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Abstract. The objective of this work is to detect Alzheimer’s disease
using Magnetic Resonance Imaging. For this, we use a three-dimensional
densenet-121 architecture. With the use of only freely available tools, we
obtain good results: a deep neural network showing metrics of 87% accu-
racy, 87% sensitivity (micro-average), 88% specificity (micro-average),
and 92% AUROC (micro-average) for the task of classifying five differ-
ent classes (disease stages). The use of tools available for free means that
this work can be replicated in developing countries.
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1 Introduction

Alzheimer’s Disease (AD) is the most common form of dementia among older
adults [17]. It is a neurodegenerative disease without a cure. Its early detection
is crucial because it allows those people who are going to be affected to prepare
for future changes [17]. For example, some medications delay the disease. Also,
their relatives can prepare and train for the care that will be necessary [17].

Early detection is not easy. One of the difficulties is the performance of people
working at the clinic. People making a diagnosis are affected by several factors
such as fatigue, stress, distractions, and inherent cognitive biases to specific
conditions of the disease. When radiologists see a medical image, such as a
magnetic resonance imaging (MRI), biased reasoning about the conditions of
the disease will result in the loss of the opportunity to detect it. Graber et al. [7]
found that about 74% of diagnostic errors are attributed to cognitive factors. Lee
et al. [14] state that approximately 75% of all medical errors made were due to
diagnostic errors by radiologists. A high workload, stress, fatigue, cognitive bias,
and an inadequate system are part of the causal factors. Medical errors contrast
with the fact that recently artificial intelligence, in particular, deep artificial
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neural networks (DNNs) have shown superhuman abilities in the detection of
diseases in medical computer vision, as in the work of Rajpurkar [18]. We can
design DNNs to integrate them into computer-aided diagnosis protocols for the
detection of many priority diseases. One of these possible diseases is AD.

Currently, there is a body of images of healthy patients and patients with
AD that is available through the database Alzheimer Disease Neuroimaging Ini-
tiative (ADNI)1. ADNI launched in 2003 as a public and private initiative. The
leadership belongs to the researcher Michael W. Weiner. The main objective of
ADNI has been to test whether medical images, other biomarkers, and clinical
and neuropsychological evaluation can be combined to measure the progress of
AD. The early detection of AD employing software would allow us to strengthen
and improve medical protocols by providing what we call Computer-Aided Diag-
nosis (CAD).

As we commented, DNNs have become increasingly important and useful in
recent years. One kind of these type of neural network is Convolutional Neural
Networks (CNN). CNNs are inspired by the biological visual cortex and are used
in areas as diverse as smart surveillance and monitoring, health and medicine,
sports and recreation, robotics, drones, and self-driving cars [12].

This work consists of measuring the accuracy of the detection of Alzheimer’s
disease of a three-dimensional CNN architecture, specifically a densenet-121,
trained using the ADNI MRI images. We also have a low-cost economic objective.
We aim to provide a technological artifact that has the potential of being used
in the public health and wellbeing of citizens all over the world, in particular,
for developing countries that have difficulties in accessing specialized hardware
platforms for computation.

Before presenting the results of developing a low-cost densenet for
Alzheimer’s disease detection, we first provide in Sect. 2 some background def-
initions to support our work. In Sect. 3 we describe previous work with more
detail. Then in the next section, we provide the methodology used to realize this
work. We present in Sect. 5 the results of the design chose. Finally, we analyze
those results with concluding remarks and future work in Sect. 6.

2 Background

We start with a short review of medical vocabulary used to provide a context
for our research. First, we introduce different clinical stages of disease that we
want to classify, and later, we describe two types of medical imaging used in the
detection and diagnosis of AD.

2.1 Clinical Disease Stages

There are different stages before the clinical diagnosis of AD. These are cogni-
tively normal, significant memory concern, and mild cognitive impairment.

1 http://adni.loni.usc.edu.
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Cognitive Normal (CN). CN patients are the control subjects in the ADNI
study. They have healthy aging. They show no signs of depression, mild cognitive
impairment, or dementia [1].

Significant Memory Concern (SMC). SMC is a self-report significant mem-
ory concern from the patient, quantified by using the Cognitive Change Index
and the Clinical Dementia Rating (CDR) of zero. Subjective memory concerns
are correlated with a higher likelihood of progression, thereby minimizing the
stratification of risk among normal controls and addressing the gap between
healthy elderly controls and mild cognitive impairment. However, SMC patients
score within the normal range for cognition [1].

Mild Cognitive Impairment (MCI). MCI participants have reported a sub-
jective memory concern either autonomously or via an informant or clinician.
However, daily living activities are mainly preserved, there are no significant
levels of impairment in other cognitive domains, and no signs of dementia exist.
Levels of MCI (early or late) are determined using the Wechsler Memory Scale
Logical Memory II [1].

Alzheimer’s Disease. AD is the most common cause of dementia, a general
term for memory loss and other cognitive abilities severe enough to interfere with
daily life. It is a progressive disease, where dementia symptoms gradually worsen
over several years. Individuals lose the ability to carry on a conversation and
respond to their environment. Current medications cannot stop the disease from
progressing, they can temporarily slow the worsening of dementia symptoms and
improve quality of life for those with AD and their caregivers [17].

Since we aim to assess if those stages, including AD, are detected on medical
imaging, particularly on Magnetic Resonance Imaging, we continue describing
two medical imaging techniques.

2.2 Medical Imaging

Medical imaging is the process and technique of creating visual representations
of the inner of a human body for clinical analysis and medical intervention. We
introduce two types of medical imaging. We are especially interested in the input
of Magnetic Resonance Imaging (MRI) on DNN. Moreover, we also mention
Positron Emission Tomography (PET) because it is sometimes an input that
accompanies MRI. We follow describing what MRI and PET are.

Magnetic Resonance Imaging. MRI is a non-invasive imaging technology
that produces three-dimensional detailed anatomical images without the use of
radiation that damages human tissues. It is often used for disease detection and
diagnosis and treatment monitoring. It is based on sophisticated technology that
excites and detects the change in the direction of the rotational axis of protons
found in the water that makes up living tissues [15].
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Positron Emission Tomography. PET scans use radiopharmaceuticals to
create three-dimensional images. These types of scans produce small particles
called positrons. A positron is a particle with roughly the same mass as an
electron but oppositely charged. Positrons react with electrons in the body, and
when these two particles combine, they annihilate each other. This annihilation
produces a small amount of energy in the form of two photons that shoot off in
opposite directions. The detectors in the PET scanner measure these photons
and use this information to create images of internal organs [16].

3 Previous Work

Our literature review assesses how much progress has been made and what can
be contributed in the detection of AD using deep learning, in particular with
Convolutional Neural Networks (CNN). We only focus on AD however detection
of another neurodegenerative disease using DNNs has been investigated [13,19].

We used IEEE2 as the source for Artificial Neural Networks because, accord-
ing to Journal Rankings3 on the category of Artificial Intelligence, IEEE is the
first on both SJR and H-Index sortings. We used the search engines Duck Duck
Go, and Google Scholar to find illustrative publications.

We used the search string “deep AND learning AND alzheimer AND mri”
in order to assess the use of convolutional deep learning in our application of
interest. We ran the query mentioned from 2016 to the present (in 2019) since we
are searching about recent advancements in neural networks. We retrieved from
IEEE Digital Library 81 records with this query, including conferences, journals,
and early access articles.

We screened by title, and if the title was too ambiguous by abstract. We
searched for the application of convolutional deep learning and we obtained 32
articles. Notably, we searched for literature that included the design of convo-
lutional deep learning artifacts for computer vision to detect AD in MRI and
other modalities. Besides, the literature was restricted to supervised learning.
For example, we did not include convolutional autoencoders alone.

For the articles we deemed appropriate, we developed a data extraction
spreadsheet to serve for analysis where we collected the following information
about each publication: (1) year of the paper, (2) architecture of the neural
network, (3) if the MRI images were processed, (5) the modalities (number of
inputs), (6) the number of classes used, and the metrics of (7) accuracy, (8)
sensitivity, (9) specificity, and finally (9) the Area Under the curve Receiver
Operating Characteristics (AUROC).

In this literature review, with our data extraction spreadsheet, we find a
severe problem. Almost 50% of papers report accuracy but do not report sen-
sitivity, specificity or AUROC. Accuracy alone can be misleading. A classifier
can report a high accuracy and yet have a low capacity of true prediction. We
also conclude that the studies are too diverse to allow a meaningful comparison.

2 https://ieeexplore.ieee.org/.
3 https://www.scimagojr.com/.
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It seems that there is a race to obtain greater accuracy, although this met-
ric is misleading. In addition, multiclass classification is avoided. Most studies
implement one-vs-one classifiers, thus achieving higher accuracy values. When
the number of classes increases the accuracy tends to decrease. In fact, we did
not find any article with multiclass classification with more than four classes.
Nor did we find many articles that used the densenet architecture. Only three
papers used densenets, of which two [6,9] are three-dimensional but with shal-
low densenets and one [11] uses deep densenets but two-dimensional. Finally, the
quantitative analysis of the collected items does not generate a great contribu-
tion due to these defects. However, in the review of the articles, we find articles
of remarkable quality as [2]. We also consider that some of the papers collected
are not repeatable.

In contrast to existing studies, we seek to create a multiclass neural network
using only tools available for free. Besides, we do not give greater importance
to accuracy over other metrics and analysis. Finally, we want our process to be
repeatable, and we report it complete along with all the parameters used, as
explained in the next sections.

4 Methodology

In this section, we describe how we collect data using the ADNI study and how we
preprocess these data. Then, we present the development carried out and how we
produced, using the Google Collaboratory tool, an Alzheimer’s prediction model
to fulfill the objective of measuring the accuracy of the detection of Alzheimer’s
disease using a three-dimensional Densenet-121.

4.1 Data Acquisition

In this work, we used the data from ADNI. We used their beta advanced
search functionality with the following criteria. In Projects, we checked ADNI.
In Research Group, we checked MCI, EMCI, AD, SMC, and CN. In Modality,
we checked MRI. We only chose MRI and did not add PET because of eco-
nomic restrictions. PET requires radiopharmaceuticals, as mentioned. It is more
usual to find MRI in contexts of economic limitations. Continuing with search
options, in Image Description, we used MPRAGE. In Acquisition Plane, we used
SAGITTAL, and finally, in Weighting, we used T1. The rest of the search fields
were left with their default values. With those parameters, we obtained 5556
magnetic resonance images with the following distribution: 1520 Cognitive Nor-
mal (CN), 186 Significant Memory Concern (SMC), 1222 Early Mild Cognitive
Impairment (EMCI), 1274 Mild Cognitive Impairment (MCI), 636 Late Mild
Cognitive Impairment, and 718 Alzheimer’s Disease.

The images obtained from ADNI are in Digital Imaging and Communication
On Medicine (DICOM) format. The files are in a zipped archive of 55.5 GB,
and the uncompressed files measure 138 GB. We reduce that size with data
preprocessing, and we explain how and why in the next section.
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4.2 Data Preprocessing

MRI image data are groups of images. Every image is a slice, and the group
of slices shapes the MRI. Every image or slice is a matrix of pixels. Each slice
has an associated spatial thickness because they represent reality. Also, every
pixel in every slice has a spacing, that is the space they represent. Thus, the
data is volumetric or, in other words, rectangular cuboids. Taking that into
consideration, we do the following transformations to the data. First, we convert
all volumetric pixels (voxels) to a spacing of 1× 1× 1 mm. This conversion may
add or delete slices, or slice pixels. After that, we convert every slice to 256×256
pixels as follows. Some slices are not square. If they are not, we fill in with black
pixels. After they are square, if they are not 256× 256, we convert them to that
size using interpolation. Concerning the size, we also make the cuboids have 256
slices using interpolation. The result is 256×256×256 cubes. From these cubes,
to keep “see” only the brain as would a human do, we make a cut from slice 40 to
slice 214, from row 50 to row 199, and from column 40 to column 239. With that
cut, we discard borders full of black pixels and conserve the inner cuboids that
have useful information (the brain). Since we made all the MRI the same size, we
assume that the cut keeps the brain and we do not have to apply techniques like
image segmentation (cutting the brain using pattern recognition). From those
cut cuboids, we use only half of the slices and half of the rows and columns of
every slice by eliminating one in between for all. The latter reduces the size of the
images and the dimensionality of the problem considerably. Last, we normalize
the images pixel values to an interval of −1.0 to 1.0.

Data preprocessing can be done both online or beforehand. We implemented
both. However, to maintain a low-cost objective, we use a script to apply the
preprocessing previously to the task of neural network training, and we load the
MRI data already transformed. The previous transformation may be done on a
desktop or laptop computer. Although it will take hours, it is not a task that
will take more than a day on current commodity hardware.

After data preprocessing the images occupy only 13.5 GB, we have reduced
the size of the images slightly more than ten times. This reduction is beneficial
to minimize neural network training time and storage needs of our development
explained in the next section.

4.3 Our Development

We chose to use a convolutional DNN of densenet-BC architecture because of
our objective to use the least resources possible. This kind of architecture has
an excellent performance with fewer parameters to train [10]. We based our
development on the implementation of Hara et al. [8]. We used their densenet
implementation for the densenet-121 architecture. This implementation, in turn,
is based on the two-dimensional implementation available in the Pytorch code.
The implementation of Hara et al., however, is not generic. It was made for video
and incorporates the variables sample size and sample duration that have to do
with the size and duration of video samples. We eliminated that and made the
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implementation general. It works with all kinds of cuboids. Also, we added a
channels parameter because the implementation always considered 3 channels
(usually red, green and blue colors), but the magnetic resonance images are
monochromatic.

Using this implementation we configure the training process of the neural
network with the following parameters.

Training We use 75% of the data obtained from ADNI as the training
dataset. The data is obtained randomly from the complete data set

Batch size For the phase of training, we use a batch size of 5 MRI based on
experimental results by [2]

Testing The testing dataset is the remaining 25% of the data

Channels We send a parameter of 1 to the constructor of the neural network
because the images are monochromatic

Classes Initially, we sent a parameter of 6 to the constructor of the neural
network. However, we decided to eliminate the SMC class because it
is a subjective class. We consider it training noise. Finally, we use a
parameter of 5 classes to classify

Dropout We use a dropout rate of 0.7 based on observations by [2]. This
prevents overfitting

Loss We use a cross-entropy loss function. It is useful in classification
problems that are not binary and, in our case, we have 5 or 6 classes

Optimizer We use stochastic gradient descent (SGD). This popular optimizer
is useful in the case of unbalanced data, which is our case

Learning In the SGD optimizer, we use a learning rate parameter of 0.1 and a
drop in the learning rate in the sixty epoch of 0.1. The latter
reduces the learning rate to 0.01 in that epoch

Momentum Since the SGD optimizer with momentum usually finds flatter local
minima, we use a typical momentum of 0.9

Epochs Since we use the Google Collaboratory platform, we set the
maximum number of epochs to 80. It was not possible to exceed
above 90 epochs to reach 100 epochs because the platform
disconnects us before achieving it

With that parameters, we pushed the limits of the Google Colaboratory
platform to produce a state-of-the-art DNN. Although other authors claim that
the free-of-charge resources of Google Colaboratory “are far from enough to
solve demanding real-world problems and are not scalable” [3], we use it as the
platform that provides us Graphics Processing Unit (GPU) computation. This
decision has limitations and implications. As explained in [3], there only 12 h
of free use of the GPU backend. We have even noticed less sometimes, approx-
imately 10 h. After that time, Google Colaboratory disconnects and deletes the
virtual machine provided. If the user reconnects, the new machine supplied only
offers 3 h of GPU backend. After that, it is not possible to connect to a backend
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with GPU for a determined number of hours. These limitations imply that the
training and testing have to be done in one run before the first 12 h end. There
are other implications to the restrictions. For instance, it is customary to test or
validate neural networks during training; thus the loss and accuracy of the neural
networks can be analyzed at each epoch. However, to reduce computation time,
testing or validation of the trained DNN is only done at the end. We chose this
because a validation cycle of 25% of the data takes approximately 2 or 3 min. In
30 epochs, that would take 1 h or more. This trade-off is not severe, we can save
intermediate neural networks states and study them after finishing the training.
However, this choice also implies that techniques like early stopping can not be
employed. There are also disk size limitations.

Taking all the limitations into account and with the mentioned configuration
parameters of our development, we obtained the results that we discuss in the
next section.

5 Results and Discussion

The first finding of this work is the characterization of the significant memory
concern class as a noisy class for training. This problem may be due to the fact
that the class is subjective and is possibly composed of at least two classes: those
who will develop the disease and those who will not. Also, those who will develop
it may have different levels of progression, being, in turn, a class composed of
different classes. Another reason for the class to be problematic is its size. It is
the smallest cohort and by far. This makes it difficult to classify during training.
In the Fig. 1, we show how this class is not classified after 50 training epochs. As
seen, the column of the predicted SMC class is full of zeros. It is also notable that
the other classes already have a good level of correct classification. We decided
to remove this class from the data set. This reduced the total data set from 5556
MRI to 5370 MRI.

Fig. 1. Confusion matrix with the SMC class at 50 epoch

After eliminating the SMC class and training for 80 epochs, we obtain a
neural network with good classification metrics of the five remaining classes.
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The results can be seen in Figs. 2a and 2b. In Fig. 2a, the confusion matrix,
we can see how most values are kept diagonally. There are a certain amount
of incorrect predictions. However, there is an interesting, unexpected feature.
These incorrect predictions are mostly pessimistic; that is, there are more errors
above the diagonal that under it, and this means that the classifier is making
errors that put the prediction on upper disease stages. This is clearly in favor of
patients because, in terms of diagnosis of diseases, a false positive is better than
a false negative. Figure 2b shows the quality of our classifier for each class and all
classes together. As the area under each curve approaches the value 1.0, greater
diagnostic ability of the classifier is demonstrated. It is clear that, although our
classifier is not perfect, it is a good one.

(a) Confusion matrix (b) Receiver Operating Characteristic
curves

Fig. 2. Metrics of evaluation of the densenet-121 at 80 epochs

Although we obtained an already good predictive model, we wanted to
improve it using the same tools we already used. However, because we use Google
Colaboratory, we could not repeat the process of training and add a significa-
tive number of epochs. Therefore, we saved the model at 80 epochs. Then, after
waiting 12 h because of the Google Colaboratory restrictions, we restarted the
process of training again from the 80th epoch and pushed it to 110 final epochs.
The predictive performance of this new model can be seen in Figs. 3a and 3b.

This new confusion matrix (Fig. 3a) and ROC curve plot (Fig. 3b) show that
it is possible to improve the prediction model even under the restrictions of free-
of-charge resources like Google Colaboratory. We may notice that as we improve
all classes, the Late Mild Cognitive Impairment class gets worse in the prediction.
That is, we approach a local minima solution that improves the classes in general
but moves away from the correct prediction of the LMCI class. We believe that
this effect is due to the lack of balance in the data. LMCI is the class with the
least amount of data after we removed Significant Memory Concern. This can
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(a) Confusion matrix (b) Receiver Operating Characteristic
curves

Fig. 3. Metrics of evaluation of the densenet-121 at 110 epochs

be solved with data augmentation as done, for instance, in [4]. However, if we do
this, we would reduce the amount of maximum epochs that we can use during
training. However, although LMCI does not have the best classification, it is
classified pessimistically, then we can accept the commitment of not balancing
the data. We include more prediction performance metrics of this last model in
Table 1.

Table 1. Metrics of the obtained DNN at 110 epochs

specificity
(precision)

sensitivity
(recall) f1-score support

Cognitive Normal (CN) 93% 94% 93% 398
Early MCI (EMCI) 95% 91% 93% 308

Mild Cognitive Impairment (MCI) 99% 85% 91% 299
Late MCI (LMCI) 94% 49% 64% 156

Alzheimer’s Disease (AD) 59% 99% 74% 182

Macro average 88% 84% 83% 1343
Weighted average 90% 87% 87% 1343

Accuracy 84%
Micro specificity (precision) 84%

Micro sensitivity (recall) 81%

As we can see in Table 1, the worst figures are the specificity of Alzheimer’s
Disease and the sensitivity of Late Mild Cognitive Impairment. We could also
include the sensitivity of Mild Cognitive Impairment in the bad numbers,
although the percentage of recall is not poor. The poor specificity of Alzheimer’s
is acceptable because it reaches almost 100% sensitivity or recall. The number
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is bad because other classes are classified as AD, but in a context of pattern
recognition that always has risks and costs, it is in favor because it is pessimistic
and in medicine that can reduce risk and future costs. In the same manner, the
bad number of LMCI is also acceptable because the class is mostly classified
as AD. Therefore, considering the economic restrictions, the final figures of 84%
accuracy, 84% specificity (micro) and 81% sensitivity (micro) are acceptable. We
chose to report final micro-average figures instead of macro-average because in a
multi-class classification setup, micro-average is preferable when there is a class
imbalance. However, as it can be noticed the macro average and the weighted
average are better.

6 Conclusions and Future Work

The use of free-of-charge resources limited this study. With this restriction, we
explored a low-cost way to generate a deep artificial neural network that shows
good performance metrics. We demonstrate that the model can still be improved.
This prediction model can be useful in developing countries if user interface and
interpretation are added and it has the potential of being used in remote medicine
contexts.

In the future, we want to create a user interface for the diagnosis of AD. We
can do this based on the implementation of Chester [5], a computerized chest
X-ray disease prediction system that is delivered on the web. With the recent
creation of tools such as ONNX and TensorFlow.js, PyTorch-trained models
can be converted to work in the browser and compute using WebGL [5]. This
interface would have not only prediction but also interpretation or explanation
through relevance maps or heat maps.

Last, to contribute to reproducibility and transparency in academic work, we
provide the source code of our DNN at https://github.com/bsolano/Alzheimer-
ResNets.
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