of a wireless sensor
network, OpenSHS [9] to collect virtual sensor records for sensor arrangement opti-
mization, and Stage [10] to plan the operation policies of mobile robots. When the
developers use another simulator, they must repeat steps (1) even if they use the same
simulation scenario.

We propose a simulation tool that provides diverse simulation scenarios and can
support smart house developers to complete step (1) automatically in multiple simu-
lation platforms [11]. This simulator consists of generators and interfaces as show in
Fig. 1. The proposed generators produce diverse information such as indoor spatial
attributes and resident travel patterns. This information is used to create a scenario that
can run on different simulation platforms through various interfaces. We proposed a
spatial attribute generator [12] and travel pattern generator [11], and used two interfaces
[11] to transfer the data generated by them to models and virtual sensor records of the
simulators.

As an essential part of our simulator, we propose an activity schedule generator.
With generated travel patterns, these schedules are converted to simulated real-time
location data, which can be used in simulations with interfaces. The rest of this paper is
organized as follows. In Sect. 2, we review related work of daily activity schedule
generation. Section 3 describes the methodology to generate activity schedules. Sec-
tion 4 details the performance of this generator. Section 5 introduces how the generated
data can be used in simulations.

2 Related Works

A number of scholars generated daily activity schedules as intermediate results to
generate sensor records in a virtual smart house, which are essential for simulations.

Renoux et al. [13] generated activity schedules with a constraint-based planning
method. The constraints include that the start time and duration of each activity are
over reasonable intervals, and a number of activities need to be performed within
certain time intervals before their corresponding activities, e.g., preparing lunch for 0 to
5 min before having lunch.

Bouchard et al. [14] generated activity schedules using behavior trees (BTs) as
intermediate results to generate the simulated evolution of signal strength between
RFID readers and tags. However, designing BTs is complicate, and the authors only
showed an example of generating the schedule for making coffee or tea.
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Alshammari et al. [9] replicated and modified schedules originally designed by
humans. The methods of modification include combining two samples of original
schedules and changing the start and end time of activities. The activity schedules
correspond to virtual binary sensor records, thus, a large number of records are gen-
erated simultaneously. This method is simple, but generated schedules may have high
similarity.

Mshali et al. [15] generated long-term activity schedules using a Markov model,
and five transition matrices associated to different periods of a day were designed. The
authors also proposed an adaptive and context-aware algorithm for monitoring the daily
activities of elderly and dependent persons, and generated schedules were used to test
the algorithm in simulations.

Lee et al. [16] generated activity schedules with a motivation-driven method.
A motivation value (MV) represents the desire of a virtual agent to perform a class of
activities with the agent performing an activity when its corresponding MV reaches its
threshold. Motivations are classified by levels; if two MVs reach their thresholds at the
same time, the agent will perform the activity that corresponds to the higher-level
motivation. This method has sufficient potential for improvement if the mechanism of
evolution of the MVs is designed carefully.

3 Activity Schedule Generation

3.1 Problem Statement

To build our activity schedule generator module, we need to improve upon the methods
mentioned in Sect. 2 by addressing the following issues. 1) The list of activities that
can be performed by a virtual resident is determined by the layout of simulated house,
e.g., the resident can only watch TV if a TV is in the house. The above methods are for
a determined layout with a fixed activity list. As our simulator contributes to provide
diverse simulation scenarios by producing diverse layouts, we need a method that can
process dynamic activity lists. 2) The above methods generate schedules whose
timelines include unspecified times between the end time of an activity and the start
time of the next one. Where the resident has been and what he/she has done during the
unspecified time are undetermined, thus, generated sensors records did not cover entire
days. 3) Most of the above methods generated schedules for one day or less, but long-
term activity schedules are required for our simulation.

We developed a motivation-driven method on the basis of that presented in the
reviewed study [16] to build our activity schedule generator. An MV represent a
resident’s desire to perform an activity sequence (AS). While performing the activity is
dependent on its MV reaching its threshold in [16], in our method, the MVs are used to
determine the probability distribution (P) of sampling the next AS. The evolution of the
MVs is adaptive to the input indoor spatial data and resident’s profile. The input data
represent a layout that determines what AS can be performed, thus, this adaptive
evolution mechanism addresses issue 1). The profile represents a resident’s tendencies
to activities, which is quantified by durations (D), periods (T) and frequencies (f) of an
AS. We need to design an evolution mechanism and initialize the MVs carefully to
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generate stable, but not tedious, activity schedules in the long term that will address
issue 3). We can address issue 2) by taking into account more activities. The studies
mentioned in Sect. 2 took into account a limited number of activities, implying that
these activities occupy the entire timeline, which is unrealistic.

3.2 Model of AS, MV, Resident Profile, and P

Mapping the Relationship Between AS and MV. A resident performs activities on
the basis of motivation, in which MVs quantify the degree of motivation. When an MV
is high, the resident may perform a sequence of activities to satisfy the motivation, e.g.,
if the value of hunger motivation is high, he/she will cook and eat.
We determined that a resident has 13 motivations at most, which correspond to 13MVi-
ASi pairs: MV1: wash and brush teeth => sleep (at night) => wash and brush teeth,
MV2: sleep (at noon), MV3: take food => cook => take tableware => eat, MV4: take a
bath => get dressed => put clothes in wash machine, MV5: get dressed => go
out => get dressed, MV6: go to toilet (short duration), MV7: go to toilet (long duration),
MV8: watch TV, MV9: read, MV10: clean, MV11: take clothes out of washing machine,
MV12: wander, and MV13: relax. An AS consists of one or more activities, and activities
in the AS are performed in order without lag to satisfy the corresponding motivation
and decrease the corresponding MVi. MVi determines the possibility of performing ith
AS, Pi.

AS and MV Are Adaptive to the Layout. The actual composition of an AS is also
adaptive to the layout like the evolution of MVs. An activity in an AS will be omitted if
its corresponding places are not in the layouts The mapping relationship of all activities

Fig. 1. General framework for building the simulation tool [11].
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and places is shown in Table 1, e.g., if the kitchen stove, refrigerator, and cupboard are
not in the house, AS3 will omit the procedure take food => cook => take tableware,
which implies the resident eats food prepared by someone out of the house in this case.
If all activities of an AS can not be performed because of the layout, itsMVi will always
be 0.

Resident’s Personal Profile. To keep generated schedules diverse and reasonable,
parameters corresponding to the evolution of MVs should depend on the resident’s
profile. The profile represents a resident’s tendencies to satisfy different motivations,
which is determined by sampling D, T, and f of an AS performed over reasonable
intervals. Di means the duration of the resident performing the ith AS in a period (Ti),
e.g., D8 means how long the resident performed the activity “watch TV” per day on
average if T8 = 1 day. Ti and fi mean the period and frequency of performing the ith
AS, respectively, e.g., T12 means how many days between two instances of the resi-
dent’s wandering and f6 means how many times the resident performed the activity “go
to toilet (short duration)” per day on average, where Ti � fi = 1.

Mechanism of MVs Evolution. MVs quantify the motivations to perform activities,
MVi usually decreases when the ith AS is performed, increases when other ASs are
performed, and remains unchanged in special cases. The values of D, T, and f deter-
mine the speed of the increase and decrease of MVs. The rules below show the
evolution of MVs, where Rules 1.1) and 1.2) indicate the situations when MVi remains
unchanged, 2.1) to 2.4) show the mechanism of MVs increasing, and 3.1) to 3.4) show
the mechanism of them decreasing.

Rule 1.1) MVi is always 0 if ith AS can not be performed.
Rule 1.2) MV13 = 1.02Norm_MV in any case, where Norm_MV is a constant.

Note: MV13 corresponds to relax. This rule means the resident is performing the
activity “relax” when all other MVs are low. Setting MV13 as a constant keeps MVs
stable in the long term.

Rule 2.1) Ways of MVs increasing include linear and step functional increasing.
Rule 2.2) IfMVi is not fixed and i 6¼ 7 or 11,MVi increases linearly when the ith AS
is not performed. The increment is determined by Eq. (1),

MVi t þ Dtð Þ ¼
MVi tð Þ þ xiDt þ e; if the resident is not sleeping.

MVi tð Þ þ 0:1xiDt þ e; if the resident is sleeping, and i ¼ 3 or 6:

MVi tð Þ þ e; if the resident is sleeping, and i 6¼ 3 and 6:

8
><

>:

ð1Þ

where xi is an increasing rate and ɛ is random noise.

Note: When the resident is sleeping, the increasing rates of the MVs of “eat” and
“go to toilet (short duration)” decrease to 10%, rates of other MVs decrease to 0.
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Rule 2.3) Following the principle that MVi should be generally unchanged after one
period in an ideal case, xi can be determined by D, T, and f.

Note: e.g., for the 8th AS, watching TV, assuming that the resident watches TV for
4 h (D8), and sleeps 8 h (D1 + D2) per day (T8 = 24 h), x8 is determined by Eq. (2),

x8¼ Norm MV
½T8 � ðD1 þD2Þ � D8� : ð2Þ

which means x8 should increase by Norm_MV in the remaining 12 h, while it
decreases by Norm_MV during the 4 h (D8).

Rule 2.4) MVi increases step by step if i = 7 or 11. For the 7th AS, “going to toilet
(long duration)”, MV7 increases by Norm_MV/(3 � T7) 2.5 h after the resident
starts eating. For the 11th AS, “taking clothes out of the washing machine”, MV11

increases by Norm_MV 1 h after the resident puts their clothe into the washing
machine.
Rule 3.1) MVi will decrease if the ith AS has been performed except if i = 13.

Table 1. Mapping relationship between activities and places.

Activity Place

Sleep (at night)
Sleep (at noon)
Relax

Bed

Wash and brush teeth
Take a bath

Bathroom

Take food Refrigerator
Take tableware Cupboard
Take food
Take tableware
Cook

Kitchen stove

Eat Dining table-chair set
Put clothes in washing machine
Take clothes out of washing machine

Washing machine

Go to toilet (short duration)
Got to toilet (long duration)

Toilet

Watch TV
Relax

Sofa-TV set

Relax
Read

Writing desk-chair set

Get dressed Wardrobe
Eat
Go out

Entrance

Clean Trash bin
Wander None
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Rule 3.2) The decrease of MVi depends on the Ti and actual duration, AT. It is
defined by Eq. (3) except if the AS is eating breakfast, the decrease is (2AT/
3Ti) � Norm_MV.

MVi tþATð Þ ¼ MVi tð Þ � AT
Ti

Norm MV: ð3Þ

Rule 3.3) AT is related to Ti, AT is sampled from [0.97Ti, 1.03Ti] for i = 1, from
[0.4Ti, 0.9Ti] for i = 5, from [0.3Ti, 0.7Ti] for i = 8 or 9, and from [0.95Ti, 1.05Ti]
for other cases.
Rule 3.4) The resident may perform the activities “eat” and “go to toilet” outside.
When he/she is going out, if MV3, MV6 or MV7 reach Norm_MV, and there is
sufficient time to perform the corresponding AS, this MV decreases as the AS is
performed.

Initialization of MVs. MVs should be initialized before evolution, which can be
achieved by determining when each AS will be performed for first time. The time when
the ith AS is first performed is approximately equal to the time when MVi first reaches
Norm_MV. We sample the initial time from 9:30 PM of one day to 1:00 AM of the
next day, and the resident is going to sleep. MV0 thus is Norm_MV, as Di and xi is
known, other initial MVs can be calculated with Eq. (1), e.g., assuming that D1 = 8 h,
and the resident will eat breakfast 1 h after waking up, initial MV3 is calculated by
Eq. (4).

MV3 ¼ Norm MV� 0:1x3 � 8 h �x3 � 1 h: ð4Þ

To keep the generated schedule stable in the long term, we need to avoid two MVs
whose ASs require long durations to reach Norm_MV at the same time.

Relationship Between MV and P. The possibility of performing the ith AS depends
on the motivation value, MVi, as shown in Eq. (5)

Pi ¼ exp½maxð0;MVi � 0:98Norm MVÞ�
P13

j¼1
exp½maxð0;MVj � 0:98Norm MVÞ�

: ð5Þ

3.3 Implementation

We wrote a Python3 program to achieve activity schedule generation. A sample of the
indoor spatial attribute data (Spatial_data) and total generation duration (Total_Dur)
were input into the program, and it returns a resident’s daily activity schedule during
the Total_Dur. The pseudocode of the program is shown below, where constants,
variables, and variable vectors are in regular, italic, and bold italic styles, respectively.
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program Schedule_Generation(Spatial_data, Total_Dur):

1 AS_canbe_perform := Process_Input(Spatial_data)

2 T, D, f := Generate_Resident_Profile()

3 x := Calculate_Increse_rate(T, D, f)

4 MV, Init_time := Initialize_MVs&time(T, D, f)

5 Current_ASnum, time := 1, Init_time

6 ASnum_list, time_list := [], []

7 while time < Init_time + Total_Dur do:

8 AT := Determine_actual_duration(Current_ASnum, T)

9 MV := Update_MV(Current_ASnum, time, MV, x, T, AT)

10 time := time + AT

11 Next_ASnum = Sample_next_ActSeq(MV)

12 If Next_ASnum != Current_ASnum do:

13 ASnum_list.append(Next_ASnum)

14 time_list.append(time)

15 Current_ASnum := Next_ASnum

16 Activity_Schedule = Post_Process(ASnum_list, time_list, Spatial_

data)

17 return Activity_Schedule

The program first processes the input spatial attribute data, analyzes the layout, and
determines what ASs can be performed in the house in Line 1. The resident’s profile is
determined by sampling D, T, and f in Line 2. x is calculated in Line 3 in accordance
with Rule 2.3). The original MV and the start time of the schedule generation are
determined in Line 4. In Line 5, we assume the resident performs AS1 at the beginning
of the generation, and the variable Time records the current time. Two lists are created
in Line 6, ASnum_list and time_list, which will record the number of all performed
ASs and their start times chronologically, respectively. From Lines 7 to 15, the pro-
gram determines the AT of performing each AS with Rule 3.3), updates MV using the
other rules, samples the next performed AS with Eq. (5), and stores the number of
performed ASs and their start times in ASnum_list and time_list, respectively. The
program converts these two lists into an activity schedule in Line 17. The schedule
indicates the start times of all activities performed.

4 Performance of the Generator

We input indoor spatial data generated by the spatial attribute generator into the activity
schedule generator, which then produces diverse activity schedule data. For example, a
sample of spatial data whose layout is shown in Fig. 2 is input into the generator. As
the places “desk” and “washing machine” do not exist in the house, AS9 (read) and
AS11 (take clothes) can not be performed. The activity schedule generator then
determines the resident’s profiles and generates their corresponding schedules. Two
example schedules are shown in Fig. 3. Figure 3a) shows a schedule for a resident who
sleeps around noon, goes out, watches TV, and takes a bath every day, while Fig. 3b)
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shows a schedule for who does not sleep around noon, watches TV, and takes a bath
every day, but only goes out every four days.

We also tested the performance of our generator on PC with an Intel(R) core(TM) i7-
8550U @1.80-GHz CPU. The generator ran 100 times in 3.987 s.

Additional generated schedules are available via this website [17].

5 Using Generated Activity Schedules for Simulation

Smart house are often equipped with passive infrared (PIR) sensors. When residents are
in the detection range of one, it turns on, otherwise, it remains off. Each PIR sensor has
a unique ID number which can be recorded when the sensor turns on or off. By placing
several PIR sensors in the house and analyzing their records, a resident’s movement
trajectories can be acquired, which can be used to determine whether they contain
wandering travel patterns associated with dementia [18].

In the simulation, the PIR sensor records were generated from simulated real-time
location data. We built a generator that could convert an activity schedule, a sample of
indoor spatial data, and several samples of travel pattern data into a sample of real-time
location data. We developed an interface to convert the real-time location data into
virtual PIR sensor records, which can be used to optimize the placement of the PIR
sensors in a smart house.

Examples of the performance of the real-time location data generator and the
interface are shown in figures and tables. Figure 2 shows a sample of spatial data.
Table 2 shows part of an activity schedule. The travel pattern data are shown in Fig. 4.
The above data are input into the generator to produce the real-time location data.
Figure 4 also shows the positions of the five PIR sensors located in the virtual house.
Their coordinates are [100, 0], [300, −150], [500, −200], [550, 50] and [850, 0]. The
interface converts the real-time location data into the records of PIR sensors, which is
shown in Table 3.

Fig. 2. Layout of input indoor spatial data.
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Fig. 3. Generated activity schedules.

Fig. 4. Layout of input indoor spatial data with PIR sensors and travel pattern data.
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6 Conclusion

Smart houses with a sensor network and domestic robots were built to take care elderly
people living alone. Many simulation tools have been proposed to help smart house
developers test and verify their designs, but it takes time and effort to build a simulation
scenario, and developers need to repeat scenario-generation procedures if they want to
use multiple simulators. To address these issues, we proposed a simulation tool that
provides diverse simulation scenarios and enables developers to build scenarios
automatically in multiple simulation platforms [11].

In this paper, we proposed an activity schedule generator that is an essential part of
our simulator. With an improved motivation-driven method, the generator produces
diverse daily activity schedules to mimic the daily lives of residents living alone. It
outperforms existing generators in three aspects: 1) it is adaptive to the layout of a

Table 3. Simulated records of virtual PIR sensors.

Time Time

5d PM 1 h 13 m 45 s 9
5d PM 1 h 13 m 47 s 8
5d PM 1 h 13 m 50 s 2
5d PM 1 h 13 m 53 s 4
5d PM 1 h 54 m 19 s 5
5d PM 1 h 54 m 22 s 9
5d PM 1 h 54 m 24 s 2
5d PM 1 h 54 m 27 s 5
5d PM 1 h 54 m 30 s 2
5d PM 1 h 54 m 34 s 4
5d PM 2 h 14 m 52 s 3
5d PM 2 h 14 m 56 s 4
5d PM 2 h 14 m 59 s 1
5d PM 2 h 15 m 2 s 5
5d PM 2 h 15 m 4 s 4
5d PM 2 h 15 m 5 s 1

#3 ON
#3 OFF
#2 ON
#2 OFF
#1 ON
#1 OFF
#2 ON
#2 OFF
#4 ON
#4 OFF
#4 ON
#4 OFF
#2 ON
#2 OFF
#1 ON
#1 OFF

5d PM 2 h 17 m 7 s 5
5d PM 2 h 17 m 9 s 7
5d PM 2 h 17 m 10 s 9
5d PM 2 h 17 m 14 s 0
5d PM 2 h 17 m 50 s 5
5d PM 2 h 17 m 50 s 6
5d PM 2 h 17 m 53 s 6
5d PM 2 h 28 m 38 s 5
5d PM 2 h 28 m 39 s 7
5d PM 2 h 29 m 34 s 5
5d PM 2 h 29 m 34 s 5
5d PM 2 h 29 m 36 s 1
5d PM 2 h 29 m 41 s 9
5d PM 3 h 30 m 21 s 7
5d PM 3 h 30 m 23 s 8
5d PM 3 h 30 m 27 s 7

#1 ON
#1 OFF
#2 ON
#2 OFF
#4 ON
#4 OFF
#2 ON
#2 OFF
#2 ON
#2 OFF
#3 ON
#3 OFF
#5 ON
#5 OFF
#4 ON
#4 OFF

Table 2. Part of the activity schedule shown in Fig. 3(a).

Activity Start time Activity Start time

Go out
Get dressed
Sleep
Relax
Bath
Get dressed
Take food

5d AM 8 h 17 m 7 s
5d PM 1 h 13 m 59 s
5d PM 1 h 16 m 12 s
5d PM 1 h 40 m 0 s
5d PM 1 h 54 m 36 s
5d PM 2 h 15 m 10 s
5d PM 2 h 17 m 18 s

Cook
Take tableware
Eat
Relax
Watch TV
Go to toilet

5d PM 2 h 17 m 56 s
5d PM 2 h 28 m 44 s
5d PM 2 h 29 m 46 s
5d PM 2 h 49 m 20 s
5d PM 3 h 15 m 1 s
5d PM 4 h 30 m 33 s
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simulated smart house; 2) there is no unspecified time in the timeline of generated
schedules; and 3) it generates stable, but not tedious schedules for a number of days.

A generated schedule includes a list of activities and their start time. The list of
activities determines all starts and ends of indoor walking paths with spatial attributes
of a virtual house, the travel pattern generator then generates all paths. The generated
paths determine simulated real-time locations of a resident with the list of start time.

The real-time locations can be converted to records of virtual sensors with inter-
faces, and these records can be used to optimize designs of smart house. For example,
we convert the real-time locations to records of virtual PIR sensors, and the records are
useful for optimizing placement of these sensors.

Acknowledgments. This research was partially supported by a grant from the Japan Society for
the Promotion of Science (JSPS KAKENHI 18H00968) and a scholarship of Mizuho Interna-
tional Foundation.

References

1. He, W., Goodkind, D., Smith, P.K.: An Aging World: 2015: International Population
Reports, U.S. Census Bureau (2016)

2. Reher, D., Requena, M.: Living alone in later life: a global perspective. Popul. Dev. Rev.
44(3), 427–454 (2018)

3. Pimouguet, C., et al.: Impact of living alone on institutionalization and mortality: a
population-based longitudinal study. Eur. J. Public Health 26(1), 182–187 (2016)

4. Simoens, S., Villeneuve, M., Hurst, J.: Tackling nurse shortages in OECD countries:
Technology Report, Organisation for Economic Co-operation and Development (2005)

5. Vuong, N.K., Chan, S., Lau, C.T., Chan, S.Y., Yap, P.L., Chen, A.S.: Preliminary results of
using inertial sensors to detect dementia-related wandering patterns. In: Proceedings of 37th
International Conference on Engineering in Medicine and Biology Society (EMBC2015),
Milan, pp. 3703–3706 (2015)

6. Das, B., Cook, D.J., Krishnan, N.C., Schmitter-Edgecombe, M.: One-class classification-
based real-time activity error detection in smart homes. IEEE. JSTSP 10(5), 914–923 (2016)

7. Do, H.M., Pham, M., Sheng, W., Yang, D., Liu, M.: RiSH: a robot-integrated smart home
for elderly care. Rob. Auton. Syst. 101, 74–92 (2018)

8. Fischinger, D., et al.: Hobbit, a care robot supporting independent living at home: first
prototype and lessons learned. Rob. Auton. Syst. 75(A), 60–78 (2016)

9. Alshammari, N., Alshammari, T., Sedky, M., Champion, J., Bauer, C.: OpenSHS: open
smart home simulator. Sensors 17, 1003 (2017)

10. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2, 189–208 (2008)
11. Jiang, C., Mita, A.: Automatic spatial attribute and travel pattern generation for simulating

living spaces for elderly individuals living alone. Build. Environ. 176, 106776 (2020).
https://doi.org/10.1016/j.buildenv.2020.106776

12. Jiang, C., Mita, A.: Automatic floorplan generation of living space for simulating a life of an
elderly resident supported by a mobile robot. In: Proceedings of 36th International
Symposium on Automation and Robotics in Construction (ISARC 2019), Banff, pp. 688–
695 (2019)

182 C. Jiang and A. Mita

https://doi.org/10.1016/j.buildenv.2020.106776


13. Renoux, J., Klügl, F.: Simulating daily activities in a smart home for data generation. In:
Proceedings of Conference on Winter Simulation (WSC2018), Gothenburg, pp. 798–809
(2018)

14. Bouchard, B., Gaboury, S., Bouchard, K., Francillette, Y.: Modeling human activities using
behaviour trees in smart homes. In: Proceedings of 11th Conference on PErvasive
Technologies Related to Assistive Environments (PETRA), Corfu, pp. 67–74 (2018)

15. Mshali, H., Lemlouma, T., Magoni, D.: Context-aware adaptive framework for e-health
monitoring. In: IEEE International Conference on Data Science and Data Intensive Systems,
Sydney (2015)

16. Lee, W., et al.: Automatic agent generation for IoT-based smart house simulator.
Neurocomputing 209, 14–24 (2016)

17. https://github.com/Idontwan/Activity-Schedule-Generator/tree/master/Schedules
18. Gochoo, M., Tan, T., Velusamy, V., Liu, S., Bayanduuren, D., Huang, S.: Device-free non-

privacy invasive classification of elderly travel patterns in a smart house using PIR sensors
and DCNN. IEEE Sens. J. 18(1), 390–400 (2018). https://doi.org/10.1109/JSEN.2017.
2771287

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Automatic Daily Activity Schedule Planning for Simulating Smart House 183

https://github.com/Idontwan/Activity-Schedule-Generator/tree/master/Schedules
https://doi.org/10.1109/JSEN.2017.2771287
https://doi.org/10.1109/JSEN.2017.2771287
http://creativecommons.org/licenses/by/4.0/

	Automatic Daily Activity Schedule Planning for Simulating Smart House with Elderly People Living Alone
	Abstract
	1 Introduction
	2 Related Works
	3 Activity Schedule Generation
	3.1 Problem Statement
	3.2 Model of AS, MV, Resident Profile, and P
	3.3 Implementation

	4 Performance of the Generator
	5 Using Generated Activity Schedules for Simulation
	6 Conclusion
	Acknowledgments
	References




