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Abstract. We present the grounding approach, deployment and preliminary
validation of the elementary devised model of physical well-being in urban
environments, summarizing the heterogeneous personal Big Data (on physical
activity/exercise, walking, cardio-respiratory fitness, quality of sleep and related
lifestyle and health habits and status, continuously collected for over a year
mainly through wearable IoT devices and survey instruments in 7 global testbed
cities) into 5 composite domain indicators/indexes convenient for interpretation
and use in predictive public health and preventive interventions. The approach is
based on systematized comprehensive domain knowledge implemented through
range/threshold-based rules from institutional and study recommendations,
combined with statistical methods, and will serve as a representative and per-
formance benchmark for evolution and evaluation of more complex and
advanced well-being models for the aimed predictive analytics (incorporating
machine learning methods) in subsequent development underway.
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1 Introduction

The urban public health, well-being monitoring, and prevention are recently being
transformed from reactive to a predictive and eventually long-term risk mitigating
systems, through a number of research initiatives and projects, such as the ongoing
PULSE Project (Participative Urban Living in Sustainable Environments, funded from
the EU Horizon 2020 programme) focusing on the chronic metabolic and respiratory
diseases (such as type 2 diabetes and asthma) affected or exacerbated by the pre-
ventable or modifiable environmental and lifestyle factors, and well-being/resilience.
A major challenge in the Project is the modelling and assessment/prediction of citizen
well-being from the collected and processed Big Data of unprecedented variety and
from highly heterogeneous sources (health and vital activity personal data obtained
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through wearable devices and other sensing technologies, geo-located online surveys,
open/public smart city datasets…), on individual and collective (population/cluster)
levels. Overall well-being and its main domains (vitality, supportive relationships,
stress levels…) are all significant factors affecting the onset and exacerbation of the
stated chronic diseases which are becoming more and more widespread and pro-
gressing in urban environments, and overall resilience of citizens and urban commu-
nities is increasingly important against other pertaining global and sustainability
challenges, like climate change.

The proposed and deployed elementary statistical model presented in this paper is
to be the basis for interpretation and contextualization of changes to well-being, and a
performance benchmark for evaluation and comparison of more complex and advanced
well-being models of the aimed predictive analytics and final intelligent system (in-
corporating machine learning methods) in subsequent development, supporting the
PULSE PHOs (Public Health Observatories established for the relevant policy making
and execution in smart cities).

2 Conceptual Background and Approach

The activity and vital/health parameters data measured mostly unobtrusively by
wearable devices (wristbands, smartwatches) have particular significance for behaviour
analysis and change recognition in PULSE, as these are the input data streams with
highest volume, acquisition “velocity”, and temporal resolution/granularity of all the
various data collected in the Project, and therefore practically the most (and only)
suitable data comprising the sufficiently continuous and non-sparse time series over
months, to properly derive or construct the behavioural patterns and analyze behaviour
changes. Recent studies performed by the stated major wearable device manufacturers
over billions of records of temporal measurements data [1, 2], as well as the experi-
ences from projects like the just concluded City4Age (www.city4ageproject.eu) [3, 4],
show the significance and general predictive ability of the measured main vital/health
and activity parameters (walking, climbing stairs, physical activity/exercise, heart rate
data, consumed calories…) for overall health and physiological/physical well-being
assessment. The additional complementary socio-demographic, health, lifestyle/habits
and environmental data in less frequent temporal resolution, ingested from the
open/public datasets or manual “obtrusive” inputs, are combined to cross-check, adjust
and improve integrity of the recognized behaviour changes derived from the main time-
series data acquired through the wearable devices.

We adopt a combined knowledge- and data-driven approach in detection and
characterization of relevant behaviours that denote significant variations in well-being,
with multi-level hierarchical model topology and range/threshold based computational
rules as basic primary formal knowledge structures, and statistical analytics as baseline
(and performant) data-driven detection methods.

The complexity of human behaviours is commonly represented through multi-level
hierarchical structured models, decomposed to more granular “units” like activities and
action events [5, 6], with multiple variables from behavioural, physiological and
environmental domains of well-being known to additionally increase complexity and
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dimensionality [7]. There are other contending approaches, like the monitoring and
analysis of individual well-being or behavioural domain indicators or determinants
independently in parallel, without hierarchical structuring and substantial synthesis into
fewer higher-level composite factors or score(s) [8]. Most, including the adopted and
followed approach works (like [9]), are comprehensively covered or referenced in the
Encyclopedia of Quality of Life and Well-Being Research (Springer 2014) that sum-
marizes recent research works related to well-being and quality of life in spanned
various research and policy-making/implementation fields. Main advantages of a few
composite synthetic indicators/factors over a battery of multiple separate indicators,
namely:

• ability to summarize complex and multi-dimensional real-life phenomena or
domains (like well-being),

• easier for interpretation and comparison among (socio-demographic,
geospatial/regional…) groups or population clusters,

• more effective for comprehending overall trends, particularly when a number of the
underlying indicators denote opposing-trend changes,

are of crucial significance in usage and context settings of the PULSE project, with
over 60 indicators formalized in the initial knowledge-based well-being model topol-
ogy from the systematization of collected data, and with

• visible set of indicators to various stakeholders (policy makers, researchers, general
public) needing to be minimal without omitting important underlying information,

• and collaboration, communication and comparison of complex dimensions by
various stakeholders needing to be most straightforward, facilitated and effective.

We therefore propose two complementary approaches for synthesis of the com-
posite well-being indicators composed from underlying streamed IoT-sourced time-
series data in the context of PULSE. The indicators summarize multi-dimensional
aspects of citizen well-being and enable the assessment of individual and synthesized
collective urban well-being over time. The notion is illustrated through analysis within
the scope of four representative and characteristical key summary indicators of citizen
health and fitness, derived from activity and vital/health parameters measured, as sta-
ted, using wearable sensing devices: motility, physical activity, sleep quality and
cardio-respiratory health/fitness (Fig. 1).

In the first approach, daily and intra-daily underlying measurements (Table 1) are
used to estimate levels of adherence to rule- and range-based recommendations
matured from institutional knowledge of relevant authorities and population-significant
studies in the field, accumulated for over decades in the stated four example domains of
motility, physical activity, sleep quality and cardio-respiratory fitness [8, 10, 11].

The complementary data-driven statistical approach is predicated on standard
scores that denote the number of standard deviations that a given measurement deviates
from the sample mean. This approach allows comparison of individual scores to the
corresponding norm groups stratified by common socio-demographic parameters (age,
gender…), when considered conditionally independent nodes in the complete model
topology. It also allows to place a score for any individual and variable with respect to
alternative descriptive statistic or measure of central tendency (variable median,
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geometric mean, standard deviation or error), so that more accurate or optimal com-
parison for specific variable distribution can be made.

3 Citizen Activity and Vital/Health Parameters Data

The data are collected by several types of health and fitness wearable tracker devices
manufactured by Fitbit, Garmin and ASUS, monitoring physical and walking activity,
sleep and heart/cardio parameters, for over 300 recruited citizens participating in the
study in 7 global testbed cities (Barcelona, Birmingham, New York, Paris, Pavia(Italy),
Singapore, and Keelung/Taipei), supplied with wearable tracker devices by the Project.

Physical activity level as a single measure is mainly expressed in terms of time
spent and calories burned while performing light/soft, moderate, and intense/vigorous
physical activity. Walking activity is captured with walked steps, distance, speed, and
climbed stairs/floors measurements. Heart rate measures capture time spent in different
target heart rate zones (like peak, cardio, fat burn), resting and maximal heart rate
(hrmax), and some still experimental measures like systolic and diastolic blood pressure,
measured by the newest recently released devices such as ASUS VivoWatch BP, but
not yet acquired in significant volume sufficient for analysis. The peak heart rate zone
by default definition ranges from 85 to 100% of person’s maximum heart rate (hrmax),

Fig. 1. Excerpt from the hierarchical network structure topology of the initial knowledge-based
PULSE well-being model (blue-coloured nodes are variables measured by wearable sensing
devices, and magenta-coloured are reported/input through online app. questionnaires) (Color
figure online)
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the cardio zone ranges from 70 to 84% of hrmax, and the fat burn zone ranges from 50
to 69% of hrmax. Sleep quality/hygiene measures mainly capture time spent in defined
phases of sleep. All the processed measures are listed in Table 1, collected or aggre-
gated with a default daily periodicity, except the ones in gray-shaded rows which are
acquired in higher intra-daily temporal resolution, mostly once in every 15 min or up to
once in a minute, depending on the variable.

Table 1. List of variables measured by the used wearable devices, with descriptions and units of
measure (SI base units in square brackets where applicable, like [s]-seconds, or [m]-meters)

Measured variable Description [unit]

still_calories amount of calories burned while being still

total_calories total amount of calories burned (default in a day)
walk_steps number of walked steps
walk_distance walked distance [m]

stairs_floor_changes_up number of floors traversed in climbing stairs up
elevation vertical distance [m] traversed in climbing stairs

still_time time [s] spent being still
physicalactivity_soft_time time [s] spent performing light/”soft” physical activities like relaxed

walking/strolling or standing up and moving around in the home,
workplace or community

physicalactivity_moderate_time time [s] spent performing moderate physical activities like swift walking,
dancing, gardening

physicalactivity_intense_time time [s] spent performing intense/vigorous physical activities like
running, fast cycling or swimming, tennis, jumping rope

physicalactivity_calories amount of calories burned while performing physical activities
heartrate_cardio_time time [s] duration of the heart rate being within the defined “cardio” target

range

heartrate_peak_time time [s] duration of the heart rate being within the defined “peak” target
range

heartrate_resting resting heart rate
heartrate_avg average heart rate
heartrate_max maximal heart rate

sleep_time total time [s] spent in all phases of sleep
sleep_efficiency calculated score derived from sleep_time, sleep_asleep_time and

sleep_wake_time
sleep_deep_count number of times falling into deep sleep

sleep_deep_time total time [s] spent in deep sleep
sleep_light_count number of times falling into light sleep

sleep_light_time total time [s] spent in light sleep
sleep_rem_count number of times falling into REM sleep stage
sleep_rem_time total time [s] spent in REM sleep stage

sleep_wake_count number of times waking up
sleep_wake_time total time [s] spent in waking up

sleep_awake_time total time [s] spent awake during sleep
sleep_awake_count number of times awakening during sleep
sleep_restless_time total time [s] spent being restless during sleep

sleep_restless_count number of times getting restless during sleep
sleep_asleep_time total time [s] spent being fully asleep

sleep_asleep_count number of times falling fully asleep
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In addition to stated behavioral time-series data, an extensive set of personal socio-
demographic, profile (age, gender, ethnicity, educational and marital status, employ-
ment status and occupational environment…), as well as health state, risk factors and
habits, lifestyle, neighbourhood and quality of life assessment, and other relevant
behavioural data are manually input/submitted on each citizen participating in the study
via online forms, composed from adapted relevant survey/assessment instruments for
each specific field, like Framingham, EuroQoL-5, IPAQ-SF. These data are geo-
localized to the residence location of each responding citizen for the purposes of
analytics of collective/community well-being, and are collected from a greater number
of recruited respondents, but just in rare cases in more than one iteration over time due
to the high number and scope of covered variables, and therefore suitable for a broad
but mainly static “snapshot” assessment of current well-being state rather than for
behaviour change model and analytics. Incorporating both these static and IoT-sensed
temporal data into a fully comprehensive predictive well-being model is an ongoing
task in progress throughout the end of the Project, with results to be presented in other
upcoming publications.

4 Derivation of Domain/Dimension Indices

4.1 Physical Activity/Exercise

Physical activity in our first approach stated above in Sect. 2 can be discretized using
several common baseline categorizations related or derived from the above mentioned
relevant institutional/governmental and professional expert guidelines for the urban
population groups. The example approach taken in the recent health survey of England
from 2016 [12] compared well-being and mental health of adults in different socio-
demographically stratified population groups by physical activity, among others. The
activity level categories used in the analysis were the following:

• Meets aerobic guidelines: At least 150 min moderately intensive physical activity
or 75 min vigorous activity per week or an equivalent combination of these

• Asserted activity: 60 to 149 min moderate activity or 30–74 min vigorous activity
per week or an equivalent combination of these

• Low activity: 30 to 59 min moderate activity or 15 to 29 min vigorous activity per
week or an equivalent combination of these

• Inactive: Less than 30 min moderate activity or less than 15 min vigorous activity
per week or an equivalent combination of these,

and the corresponding linear scaled scoring function denotes “Meets aerobic
guidelines” with a score of 4, “Certain activity” - 3, “Low activity” - 2, and “Inactive”
with 1. This baseline scoring scale, besides sufficient granularity and robustness
exhibited in referenced comprehensive studies, is also convenient for

• mapping to the defined activity level categories used as input parameters for the
consensus models for prediction of risk of Type 2 Diabetes (T2D) and asthma onset
and exacerbation, developed for the PULSE project [13, 17]
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• quantification of longer-term and/or periodic activity level behaviours directly from
categorized daily or incidental activity level values as measured and acquired from
the wearable tracker devices through relevant APIs (light/soft, moderate, and
vigorous/intense activity).

4.2 Specific Walking Activity

Similarly, the authors in [14] and [15] demonstrate the following referent threshold
ranges of the number of daily walked steps to be used for classification of walking
activity in healthy adults, and the corresponding scoring function linearly assigning the
following 1–5 integer scores to the classification categories: highly active (12,500 or
more steps/day) – 5, active (10,000–12,499 steps/day) – 4, somewhat active (7,500–
9,999 steps/day) – 3, lowly active (5,000–7,499 steps/day) – 2, and sedentary (under
5,000 steps/day) - 1.

4.3 Cardiovascular Fitness - VO2max

VO2max is the metric denoting the maximum amount of oxygen that an individual can
use during intense exercise. It is widely and commonly used as an indicator of car-
diorespiratory fitness.

A simple generic estimate of VO2max of an individual can be obtained using their
maximum and resting heart rates in the following formula, publised in [16]:

VO2max � hrmax
hrrest

� 15:3mL=ðkg � minÞ ð1Þ

Where hrmax can be crudely estimated as 220 – age of the person.
A relatively standard convenient and meaningful categorization of VO2max for

Western European and USA populations can be on a scale from 1 - very low, through 2
- low, 3 - fair, 4 - moderate, 5 - good, and 6 - very good, to maximal 7 - elite, depending
of the individual’s gender and age, with common categorization for males and females
aged 6 to 75 published by Shvartz & Reibold in [11].

4.4 Quality of Sleep

Total average sleep duration in 24 h is a straightforward direct metric for assessing the
quality of sleep in terms of longer-term stable behaviour across complete populations.
The US National Sleep Foundation recently provided the following referent expert
sleep duration recommendations (in terms of recommended (or not) threshold values
for both oversleep and undersleep), categorized by precise granular age ranges [10]:

These recommendations categorize possible output sleep duration times as either
recommended, may be appropriate, or not recommended, and the optimal recom-
mended duration is 7–9 h for majority of the populations.
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Additionally, relevant recent findings like the extensive meta-analysis performed by
the American Diabetes Association to assess the dose-response relationship between
sleep duration and risk of type 2 diabetes [18], have concluded that the lowest type 2
diabetes risk is for the average overnight sleep duration from 7 to under 9 h per day,
and that both shorter and longer sleep durations than this optimum range denote up to
1.5 times increased risk (and up to 2 times increased cardiac conditions risk shown in
the related studies [21], also relevant in the Project). We therefore slightly alter the may
be appropriate category from the otherwise adopted recommendations from Table 2
above to mildly risky, reflecting the importance of stated health risks in PULSE, and the
effect of common or periodically repeated behaviour patterns over months or years to
the exasperation of the risks. This categorization will also consequently be commu-
nicated on the data visualizations and public health/prevention interventions and
campaigns deployed and administered through relevant PULSE system applications
and modules (PHO Dashboards, PulsAIR gamified mobile app.) towards the citizens
and urban communities, and the resulting function scores assigned to the categories are
therefore: 1 for not recommended, 1.75 for mildly risky, and 2 for recommended,
inversely proportional to the pesimistically estimated risks increase brought by shorter
durations. Complex eventual relations of detailed specific measured sleep parameters to
well-being will be explored by more advanced methods in other subsequent work.

Table 2. Detailed US National Sleep Foundation recommended threshold values and ranges for
sleep duration per age category

Category
age

Recommended Considered appropriate Not recommended

Newborns
0–3 months

14 to 17 h 11 to 13 h
18 to 19 h

Less than 11 h
More than 19 h

Infants
4–11 months

12 to 15 h 10 to 11 h
16 to 18 h

Less than 10 h
More than 18 h

Toddlers
1–2 years

11 to 14 h 9 to 10 h
15 to 16 h

Less than 9 h
More than 16 h

Preschoolers
3–5 years

10 to 13 h 8 to 9 h
14 h

Less than 8 h
More than 14 h

School-aged Children
6–13 years

9 to 11 h 7 to 8 h
12 h

Less than 7 h
More than 12 h

Teenagers
14–17 years

8 to 10 h 7 h
11 h

Less than 7 h
More than 11 h

Young Adults
18–25 years

7 to 9 h 6 h
10 to 11 h

Less than 6 h
More than 11 h

Adults
26–64 years

7 to 9 h 6 h
10 h

Less than 6 h
More than 10 h

Older Adults
65 years and over

7 to 8 h 5 to 6 h
9 h

Less than 5 h
More than 9 h
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4.5 The Composite Physical Well-Being Indicator

From several existing elementary statistical approaches for aggregating the underlying
dimensional indices and constructing the summary composite indicator value, we
consider the weighted geometric mean of the four constituting dimensional indices as
most adequate and appropriate for this specific well-being problematics:

WBph ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IWtw
w � IWtp

p � IWts
s � IWtc

c

q

; ð2Þ

where summary dimensional indices denoted by the scoring function values are:
Iw – walking activity index, Ip – physical activity/exercise index, Is – sleep duration
index, Ic – cardio-respiratory fitness index (through VO2max), and Wtw, Wtp, Wts, and
Wtc are respective weight factors, derived from expert assessments and rank data from
relevant previous studies and experience, and assigned to adjust the relative importance
and contribution of each of the indices to the resulting composite indicator value, per
compositing methods outlined in [19] and [9], or for derivation of composite UN
Human Development Index (HDI). As all 4 constituting indices are directly propor-
tional to the resulting composite indicator (i.e. the higher the activity levels or cardio-
respiratory fitness scores, the higher the well-being), and low value of either of the four
is significant for decreased overall composite (although there is some correlation
between the indices - e.g. decrease in cardio-respiratory fitness in most cases causes
decreased activity levels as well), the geometric mean is adequate for its sensitivity to
low values of each individual constituting index, and ability to combine values on
completely different scales without normalization required. Initially assigned values of
weight factors are 0.9 for Iw, 1 for Ip, and 1.05 for Is and Ic, taking into account the
importance of specific indices for respiratory disease and T2D risk, volatility of the
collected data by now, and known overestimation of some measured variable values
(like number of walked steps, VO2max estimate, or recognized sessions of cycling and
some other exercise types) by the predominantly used wearable devices - Fitbit Charge
2 [20]. The weight factors are set as configuration parameters in the model, so they can
be changed to fine-tune the composition according to the data insights acquired over
time or the results of the validation described in Sect. 5 below.

Time series of the values of the composite indicator are formed from weekly and
monthly aggregations of underlying daily and intra-daily measurements into the 4
constituting index values. Method for computing those values from the measured
values of variables listed in Table 1 above is as developed and introduced in [22] for
synthesis of indicators and geriatric factors from the same source IoT data, based in this
case on univariate normalization of relative changes (quantified in standard scores, as
stated above in the “Approach” Sect. 2) of acquired Big temporal Data during the
complete study period, and then multivariate weighted linear aggregation of obtained
normalized indicators and descriptive statistics into higher-level composite factors, to
capture weekly and monthly behavioural patterns and trends, less susceptible to
influence of outliers and ocassional notably deviating values.
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5 Preliminary Validation of the Composite Index
and Conclusion

Validation metric is the correlation with specific corresponding summary measure(s) of
current well-being, self-reported by the respondent citizens through web and mobile
app. questionnaires as mentioned above. They can be summarized from two relevant
subset questionnaires: 1) European Social Survey (ESS), and 2) EuroQoL-5D (EQ5)
survey instrument, both standardized (with minor adaptations) and common for mea-
suring well-being in multiple continuous and/or repeated relevant Europe-wide and
national-level studies, and robust to some degree against extreme fully subjective bias.

15 statements of the ESS questionnaire broadly cover social and most of the other
aspects of personal and community well-being that the respondent rates on a 5-degree
Likert scale (Strongly agree-4, Agree-3, Neither agree nor disagree-2, Disagree-1,
Strongly disagree-0), the total possible questionnaire score thus ranging from 0,
denoting the lowest/worst well-being, to 60 representing the optimum.

EQ5 instrument is focused on physical and mental health status and daily life
activities measured in 5 dimensions (mobility, self-care, usual activities,
pain/discomfort and anxiety/depression), also self-rated on a 5-degree scale from
perceived worst to best like in ESS. Last question asks for assessment of the respon-
dent’s overall health state (hsa) on the current day, on the scale from 0 (worst) to 100
(best imaginable), also mapped to a number ranged from 1 to 5 by the formula
1 + 4 * hsa/100 for the purpose of this evaluation. Total cumulative EQ5 score thus
ranges from 6 to 30.

Figure 2 below shows the correlation scatter plot of ESS scores and composite
well-being indices for 97 respondents of which 12 filled EES questionnaire twice, two
filled it three times, and the rest only once during the observed period of 11 months.

Fig. 2. Scatter plot of composite well-being index vs. cumulative ESS score values
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Figure 3 shows the relationship between the composite well-being indices and the
obtained EQ5 scores of 107 respondents, 3 of which filled the questionnaire three
times, 20 filled it twice, and the rest once during the observed data collection period.

The analysis reveals a medium positive correlation of 0.424 (with the p-value of
approx. 3.7 � 10−7) between our constructed composite index and cumulative EQ5
scores. The composite indicator and its constituting domain indices can therefore be
considered promising for their intended purpose of basic represention of the urban
physical well-being aspects modelled from a variety of heterogeneous underlying
activity and health/vital parameters measured by IoT wearable devices, summarized in
4 main dimensional and one overall derived score convenient for comparisons, inter-
pretation and presentation to the end-users, particularly in the required shortest most
concise manner and form, such as through a mobile app. UI or intervention messages.

As almost half of the questions in EQ5 are very remotely or not at all related to the
physical well-being aspects summarized by the composite indicator, the correlation is
expected to increase when the ongoing work in incorporating social and other well-
beung aspects fully in the model is completed.

Found small positive correlation of 0.287 (p-value 0.001) between the composite
indicator and cumulative scores of ESS questionnaire (in which most of the questions
are not related to physical well-being) additionally points to the significance of this
composite indicator to the overall well-being. The work also continues on the cleaning
and pre-processing the data collected on the remaining monitored citizens, incorpo-
ration of machine learning methods in the model and exploration and modelling of the
influence of detailed sleep and cardiac parameters, as well as of the sensed ambiental
data, on the main well-being domains.

Fig. 3. Scatter plot of composite well-being index vs. cumulative EQ5 score values
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