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Abstract. Computing text-to-pattern distances is a fundamental prob-
lem in pattern matching. Given a text of length n and a pattern of length
m, we are asked to output the distance between the pattern and every
n-substring of the text. A basic variant of this problem is computation
of Hamming distances, that is counting the number of mismatches (dif-
ferent characters aligned), for each alignment. Other popular variants
include ¢; distance (Manhattan distance), ¢ distance (Euclidean dis-
tance) and general £, distance. While each of those problems trivially
generalizes classical pattern-matching, the efficient algorithms for them
require a broader set of tools, usually involving both algebraic and com-
binatorial insights. We briefly survey the history of the problems, and
then focus on the progress made in the past few years in many spe-
cific settings: fine-grained complexity and lower-bounds, (1 + €) multi-
plicative approximations, k-bounded relaxations, streaming algorithms,
purely combinatorial algorithms, and other recently proposed variants.

1 Hamming Distance

A most fundamental problem in stringology is that of pattern matching: given
pattern P and text T, find all occurrences of P in T where by occurrence we
mean a substring (a consecutive fragment) of T' that is identical to P. A huge
efforts have been put into advancement of understanding of pattern matching
by the community. One particular variant to consider is finding occurrences or
almost-occurrences of P in T'. For this, we need to specify almost-occurrences:
e.g. introduce some form of measure of distance between words, and then look
for substrings of T" which are close to P. We are interested in measures that
are position-based, that is they are defined over strings of equal length, and are
based upon distances between letters on corresponding positions (thus e.g. edit
distance is out of scope of this survey). Consider for example

Definition 1 (Hamming distance). For strings A, B of equal length, their
Hamming distance is defined as

Ham(A, B) = |{i : Ali] # B[i]}|.
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Hence, the Hamming distance counts the number of mismatches between two
words. This leads us to the core problem considered in this survey.

Definition 2 (Text-to-pattern Hamming distance). For a text T[1,n] and
a pattern P[1,m], the text-to-pattern Hamming distance asks for an output array
O[1,n — m + 1] such that

Oli] = Ham(P, T[i,i +m — 1)).

Observe that this problem generalizes the detection of almost-occurrences — one
can scan the output array and output positions with small distance to the pat-
tern.

1.1 Convolution in Text-to-Pattern Distance

Convolution of two vectors (arrays) is defined as follow

Definition 3 (Convolution). For 0-based vectors A and B we define their
convolution (A o B) as a vector:

(AoB)[k]= ) Ali]- B[]

i+i=k

Such a definition has a natural interpretation e.g. in terms of polynomial product:
if we interpret a vector as coefficients of a polynomial that is A(z) =, Afi] - 2
and B(z) = >, Bli] - 2%, then (A o B) are coefficients of A(z) - B(z).

Convolution over integers is computed by Fast Fourier transform (FFT) in
time O(nlogn). This requires actual embedding of integers into field, e.g. F, or
C. This comes at a cost, if e.g. we were to consider text-to-pattern distance over
(non-integer) alphabets that admit only field operations, e.g. matrices or geo-
metric points. Convolution can be computed using a “simpler” set of operations,
that is just with ring operations in e.g. Z,, using Toom-Cook multiplication [35],
which is a generalization of famous divide-and-conquer Karatsuba algorithm [20].
However, not using FFT makes the algorithm slower, with Toom-Cook algorithm
taking time O(n2vV2!°¢"logn), and increases the complexity of the algorithm.

Fischer and Paterson in [16] observed that convolution can be used to com-
pute text-to-pattern Hamming distance for small alphabets. Consider the fol-
lowing observation: for binary P and T, denote by P’ the reversed P. Then we
have the following property:

Ham(P, T(i,i +m — 1)) = > (Tli+ 5101 = P[j)) + (1= Tli + ) PLj])

J

> (TP + TGP )

Jj+k=m+1+i
=(ToP)m+1+i+ (ToP)[m+1+1i]
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where e.g. T denotes negating every entry of T. Thus the whole algorithm is
done by computing two convolutions in time O(nlogm).! This approach in fact
generalizes to arbitrary size alphabets by following observation: “contribution”
of single ¢ € X' to number of mismatches for all positions can be computed with
single convolution. This results in O(|X|nlogm) time algorithm.

The natural question is whether faster (than naive quadratic-time) algo-
rithms for large alphabets exist. The answer is affirmative, by (almost simulta-
neous) results of Abrahamson [1] and Kosaraju [24]. The insight is that for any
letter ¢ € |X|, we can compute its “contribution” twofold:

— by FFT in time O(nlogm),
— or in time O(¢) per each of n alignments, where ¢ is the number of occurrences
of ¢ in lets say pattern.

The insight is that we apply the former for letters that appear often (“dense”
case) and latter for sparse letters. Since there can be at most m/T letters that
appear at least T times in pattern each, the total running time is O(nlogm -
7 +T'n) which is minimized when T' = \/mlog m with run-time O(n\/mlogm).

This form of mixing combinatorial and algebraical insights is typical for the
type of problems considered in this paper, and we will see more of it in the fol-
lowing sections. As a side-note, the complexity of O(n+y/mlogm) remains state-
of-the-art.

1.2 Relaxation: k-Bounded Distances

The lack of progress in Hamming text-to-pattern distance complexity sparked
interest in searching for relaxations of the problem, in hope of reaching linear (or
almost linear) run-time. For example if we consider reporting only the values not
exceeding a certain threshold value k, then we have the so-called k-approximated
distance. The motivation comes from the fact that if we are looking for almost-
occurrences, then if the distance is larger than a certain threshold value, the text
fragment is too dissimilar to pattern and we are safe to discard it.

The very first solution to this problem was shown by Landau and Vishkin [26]
working in time O(nk), using an essentially combinatorial approach of taking
O(1) time per mismatch per alignment using LCP queries (Longest Common
Prefix queries), where LCP(4, j) returns maximal k such that T'[i,i+k] = P[j,j+
k]. This solution requires preprocessing of T' and P with e.g. suffix tree, which
is a standard tool-set of stringology. This solution still is slower than naive
algorithm for k£ = m!/29_ but has the nice property of using actually O(n) time
for constant k. This technique is also known as kangaroo jumps.

This initiated a series of improvements to the complexity, with algorithms of
complexity O(nyv/klogk) and O((k*logk + m) - n/m) by Amir et al. [4]. First
algorithm is an adaptation of general algorithm of Abrahamson with balancing

! Tts logm not logn by standard trick of reducing the problem to [n/m] instances
with pattern P of length m and text of length 2m.
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of “sparse” vs. “dense” case done w.r.t. k instead of m (some further combina-
torial insights are required to make the cases work with proper run-time). Such
trade-off has this nice property that for & = m the complexity matches that of
Abrahamson’s algorithm. Second algorithm is more interesting, since it shows
that for non-trivial values of k (in this case, k¥ = O(m'/?)) near-linear time
algorithms are possible.

The later complexity was then improved to O((k? log k+m poly logm)-n/m)
by Clifford et al. [13]. We now discuss the techniques of this algorithm, starting
with kernelization technique.

Definition 4 ([13]). An integer m > 0 is an z-period of a string S[1,m], if
Ham(S[m + 1,m],S[1,m — 71]) < x and 7 is minimal such integer.

Such definition should be compared with regular definition of a period, where 7
is a period of string S if S[r + 1,m] = S[1,m — «].
We then observe the following:

Lemma 1 ([13]). If £ is a 2z-period of the pattern, then any two occurrences of
the pattern in the text with at most x mismatches are at offset distance at least

L.

The first step of the algorithm is to determine some small O(k)-period of the pat-
tern. This actually does not require any specialized machinery and can be done
with a 2-approximate algorithm for text-to-pattern Hamming distance (multi-
plicative approximations are a topic of the following section). We then distinguish
two cases, where small means O(k).

No small k-period. This is an “easy” case, where a filtering step allows us to
keep only O(n/k) alignments that are candidates for < k-distance matches. A
“kangaroo jumps” technique of Landau and Vishkin allows us to verify each
one of them in O(k) time, resulting in linear time spent in this case.

Small 2k-period. This is a case where we can deduce some regularity properties.

Denote the 2k-period as £. First, P can be decomposed into £ words from its
arithmetic progressions of positions, with step ¢ and every possible offset.
From the definition of ¢ being 2k-period, we know that the total number
of runs in those words is small. The more interesting property is that even
though the text T can be arbitrary, if T is not regular enough it can be
discarded (and this actually concerns any part of the text that is not regular).
More precisely, there is a substring of text that is regular enough and contains
all the alignments of P that are at Hamming distance at most k (assuming
n = 2m, which we can always guarantee).
What remains is to observe that finding ¢, compressing of P into arithmetic
progressions and finding compressible region 7" of T' all can be done in O(n)
time, and that all of alignments of text to pattern correspond to alignments
of those arithmetic progressions, and can be solved in O(k?) time.

Final step in the sequence of improvements to this problem was done by
Gawrychowski and Uznariski [17]. They observe that the algorithm from [13]
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can be interpreted in terms of reduction: instance of k-bounded text-to-pattern
Hamming distance with 7" and P is reduced to new 7" and P’, where T’ and
P’ are possibly of the same length, but have total number of runs in their Run-
length encoding (RLE) representation bounded as O(k). The algorithm from [13]
then falls back to brute force O(k?) time computation. While O(k?*~%) algorithm
for RLE-compressed pattern matching would falsify 3-SUM conjecture (c.f. [10]),
some structural properties of the instances can be leveraged based on the fact
that they are RLE-compressed from inputs of length m. A balancing argument
(in style of one from [4] or [1]) follows, allowing to solve this sub-problem in
time O(kv/mlogm). The final complexity for the whole algorithm becomes then

O((m + ky/m) - n/m).

1.3 Relaxation: 1 + ¢ Approximation

Another way to relax to text-to-pattern distance is to consider multiplicative
approximation when reporting number of mismatches. The very elegant argu-
ment made by Karloff [21] states the following.

Observation 1. Consider a randomly chosen projection ¢ : X — {0,1} (each
letters mapping is chosen independently and uniformly at random) and words
A, B. Then

1
E[Ham(<p(A), @(B))] = iHam(/L B)v
where p(A) denotes applying ¢ to each letter of A separately.

Thus the algorithm consists of: (i) choosing independently at random K ran-
dom projections; (ii) for each projection, computing text-to-pattern Hamming
distance over projected input; (iii) averaging answers. A concentration argument
then follows, giving standard K = (’)(IOE#) independent repetitions guarantee-
ing that average recovers actual Hamming distance with (1 & €) multiplicative
guarantee, with high probability. This gives total run-time O(n/e2).

The E% dependency was believed to be inherent, as is the case for
e.g. space complexity of sketching of Hamming distance, cf. [8,19,38]. How-
ever, for approximate pattern matching that was refuted in Kopelowitz and
Porat [22,23], where randomized algorithms were provided with complexity
O(Z log nlog mlog L log |X[) and O(2 lognlogm) respectively. The second men-
tioned algorithm is actually surprisingly simple: instead of projecting onto binary
alphabet, random projections X — [u] are used, where u = O(¢~1). Such pro-
jections collapse in expectation only an e-fraction of mismatches, introducing
systematic 1 + ¢ multiplicative error. A simple Markov bound argument follows,
that since ezpected error is within desired bound, taking few (lets say logn)
repetitions and taking median guarantees recovery of good approximate answer
with high probability. What remains to observe is that exact counting of text-to-
pattern distance over projected alphabet takes u repetitions of convolution, so
the total runtime is O(n/e). An alternative exposition to this result was provided
in [34].
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2 Other Norms

A natural extension to counting mismatches is to consider other norms (e.g.
01,45, general £, norm or £, norm), or to move beyond norms (so called threshold
pattern matching c.f. Atallah and Duket [6] or dominance pattern matching c.f.
Amir and Farach [3]).

Definition 5 (¢, distance). For two strings of equal length over integer alpha-
bet and constant p > 0, their £, distance is defined as

P)l/P'

Definition 6 (¢, distance). For two strings of equal length over integer alpha-
bet, their o, distance is defined as

4 - Bl, = (3 |4 - Bl

|4 = Bl = max ]Am - B[z’]’.

2.1 Exact Algorithms

To see that the link between convolution and text-to-pattern distance is relevant
when considering other norms, consider the case of computing /5 distances. We
are computing output array O[] such that O[i] = >~ (T'[i + j] — P[j])*. However,
this is equivalent to computing, for every ¢ simultaneously, value > ;T [i +4]% +
>, Pl)? =237, Tli+ j]P[j]. While the terms _ T[i +j]* and y_, P[j]* can be
easily precomputed in O(n) time, we observe (following [29]) that i ; Tli+3]P[j]
is essentially convolution. Indeed, consider P’ such that P'[j] = Plm + 1 — j],
and then what follows.

We now consider ¢; distance. Using techniques similar to Hamming distance,
the O(nv/nlogn) complexity algorithms were developed independently in 2005
by Clifford et al. [11] and Amir et al. [5] for reporting all ¢; distances. The
algorithms use a balancing argument, starting with observation that alphabet
can be partitioned into buckets, where each bucket is a consecutive interval of
alphabet. The contribution of characters from the same interval is counted in
one phase, and contribution of characters from distinct intervals is counted in
second phase.

Interestingly, no known algorithm for exact computation of text-to-pattern
¢, distance for arbitrary value of p is known. By the folklore observation, for
any even p we can reduce it to convolution and have O(nlogm) time algorithm
(c.f. Lipsky and Porat [29], with O hiding p? dependency). By the results of
Labib et al. [25] any odd-value integer p admits O(ny/mlogm) time algorithm
(the algorithm is given implicitly, by providing a reduction from ¢, to Hamming
distance, with O hiding (logm)®®) dependency).
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2.2 Approximate and k-Bounded Algorithms

Once again, the topic spurs interest in approximation algorithm for distance
functions. In [29] a deterministic algorithm with a run time of O(Z logmlogU)
was given, while later in [17] the complexity has been improved to a (random-
ized) O(2 log® nlogmlog U), where U is the maximal integer value on the input.
Later [34] it was shown that such complexity is in fact achievable (up to poly-log
factors) with a deterministic solution. All those solutions follow similar frame-
work of linearity-preserving reductions, which has actually broader applications.
The framework is as follow: imagine we want to approximate some distance
function d : X x ¥ — R. We build small number of pairs of projections,
Li,...,L, Ry, ..., Ry, with the following property: d(z,y) =~ >, L;(x) - Ri(x).?
Given such formulation, by linearity, text-to-pattern of A and B using distance
function d is approximated by a linear combination of convolutions of L;(A)
and R;(B). The complexity of the solutions follows from the number of different
projections that need to be used.

For /., distances, in [29] a O(n/e) time approximate solution was given,
while in Lipsky and Porat [27] a k-bounded ¢, distance algorithm with time
O(nklogm) was given. For k-bounded ¢; distances, [5] a O(n+/klogk) run-time
algorithm was given, while in [17] an algorithm with run-time O((m + kv/m) -
n/m) was given. The fact that those run-times are (up to poly-logs) identical to
corresponding run-times of k-bounded Hamming distances is not a coincidence,
as [17] have shown that k-bounded ¢; is at least as easy as k-bounded Hamming
distance reporting.

A folklore result (c.f. [29]) states that the randomized algorithm with a run
time of 6(5%) is in fact possible for any ¢, distance, 0 < p < 2, with use of
p-stable distributions and convolution. Such distributions exist only when p < 2,
which puts a limit on this approach. See [30] for wider discussion on p-stable
distributions. Porat and Efremenko [32] has shown how to approximate general
distance functions between pattern and text in time 5(5%) Their solution does
not immediately translates to £, distances, since it allows only for score functions
of form »_, d(ti+;, pj) where d is arbitrary metric over X. Authors state that their
techniques generalize to computation of {5 distances, and in fact those generalize
further to ¢, distances as well, but the e~2 dependency in their approach is
unavoidable. Finally, for any p > 0 there is ¢, distance (1 %+ ¢)-approximate
algorithm running in time O(n/e) by results shown in [34]. Final result follows
the framework of linearity-preserving reductions.

3 Lower Bounds

It is a major open problem whether near-linear time algorithm, or even
O(n3/?~%) time algorithms, are possible for such problems. A conditional lower
bound was shown in [12], via a reduction from matrix multiplication. This means

2 Here we used ~ since its in the context of approximate algorithms. The same frame-
work applies to exact algorithms, then we replace ~ with =.
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that existence of combinatorial algorithm with run-time O(n3/279) solving the
problem for Hamming distances implies combinatorial algorithms for Boolean
matrix multiplication with O(n37%) run-time, which existence is unlikely. Look-
ing for unconditional bounds, we can state this as a lower-bound of £2(n*/?) for
Hamming distances pattern matching, where 2 < w < 2.373 is a matrix multipli-
cation exponent. In fact those techniques can be generalized to take into account
k-bounded version of this problem:

Theorem 2 ([17]). For any positive e, ., k such that o < k < a < 1 there is no
combinatorial algorithm solving pattern matching with k = ©(n"*) mismatches
in time O((kv/m)'=%) - n/m) for a text of length n and a pattern of length
m = O(n®), unless the combinatorial matriz multiplication conjecture fails.

Complexity of pattern matching under Hamming distance and under ¢; dis-
tance was proven to be identical (up to poly-logarithmic terms) in [25]. This
equivalence in fact applies to a wider range of distance functions and in general
other score functions. The result shows that a wide class of functions are equiva-
lent under linearity-preserving reductions to computation of Hamming distances.
The class includes e.g. dominance score, ¢; distance, threshold score, {311 dis-
tance, any of above with wildcards, and in fact a wider class called piece-wise
polynomial functions.

Definition 7. For integers A, B, C' and polynomial P(x,y) we say that the func-
tion P(x,y) - 1[Az + By + C > 0] is half-plane polynomial. We call a sum of
half-plane polynomial functions a piece-wise polynomial. We say that a function
is axis-orthogonal piece-wise polynomial, if it is piece-wise polynomial and for
every i, A; =0 or B; =0.

Observe that Ham(x,y) = L[z > y] + 1[z < y], max(z,y) =z -1z > y|+y-
Iz <yl [z =y = (2 —y)?*! - Lz > y] + (y — 2)**' - L[z <y], and eg.
threshold function can be defined as thrs(z, y) e Iz —y| >0 =1z <y — ]+
1z >y + 4]

Theorem 3. Let ¢ be a piece-wise polynomial of constant degree and polylogn
number of summands.

— If o is axis orthogonal, then ¢ is “easy”: (4,¢) convolution takes O(n) time,
(+,0) matriz multiplication takes O(n®) time.

— Otherwise, ¢ is Hamming distance complete: under one-to-polylog reductions,
on inputs bounded in absolute value by poly(n), (+,¢) product is equivalent to
Hamming distance, (+,) convolution is equivalent to text-to-pattern Ham-
ming distance and (+,9) matriz product is equivalent to Hamming-distance
matriz product.

Some of those reduction (for specific problems) were presented in literature,
c.f. [28,37,39], but never as a generic class-of-problems equivalence.
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This means that the encountered barrier for all of the induced text-to-pattern
distance problems is in fact the same barrier, and we should not expect algo-
rithms with dependency n/2~% without some major breakthrough. Unfortu-
nately such reductions do not preserve properties of k-bounded instances or
1 4+ e-approximate ones, so this result tells us nothing about relative complexity
of relaxed problems, and it is a major open problem to do so.

4 Streaming Algorithms

In streaming algorithms, the goal is to process text in a streaming fashion, and
answer in a real-time about the distance between last m characters of text and
a pattern. The primary measure of efficiency is the memory complexity of the
algorithm, that is we assume that the whole input (or even the whole pattern)
is too large to fit into the memory and some for of small-space representation
is required. The time to process each character is the secondary measure of
efficiency, since it usually is linked to memory efficiency. By folklore result, exact
reporting of e.g. Hamming distances is impossible in o(m) memory, so the focus
of the research has been on relaxed problems, that is k-bounded and (1 =+ ¢)-
approximate reporting.

For k-bounded reporting of Hamming distances, in Porat and Porat [31] a
O(k3) space and O(k?) time per character streaming algorithm was presented.
It was later improved in [13] to O(k2) space and O(v/k) time per character,
and then in Clifford et al. [14] to O(k) space keeping O(v/k) time per character.
Many interesting techniques were developed for this problem. As an example, k-
mismatch problem can be reduced to (K many instances of ) 1-mismatch problem
(c.f. [13]), which in fact reduces to exact pattern matching in streaming model
(c.f. [31]). Other approach is to construct efficient rolling sketches for k-mismatch
problem, based on Reed-Solomon error correcting codes (c.f. [14]).

For 1 4+ ¢, two interesting approaches are possible. First approach was pre-
sented by Clifford and Starikovskaya [15] and later refined in Svagerka et al.
[33]. This approach consists of using rolling sketches of text started every ~ /m
positions, and additionally ~ \/m sketches of substrings of length m — \/m of
pattern are maintained (guaranteeing that at least one sketch in text is aligned
to one sketch of long pattern fragment). One way of building rolling sketches for
approximate Hamming distance is to use random projections to binary alpha-
bet and reduce the problem to one for binary alphabet, where binary alpha-
bet uses Johnson-Lindenstrauss type of constructions. This approach results in
O(y/m/e?) memory and O(1/¢?) time per character.

Alternative approach was proposed in recent work of Chan et al. [9]. They
start with observation that the Hamming distance can be estimated by checking
mismatches at a random subset of positions. Their algorithm uses a random
subset as follow: the algorithm picks a random prime p (of an appropriately
chosen size) and a random offset b, and considers a subset of positions {b, b+p, b+
2p, ...}. The structured nature of the subset enables more efficient computation.
It turns out that even better efficiency is achieved by using multiple (but still
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relatively few) offsets. When approximating the Hamming distance of the pattern
at subsequent text locations, the set of sampled positions in the text changes,
and so a straightforward implementation seems too costly. To overcome this
challenge, a key idea is to shift the sample a few times in the pattern and a few
times in the text (namely, for a trade-off parameter z, our algorithm considers
z shifts in the pattern and p/z shifts in the text). Interestingly, the proposed
solution is even more efficient when considering a (1+4¢)-approximate k-bounded
reporting of Hamming distances.

Theorem 4 ([9]). There is an algorithm that reports (1 + €)-approzimate k-
bounded Hamming distances in a streaming setting that uses O(min(vk/e?,
Vm/et®)) space and takes O(1/€3) time per character.

Focusing on other norms, we note that in [33] a sublinear space algorithms
for £, norms for 0 < p < 2 was presented. The specific details of construction
vary between different values of p, and the techniques include: using p-stable
distributions (c.f. [18]), range-summable hash functions (c.f. [7]) and Johnson-
Lindenstrauss projections (c.f. [2]).

Theorem 5 ([33]). Let 0 = n®Y) denote size of alphabet. There is a stream-
ing algorithm that computes a (1 %+ €)-approzimation of the £, distances. The
parameters of the algorithm are

1. in O(e~2y/n + logo) space, and O(e~2) time per arrival when p = 0 (Ham-

ming distance);

in (5(5’2\/5 +log® o) space and (5(\/ﬁlog o) time per arrival when p = 1;

in O(e~2\/n+log? o) space and O(e~2\/n) time per arrival when 0 < p < 1/2;

in O(e2\/n + log? o) space and O(e~3\/n) time per arrival when p = 1/2;

in O(e~2\/n+log? o) space and @(J%\/ﬁ/sﬂg'%) time per arrival when

1/2<p<1;

6. in O(e=27/2,/nlog? o) space and O(e~P/%\/n + e 2logo) time per arrival
forl<p<2.

Gv s o o

5 Open Problems

Below we list several open problems of the area, which we believe are the most
promising research directions and/or pressing questions.

1. Show deterministic algorithm for (1 + ¢)-approximate ¢, reporting for 0 <
p < 1, preferably in time O(n/e).

2. What is the time complexity of exact £, reporting for non-integer p?

3. Show conditional lower bound for exact Hamming distance reporting from
stronger hypotheses, like 3SUM-HARDNESS.

4. Lower bounds for 1 + ¢ approximations (conditional between problems, or
from external problems), for any of the discussed problems.

5. What is the true space complexity dependency in streaming (1 & &) approxi-
mate Hamming distance reporting? Is v/me =1 complexity optimal?



6.

7.

Recent Advances in Text-to-Pattern Distance Algorithms 363

Can we close the gap between streaming complexity of approximate ¢, algo-
rithms and streaming complexity of approximate Hamming distance?

Can we design effective “combinatorial” algorithms for all mentioned prob-
lems (e.g. not relying on convolution)? For Hamming, ¢; and ¢ distances
answer is at least partially yes (c.f. [9] and [36]).
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