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Abstract. In this paper, we introduce an unsupervised method for
the parcellation of the Corpus Callosum (CC) from MRI images. Since
there are no visible landmarks within the structure that explicit its
parcels, non-geometric CC parcellation is a challenging task especially
that almost of proposed methods are geometric or data-based. In fact,
in order to subdivide the CC from brain sagittal MRI scans, we adopt
the probabilistic neural network as a clustering technique. Then, we use
a cluster validity measure based on the maximum entropy (Vmep) to
obtain the optimal number of classes. After that, we obtain the isolated
CC that we parcel automatically using SLIC (Simple Linear Iterative
Clustering) as superpixel segmentation technique. The obtained results
on two challenging public datasets prove the performance of the proposed
method against geometric methods from the state of the art. Indeed, as
best as we know, it is the first work that investigates the validation of a
CC parcellation method on ground-truth datasets using many objective
metrics.
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1 Introduction

Thanks to advances in magnetic resonance imaging, neuroscientists and clini-
cians can study in depth the Corpus Callosum (CC) and mainly the correlation
between the CC’s dimensions and some neurological diseases. The CC, which is
the largest white matter structure and the biggest fiber tract connecting corre-
sponding regions of the cerebral cortex in the two cerebral hemispheres, inte-
grates motor, sensory, and cognitive functions of the brain [1]. Anatomically,
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more than half of the axons composing the CC are surrounded by myelin, which
gives this structure its remarkable appearance in midsagittal T1-weighted MRI
images. However, in many sagittal brain MRI slices, the fornix appears in the
neighborhood of the CC with a similar intensity (Fig. 1) [2]. The CC is usually
divided into smaller regions such as rostrum, genu, body, and splenium. This
subdivision of the CC is called parcellation and it is proving to be very use-
ful for an effective analysis of the CC [2,3]. In fact, the CC shape may be the
cause of many neurodegenerative diseases such as epilepsy, alzheimer, autism,
depression and other types of psychosis [4]. The CC analysis is also important
for studying aging, gender differences and laterality [5]. Hence, various studies
have evaluated shape or volume variation of the CC parcels. They revealed a cor-
relation between CC’s abnormalities and many diseases. For instance, [6] shows
that the rate of change in CC or one of its sub-regions is more closely asso-
ciated with the progression of Alzheimer’s disease. Moreover, the CC parceling
can be an appropriate group biomarker for an objective evaluation of treatments
aimed at slowing the progression of Alzheimer [7]. Furthermore, several works
have identified volume alterations of the CC and its sub-regions in subjects with
Autism Spectrum Disorders (ASD). In this context, a study of the CC volume
of 40 pre-schoolers, with different sex and age, suffering from ASD was made by
applying the “FreeSurfer” automated parcellation software. This study demon-
strated that the total volume of the CC and its sub-regions is correlated with
autism severity [8]. Another study conducted on 75 participants with Parkinson
Disease (PD) and 24 Healthy Control (HC) confirms that CC sub-regions abnor-
malities might be the cause of Parkinson disease. Indeed, participants with PD
showed an increase in the 3 anterior callosal segments compared to HC [9].

Fig. 1. Example of sagittal brain MRI slices from the OASIS dataset: (a) The input
MRI. (b) Delineation of the CC, where the fornix (framed in blue) appears in the
neighborhood of the CC while being of similar appearance. (Color figure online)

Generally, the CC parcellation into callosal regions allows for a precise differ-
entiation of motor connectivity and the structural integrity of these tracts in the
CC [10]. Thus, the CC parcellation should be so helpful to better understand
inter-hemispherical callosal connectivity in patients or healthy subjects [11]. In
particular, MRI takes advantage of the macroscopic geometrical arrangement of
white matter bundles that it makes capable of generating good CC visualization
from the sagittal plane. In any way, the parcellation of the CC stills an impor-
tant task for radiologic assessment despite there are no real or visible borders
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to allow this subdivision. Nevertheless, the visual inspection of CC structures
in MRI scans suffers from both inter- and intra-specialist variability. On the
one hand, the manual CC segmentation methods require strongly visual effort,
specialized training skill, and are time-consuming processes. On the other hand,
several geometrical methods for the CC parcellation have been proposed such as
Witelson and Hofer methods [12]. However, these methods cannot be satisfacto-
rily validated due to the lack of qualitative parameters and reference standards.
Although all these difficulties, the development of an automatic CC parcellation
method is an inescapable need to ensure a reliable diagnosis. Such parcellation
is so independent from the operator skills and may be extended to other brain
structures parcellation. Thus, since there are no visible landmarks indicating
where the CC should be subdivided, the development of a fully automatic CC
parcellation method is highly challenging, even for specialists. To deal with this
issue, we propose to automatically parcel the CC within MRI images. By vali-
dating it, for the first time, on large and public datasets, the proposed method
records promising results. In fact, the contribution of this work is twofold:

– As best as we know, we adopt for the first time the superpixel segmentation
algorithm called Simple Linear Iterative Clustering (SLIC) for the CC parcel-
lation [13]. Despite its simplicity, SLIC has been demonstrated to be effective
in various computer vision applications [14].

– The subdivision process of the proposed method is fully automatic and it is
the second study that proposed a non-geometric analysis for the CC parcels,
to the best of our knowledge [15]. Although it is based only on the MRI data
of each analyzed subject, with no parameter adjusting, the proposed method
proved quantitatively its superiority over state-of-the-art methods.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
existing methods for the CC parcellation. Section 3 presents the proposed method
based on SLIC. Experimental results are discussed in Sect. 4. The last section
concludes the paper and points some directions for future work.

2 Related Work

Few CC parcellation methods were proposed. However, most of these methods
have not surmounted all the challenges encountered. In fact, the CC parcella-
tion is a challenging task given that a normal shape of the CC might not clearly
highlight all parcels, what can increase the diagnosis complexity. In addition,
many internal abnormalities might include bumps which are hard to detect.
Existing CC parcellation methods can be divided into two main classes: geomet-
ric methods and non-geometric ones. On the one hand, since there are no real
or visible boundaries allowing the CC parcellation, several geometrical meth-
ods were presented to perform this task. Among these methods, two particular
ones are widely adopted. The first was proposed by Witelson and it is based
on postmortem connectivity analysis in primates and humans [16]. This method
divides the CC into five regions ranging from anterior dimension to the posterior
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dimension. The CC subdivision is done into an anterior third, the middle of the
anterior and posterior midbody, a posterior third and the posterior one-fifth. The
rostrum, genu, and rostral body presenting the regions of the anterior third illus-
trate the prefrontal, premotor, and supplementary motor cortical areas. However,
the posterior midbody is crossed by the somaesthesic and posterior parietal fiber
bundles. The sub-regions of the posterior third, containing the isthmus and sple-
nium, are allocated to temporal, parietal, and occipital cortical regions. Thus,
this parcellation method, and as any geometric methods, neither reflects the real
texture nor the internal organization of the CC. In addition, the CC parcella-
tion is strongly dependent on the brain conservation process, since it is based on
post-mortem data. Differently, Hofer proposed the only work based on tractog-
raphy of DTI (Diffusion Tensor Imaging) by subdividing the CC into five regions
from an average behavior observed via tractography in a specific population of
8 subjects [1]. As already proposed by Witelson, the geometric baseline in the
midsagittal section of the CC is defining the anterior and posterior points of the
structure. The first region, which represents the first sixth, contains fibers pro-
jected in the prefrontal region. The remainder of the anterior half CC illustrates
the second region containing the fibers that form the motor and motor areas
of the cerebral cortex. In fact, these fibers form together the largest CC region
and are placed in the back section of the structure. The third region presents
the posterior half minus the posterior third. It contains fibers responsible for
the primary motor cortex. However, this part of the parcellation scheme is in
conflict with Witelson’s method. The fourth region forms third minus the poste-
rior quarter, presenting the primary sensory fibers. The last and the fifth region
represents the CC posterior quarter crossed by the parietal, temporal and visual
fibers. Figure 2 shows a comparison between the geometric schemes proposed by
Witelson and Hofer. We notice that geometric methods allow only to divide the
CC into the same regions among all subjects without considering the human and
individual brain features between different subjects. On the second hand, differ-
ently to geometric parcellation methods, Rittner proposed a data-driven method
based on the Watershed technique [15]. This method is composed of four steps.
The first step consists in the weighting of the fractional anisotropy. The second
step performs the selection of the brain midsagittal plane, followed by the third
and the last step which are the CC segmentation using the Watershed technique,
and its parcellation with fixed markers. Nevertheless, this method suffers from
sensitivity to parameters selection. In order to overcome its limitations, Cover
extended the Rittner method with some important changes [12]. Practically, the
author replaced all steps except the first step in order to lead to a more robust
data-driven method. Indeed, the parcellation is improved by applying the K-
means algorithm after defining the CC centerline. When comparing this method
to that of Rittner, and although both are based on Watershed, it is confirmed
that this method had a better generalization ability using no fixed markers to
execute the Watershed transform. However, due to the lack of quantitative met-
rics and reference standards, these methods cannot be correctly validated.
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Fig. 2. CC geometric parcellation with divisions presenting the five regions (on an MRI
scan from the OASIS dataset) using the method of: (a) Witelson. (b) Hofer.

3 Proposed Method

Differently to existing methods, we propose a subdivision scheme that considers
only the MRI data [14]. Using the SLIC superpixel segmentation technique, the
method is composed of two main steps: CC segmentation and CC parcellation.
This comes from that the SLIC presents one of the most popular images over
segmentations that is commonly used as supporting regions for primitives to
reduce computations in various computer vision tasks.

3.1 CC Segmentation of the Midsagittal Slice

We adopt herein our previous method [17] for the automatic CC segmentation of
MRI sagittal section. It includes three main steps: image preprocessing using the
Anisotropic Diffusion Filtering (ADF), classification based on the unsupervised
Probabilistic Neural Network (PNN) classifier, and CC isolation using a spatial
filtering (Fig. 3). In fact, the first step aims to enhance the signal-to-noise ratio
by eliminating unwanted parts in the background and smoothing the internal
part of the region while preserving its borders. In fact, ADF allows to unblock
high-frequency noise while preserving the main edges of structures [18]. Then,
the classification step permits to define the target classes using K-means, before
classifying them by the PNN [17]. Thereafter, the Vmep index, which is based
on the maximum entropy principle as an evaluation method that is called the
cluster validity, is applied in order to determine the optimal number of clusters.
The optimal number of classes is obtained when the Vmep validity index reaches
its maximum value. This number is adopted for the PNN classification process
to obtain the final cluster map. Once the CC class is identified, the CC region
will be isolated by a spatial-based filtering. Finally, we defined the CC contour
by applying a follow-up algorithm on the border pixels of the CC region that
are characterized by a maximum of the spatial gradient [19].

3.2 CC Parcellation

We propose a CC parcellation method based on SLIC, which is non-geometric
and fully automatic superpixel segmentation technique. It works with no param-
eter adjusting and with no instantaneous training, leading to a more robust tech-
nique. Thus, in order to segment the CC into a set of superpixels, which refer
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Fig. 3. CC segmentation: (a) Input sagittal MRI. (b) Cluster Map. (c) Isolated CC.

to groups of pixels that represent perceptually significant small defined regions,
we adopt the SLIC technique. It is an arrangement of K-means for superpixel
generation in order to be faster than existing methods, more memory efficient
while improving significantly the segmentation accuracy. It allows two important
directions [14]. Firstly, it reduces greatly the number of distance calculations by
restricting the search space to a region corresponding to the superpixel size.
Therefore, a reduction in the complexity of being linear is achieved in the pixels’
number N and superpixels’ number K that is independent and user-defined. In
our case, N and K are equal to 256 and 200, respectively. Secondly, a combi-
nation of color and spatial proximity is reached by a weighted distance measure
that allows both controls over the size and compactness of the superpixels. Thus,
each slice of the input MRI image is partitioned into different size regions. In
fact, the initial grid size is defined as S (1). From the geometric center, the center
superpixel of each region is computed. This geometrical center of each region is
recursively updated in each iteration.

S =

√
N

K
. (1)

In order to regroup the pixel, both spatial and intensity distances are used. The
spatial distance between the pixels i and j is defined as follows (2):

Sd =
√

(pj − pi)
2 + (qj − qi)

2
, (2)

where the coordinate values of pixel i and j are represented by p and q. The
Eq. 3 calculates the intensity distance.

Id =
√

Nj + Ni, (3)

where Nj and Ni represent the normalized intensity of pixel j and i, respectively.
Equation 4 defines the combined distance measure Cd of spatial and intensity.

Cd =

√
I2d .

(
Sd

S

)2

+ e2, (4)

where e denotes the compactness coefficient. In fact, larger value of e illustrates
more compact segments, whereas lower value of e represents flexible boundaries.
The compactness coefficient is fixed in the range of [0, 1]. The superpixel com-
putation of the proposed method is shown in Fig. 4.
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Fig. 4. SLIC-based parcellation: (a) The input MRI. (b) Result of the SLIC method.

4 Experimental Results

For the evaluation of the proposed parcellation method, we are the only study
that used brain MRI scans from two public datasets. On the one hand, we
used the Open Access Series of Imaging Studies (OASIS) dataset, which is
freely available on www.oasis-brains.org. It is created by Washington University
Alzheimer’s disease Research Centre. This MRI dataset included a longitudi-
nal collection of 416 subjects aged between 18 and 96 years, men and women,
including 100 individuals with very mild to moderate Alzheimer’s disease (AD).
All images were acquired on the same scanner using the same sequences. Each
subject was scanned on two or more visits, separated by at least one year for a
total of 373 imaging sessions. Each MR image within this dataset is composed
of 128 slices with a resolution of 256× 256 (1× 1mm). In this work, we selected
1806 sagittal images that are qualified by a quality control according to severe
artifacts. On the other hand, Autism Brain Imaging Data Exchange (ABIDE)
is also investigated. In order to accelerate understanding of the neural bases of
autism, the ABIDE dataset has supplied functional and structural brain imaging
data collected from laboratories around the world. This dataset is composed of
two large-scale collections called ABIDE-I and ABIDE-II. Each collection was
collected independently across more than 24 international brain imaging labo-
ratories. Thus, we generate a total of 2200 sagittal images with a resolution of
256 × 256. It is worthy noting that we have a challenging heterogeneous set of
images of normal subjects and individuals with Autism and Alzheimer.

4.1 Qualitative Evaluation

For each subject, the proposed parcellation method gives an apparent variation
in the positioning of the CC parcels. This is because this method is purely
automatic and does not follow any atlas or any prior knowledge (Fig. 5). The
geometric methods of Hofer and Witelson do not present the variation of their
proportion of CC parcels and consequently, the same behavior can be observed on
the results of all the subjects. Figure 5 shows that the proposed CC parcellation
method is more similar to the Hofer parcellation than the Rittne one. This can
be explained by the fact that Hofer subdivisions are based on the connections
of the cortical fibers to find the CC parcels. The largest differences between

www.oasis-brains.org
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the proposed parcellation and that of Witelson are observed in the parcels 1
and 4. In fact, according to our collaborator clinician expert, the CC shape and
parcellation are well defined and the delineated CC area shows closely the five
anatomical subdivisions of the CC, especially the critical ones: the rostrum and
the splenium. The fornix is correctly removed from the CC area and the obtained
CC parcellation shows a precise subdivision of CC into five regions within brain
MRI scans, without penetrating the irrelevant neighboring structures. Note that,
within the selected sample of MRI brain scans, the CC is extracted and parcelled
both on female (column 1 and 3) and male (column 2 and 4) subjects. In fact,
we applied the proposed method on subjects from the ABIDE dataset (column
1 and 2) as well as from the OASIS dataset (column 3 and 4).

Fig. 5. Experimental results: 1st line: Input image. 2nd line: Isolated CC. 3rd line:
Brain parcellation. 4th line: Proposed CC parcellation. 5th line: Ground-truth.

4.2 Quantitative Evaluation

In order to evaluate the performance of the proposed method, we used the follow-
ing commonly used metrics: Dice, accuracy, sensitivity, specificity and precision.

– The Dice coefficient (5) is a statistical measure that is used for comparing
the similarity of two sample sets.

– The accuracy (6) is defined as the rate of correctly classified items.
– The sensitivity (7) is the proportion of positive items correctly classified.
– The specificity (8) is the rate of negative items rightly identified.
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– The precision (9) is the ratio of correctly predicted positive samples to the
total predicted positive samples.

Dice =
2 × TP

2 × TP + FN + FP
(5)

Accuracy =
(TP + TN)

(TP + FN + TN + FP )
(6)

Sensitivity =
TP

(TP + FN)
(7)

Specificity =
TN

(TN + FP )
(8)

Precision =
TP

(TP + FP )
(9)

TP refers to the True Positive (region correctly parcelled as the concerned par-
cel), TN refers to the True Negative (region correctly classified as background),
FP refers to the False Positive (region which is parcelled as the concerned par-
cel) and FN refers to the False Negative (region which is incorrectly classified
as background). We notice that we produce five parcels, and for each parcel we
measure the five metrics. It is worthy noting that for the first time, a very use-
ful ground-truth for CC segmentation and parcellation within the challenging
widely used OASIS and ABIDE datasets is used. Therefore, we are the only
work that is compared to a such ground-truth. However, the Rittner method is
evaluated only on the agreement between the results achieved by different CC
parcellation methods. In fact, a professional neurologist from Pasteur Institute
of Tunis and a junior doctor have been charged with manually preparing the
CC regions and parcels from all images belonging to the OASIS and the ABIDE
datasets. Besides, we applied post-processing in order to exclusively extract the
CC area and parcels. Table 1 shows the recorded results comparatively to the
ground-truth. It is clear that the Proposed Method (PM) records the higher
Dice coefficient score (> 0.84) in the parcels 1, 2, and 5, and a sufficient Dice
coefficient score (> 0.75) in parcels 3 and 4 comparatively to the ground-truth.
Evenly, it reaches a higher accuracy, specificity and sensitivity scores with values
> 0.90. The decline of the proposed method performance according to the preci-
sion metric can be explained by the cause of the ground-truth which is manually
drawing and the processing applied to do the evaluation in each parcel. Fur-
thermore, for the two datasets and for each CC parcel, the Dice coefficient was
computed pairwise for the methods of the state of the art (Table 2) as it is used in
the Rittner work. Therefore, the previous analyzes allow only verifying the sim-
ilarity between the resulting CC parcels, or which present statistical differences
between methods of the literature since this is a problem without a gold stan-
dard (Table 2). Hence, it is now possible to know the correct CC parcellation by
producing ground-truth for both Witelson and Hofer methods. Since the Hofer
and Witelson CC parcellation methods are based on geometric CC parcellation,
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their results did not vary among different subjects throughout the experimented
dataset. This explains this overlap measurement obtained which would have
maximum value if any of the methods was the same. The most pertinent differ-
ence between these CC parcellation methods was related to the automatic and
non-geometric behavior defined by our proposed parcellation. Table 2 presents
different results between methods while recording interesting similarities in some
cases. The proposed CC parcellation method demonstrates to be nearby to the
Hofer method, mainly on parcels 1, 2 and 3, while the Witelson method presents
significant statistical difference on the parcels 4 and 5.

Table 1. Evaluation of the proposed method.

Dice Accuracy Sensitivity Specificity Precision

Parcel 1 0.9401 0.9986 0.9992 0.9986 0.7246

Parcel 2 0.8488 0.9927 0.9935 0.9927 0.4817

Parcel 3 0.7583 0.9944 0.9959 0.9944 0.5496

Parcel 4 0.7707 0.9960 0.9972 0.9960 0.6280

Parcel 5 0.8473 0.9889 0.9845 0.9890 0.3790

Mean±std 0.8330 ± 0.050 0.9941 ± 0.003 0.9941 ± 0.001 0.9941 ± 0.013 0.5526 ± 0.363

Table 2. Dice coefficient for the two datasets (best value are in bold).

Witelson vs PM Hofer vs. PM PM vs. GT Witelson vs. GT Hofer vs. GT

Parcel 1 0.8512 0.9100 0.9401 0.6125 0.7013

Parcel 2 0.6001 0.7589 0.8488 0.2822 0.1624

Parcel 3 0.8845 0.8700 0.7583 0.4760 0.47163

Parcel 4 0.5113 0.5236 0.7707 0.4909 0.5120

Parcel 5 0.5112 0.4958 0.8473 0.6868 0.8014

5 Conclusion

CC is the biggest fiber tract within the human brain that allows the commu-
nication between the two cerebral hemispheres. The CC form and sub-regions
might cause some diseases. The CC parcellation from MRI images can predict
future cases of diseases or progress neurological patterns in the development of
different diseases. This paper presented a fully automatic non-geometric CC par-
cellation based on the SLIC superpixel algorithm, with no parameter adjusting
and instantaneous training. Since there is no gold standard used to evaluate the
existing methods, we produced for the first time a ground-truth led to evaluate
quantitatively CC parcellation methods. Extensive experiments and quantitative
comparisons with relevant CC parcellation methods, proved the accuracy of the
proposed method on two challenging standard datasets. Indeed, the proposed
method achieves higher performance values for each parcel. As future work, we
aim to propose a super voxel method based on the SLIC algorithm, from not
only MRI scans but also from functional magnetic resonance imaging.



124 A. Jlassi et al.

References

1. Hofer, S., Frahm, J.: Topography of the human corpus callosum revisited–
comprehensive fiber tractography using diffusion tensor magnetic resonance imag-
ing. Neuroimage 32(3), 989–994 (2006)

2. Lacerda, A., Brambilla, P., Sassi, R., Nicoletti, M.: Anatomical MRI study of
corpus callosum in unipolar depression. J. Psychiatr. Res. 39(4), 347–354 (2005)

3. Witelson, S., Goldsmith, C.: The relationship of hand preference to anatomy of
the corpus callosum in men. Brain Res. 545(1–2), 175–182 (1991)

4. El-Baz, A., Elnakib, A., Casanova, M.: Accurate automated detection of autism
related corpus callosum abnormalities. J. Med. Syst. 35(5), 929–939 (2011)

5. Johnson, S., Farnworth, T., Pinkston, J.: Corpus callosum surface area across the
human adult life span: effect of age and gender. Brain Res. Bull. 35(4), 373–377
(1994)

6. Van Schependom, J., Niemantsverdriet, E.: Callosal circularity as an early marker
for Alzheimer’s disease. NeuroImage Clin. 19(1), 516–526 (2018)

7. Bachman, A., Lee, S., Sidtis, J.: Corpus callosum shape and size changes in early
Alzheimer’s disease: a longitudinal MRI study using the OASIS brain database. J.
Alzheimers Dis. 39(1), 71–78 (2014)

8. Giuliano, A., Saviozzi, I., Brambilla, P.: The effect of age, sex and clinical fea-
tures on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum
Disorder: a case-control study. Eur. J. Neurosci. 47(6), 568–578 (2018)

9. Bledsoe, I., Stebbins, G.: White matter abnormalities in the corpus callosum with
cognitive impairment in Parkinson disease. Neurology 91(24), e2244–e2255 (2018)

10. Domin, M., Lotze, M.: Parcellation of motor cortex-associated regions in the human
corpus callosum on the basis of Human Connectome Project data. Brain Struct.
Funct. 224(4), 1447–1455 (2019). https://doi.org/10.1007/s00429-019-01849-1

11. Anand, C., Brandmaier, A., Arshad, M.: White-matter microstructural properties
of the corpus callosum: test-retest and repositioning effects in two parcellation
schemes. Brain Struct. Funct. 224(9), 3373–3385 (2019)

12. Cover, G., Pereira, M., Bento, M.: Data-driven corpus callosum parcellation
method through diffusion tensor imaging. IEEE Access 5(1), 22421–22432 (2017)

13. Cover, G., Herrera, W., Bento, M.: Computational methods for corpus callosum
segmentation on MRI: a systematic literature review. Comput. Methods Programs
Biomed. 154(1), 25–35 (2018)

14. Achanta, R., Shaji, A.: SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

15. Rittner, L., Freitas, P.: Automatic DTI-based parcellation of the corpus callo-
sum through the watershed transform. Revista Brasileira de Engenharia Biomedica
30(2), 132–143 (2014)

16. Witelson, S.: Hand and sex differences in the isthmus and genu of the human corpus
callosum: a postmortem morphological study. Brain 112(3), 799–835 (1989)

17. Jlassi, A., ElBedoui, K., Barhoumi, W., Maktouf, C.H.: Unsupervised method
based on probabilistic neural network for the segmentation of corpus callosum in
MRI scans. the 14th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications, no. 4, pp. 790–798 (2019)

https://doi.org/10.1007/s00429-019-01849-1


Superpixel Segmentation for CC Parcellation in MRI 125
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