
Theoretical and Implementational
Aspects of the Formal Language Server

(LaSer)

Stavros Konstantinidis(B)

Mathematics and Computing Science, Saint Mary’s University,
923 Robie St., Halifax, NS B3H 3C3, Canada

s.konstantinidis@smu.ca

Abstract. LaSer, the formal language server, allows a user to enter a
question about an independent language and provides an answer either
in real time or by generating a program that can be executed at the
user’s site. Typical examples of independent languages are codes in the
classic sense, such as prefix codes and error-detecting languages, or DNA-
computing related codes. Typical questions about independent languages
are the satisfaction, maximality and construction questions. We present
some theoretical and implementational aspects of LaSer, as well as some
ongoing progress and research plans.

Keywords: Independent languages · Regular languages · Codes ·
DNA codes · Property satisfaction · Maximality · Implementation

1 Introduction

LaSer, [18], the formal language server, allows a user to enter a question about
an independent language and provides an answer either in real time or by gen-
erating a program that can be executed at the user’s site. Typical examples of
independent languages are codes in the classic sense, such as prefix codes and
error-detecting languages, or DNA-computing related codes. Typical questions
about independent languages are the satisfaction, maximality and construction
questions. For example, the satisfaction question is to decide, given an inde-
pendence I and a regular language L, whether L is independent with respect
to I.

We present some theoretical and implementational aspects of LaSer, as well
as some ongoing progress and research plans.

2 Transducer Independences Allowed in LaSer

Let R be a binary relation, that is, a subset of Σ∗ ×Σ∗, where Σ is an alphabet.
A language L is R-independent, [21,22], if

(x, y) ∈ R and x, y ∈ L implies x = y. (1)

Research supported by NSERC, Canada.

c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 289–295, 2020.
https://doi.org/10.1007/978-3-030-51466-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_25&domain=pdf
http://orcid.org/0000-0002-6628-067X
https://doi.org/10.1007/978-3-030-51466-2_25


290 S. Konstantinidis

Examples of R-independent languages are error-detecting languages for various
error combinations, variable length codes, such as prefix codes and suffix codes,
as well as DNA-related languages [2,5,6,10,12–14,23]. LaSer allows users to
represent rational relations via transducers1, and regular languages via NFAs2.
The satisfaction question is whether L(a) is R(t)-independent, given an NFA a
and a transducer t. If the answer is NO, a witness word pair (x, y) is computed
such that x �= y and one of (x, y) and (y, x) is in R(t). The maximality question
is whether L(a) is a maximal R(t)-independent language knowing that L(a) is
R(t)-independent. If the answer is NO, a witness word x /∈ L(a) is computed
such that L(a) ∪ {x} is R(t)-independent. The construction question is to make
an n-element language (if possible) that is R(t)-independent, given transducer t,
integer n > 0 and the size of the alphabet.

If t is a transducer then the following language class

Pt = {L | L satisfies (1) for R = R(t)}

is called the independence, or property, described by t. In this case any language
L ∈ Pt is said to satisfy Pt . For example, the independence “prefix codes” is
described by the transducer px and the independence “2-synchronization-error
detecting languages” is described by the transducer id2 (see Fig. 1).

0px : 1 0sx : 1

a/a

a/λ

a/λ

a/λ

a/λ a/a

0sub1 : 1 0id2 : 1 2

a/a

a/a′

a/a a/a

λ/a,
a/λ

a/a

λ/a,
a/λ

a/aa/a

Fig. 1. Various transducers. An arrow with label a/a denotes multiple transitions: one
with label a/a for each a ∈ Σ, and similarly for labels a/λ. An arrow with label a/a′

denotes multiple transitions: one with label a/a′ for all a, a′ ∈ Σ with a �= a′. Let x
be any word. We have: px(x) = the set of proper prefixes of x, equivalently, R(px) =
the set of word pairs (x, y) such that y is a proper prefix of x; sx(x) = set of proper
suffixes of x; sub1(x) = set of words resulting by substituting at most one symbol in x
with another one; id2(x) = set of words resulting by inserting and/or deleting at most
2 symbols in x.

Transducer independences are closed under intersection, that is, if Pt1 and Pt2

are transducer independences, then also Pt1 ∩Pt2 is a transducer independence.

1 See [1,20], for instance, for transducer concepts.
2 NFA = Nondeterministic Finite Automaton.



Formal Language Server (LaSer) 291

This is useful when we are interested in languages L satisfying two or more prop-
erties, such as the combined property of being a prefix and 1-substitution detect-
ing code. As prefix codes are described by the transducer px and 1-substitution
detecting codes are described by the transducer sub1 then also the combined
property is described by a transducer. This implies that LaSer can answer the
satisfaction, maximality and construction questions for the combined property.

LaSer’s backend is based on the Python package FAdo [8], which implements
automata, transducers, and independences described by transducer objects in
the module codes.py [17]. The choice to use FAdo is based on the facts that
its installation is very simple, it contains a rich set of easy to use methods,
and is written in Python which in turn provides a rich availability of high level
methods.

3 Rational Independence Expressions

Three examples of independences that are not of the form Pt are the following.

– The class of UD codes (uniquely decodable/decipherable codes). LaSer sup-
ports this class.

– The class of comma-free codes: that is, all languages L satisfying the equation

LL ∩ Σ+LΣ+ = ∅. (2)

– The class of language pairs (L1, L2) satisfying the equation

L1
sdi← L2 = ∅. (3)

Here the site directed insertion operation x
sdi← y between words x, y, intro-

duced in [3], is such that z ∈ x
sdi← y if x = x1uvx2, y = uwv, z = x1uwvx2,

where u, v are nonempty. This operation models site-directed mutagenesis,
an important technique for introducing a mutation into a DNA sequence.

That “UD codes” and “comma-free codes” are not transducer independences
can be shown using dependence theory: every transducer independence is a 2-
independence, but the “comma-free codes” independence, for instance, is a 3-
independence and not a 2-independence—see [12,15]. In general, intersecting
(combining) the above independences with a transducer independence results
into a new independence that is not of the form Pt for some transducer t.
LaSer does not handle non-transducer independences, with the exception of “UD
codes” for which specific algorithms are employed. More specifically, for the sat-
isfaction question LaSer uses the quadratic-time elegant algorithm of [9]. For
the maximality question LaSer uses Schützenberger’s theorem that maximality
of L is equivalent to the condition that every word in Σ∗ is subword (part) of
some word of L∗ [2]. A specific algorithm is also used in [23] for the satisfac-
tion question of the combination of the UD code and two other DNA-related
independences.



292 S. Konstantinidis

We now discuss possible approaches of representing non-transducer inde-
pendences as finite objects in a way that these objects can be manipulated by
algorithms which can answer questions about the independences being repre-
sented. Some approaches are discussed in [15,19]. It is important to note that
there is a distinction between the terms “property” and “independence”. A (lan-
guage) property is simply a class (set) of languages. A (language) independence
is a property P for which the concept of maximality is defined, that is, P must
satisfy

if L ∈ P then also L′ ∈ P for all L′ ⊆ L

(see [15] for details). A general type of independences can be defined via rational
language equations ϕ(L) = ∅, where ϕ(L) is an independence expression involv-
ing the variable L. An independence expression ϕ is defined inductively as follows:
it is L or a language constant, or one of ϕ1ϕ2, ϕ1∪ϕ2, ϕ1∩ϕ2, (ϕ1)∗, t(ϕ1), θ(ϕ1),
where ϕ1, ϕ2 are independence expressions, t is a transducer constant, and θ is
an antimorphic permutation3 constant. A rational language equation is an expres-
sion of the form ϕ(L) = ∅, where ϕ(L) is an independence expression containing
the variable L and the language constants occurring in ϕ(L) represent regular
languages. A language L is ϕ-independent if it satisfies the equation ϕ(L) = ∅.
The independence Pϕ described by ϕ is the set of ϕ-independent languages.

Example 1. Every transducer independence Pt such that t is an input-altering
transducer4 is described by the rational language equation

t(L) ∩ L = ∅, (4)

where we have used the standard notation t(L) = {y | (x, y) ∈ R(t), x ∈ L}.
The independence “comma-free codes” is described by the rational language
equation (2). The independence “θ-free languages”, [10], is described by the
rational language equation

LL ∩ Σ+θ(L)Σ+ = ∅.

	

The satisfaction question for independences Pϕ is implemented in [19], where
parsing of expressions ϕ(L) is implemented using Python’s lark library, and
evaluation of ϕ(L) for given L = L(a) is implemented using the FAdo package.

4 Further Independences

What about independences described by equations like (3)? This is a non-
transducer independence. Various general types of independences are defined
3 An antimorphic permutation θ maps the alphabet Σ onto Σ and extends to words

anti-morphically: θ(xy) = θ(y)θ(x). A typical example of this is the DNA involution
on the alphabet {a, c, g, t} such that θ(a) = t, θ(c) = g, θ(g) = c, θ(t) = a. In this
case, θ(aac) = gtt.

4 This is a transducer t such that w /∈ t(w) for all words w. For example, px and sx

in Fig. 1 are input-altering transducers.



Formal Language Server (LaSer) 293

in [5,11,12,22]. Equation (3) however involves an independence expression with
two language variables: L1 and L2. In analogy to transducer independences
that are R-independences, for binary relations R, one can consider indepen-
dences with respect to higher degree relations5. Consider the ternary relation

SDI = {(x, y, z) | z ∈ x
sdi← y}, which is realized by the transducer sdi in Fig. 2.

A language pair (L1, L2) is SDI-independent if

0 1 2 3 4

(a, λ, a)

(a, a, a)

(a, a, a)

(λ, a, a)

(a, a, a)

(a, a, a) (a, λ, a)

(λ, a, a) (a, a, a) (a, λ, a)

Fig. 2. The 3-tape transducer sdi realizing the set of all word triples (x, y, z) such
that x = x1uvx2, y = uwv and z = x1uwvx2, for some nonempty words u, v; that is,

z ∈ x
sdi← y.

sdi(L1, L2 : 3) = ∅.

Above we have made the following notation: for any k-tape transducer t, for any
i ∈ {1, . . . , k}, and for any list of k − 1 languages L1, . . . , Lk−1, the expression
t(L1, . . . , Lk−1 : i) denotes the set of all words w that result if we consider the
i-th tape as output tape and the rest k − 1 tapes as input tapes such that the
input k − 1 words are from the k − 1 languages. Thus, we can talk about the
independence described by the equation

t(L1, . . . , Lk−1 : i) = ∅.

Given a k-tape transducer t and k − 1 NFAs accepting the languages
L1, . . . , Lk−1, the satisfaction question can be decided if we construct the trans-
ducer resulting by intersecting t with the NFAs at the k−1 positions other than
i, and then testing whether the resulting transducer has a path from an initial
to a final state.

5 Looking Ahead

We propose to investigate further the rational language equations defined here
as well as in [15]. Topics of interest are maximality, embedding and expressibil-
ity6 as well as enhancement and implementation of algorithms involved. Some of
5 See references [4,7], for instance, for higher degree relations.
6 What independences are and are not describable by the independence-describing

method.



294 S. Konstantinidis

these topics could be complex. For example, the maximality question for trans-
ducer independences can be answered by a simple algorithm, but the question is
PSPACE hard. The embedding question is to construct a maximal independent
language containing the given independent language L(a). For transducer inde-
pendences described by Eq. (4), the embedding question is addressed in [16]. The
maximality and embedding questions for non-transducer independences appear
to be far more complex. For the satisfaction question of independences described
by rational language equations, a useful question is to define and implement wit-
nesses of non-satisfaction. For example, a witness of non-satisfaction for equa-
tion (2) would be a word triple (x, y, z) such that x, y, z ∈ L and xy = uzv for
some nonempty words u and v.

Acknowledgement. We thank the anonymous referees for constructive comments.

References

1. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

3. Cho, D.-J., Han, Y.-S., Salomaa, K., Smith, T.J.: Site-directed insertion: decision
problems, maximality and minimality. In: Konstantinidis, S., Pighizzini, G. (eds.)
DCFS 2018. LNCS, vol. 10952, pp. 49–61. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94631-3 5

4. Choffrut, C.: Relations over words and logic: a chronology. Bull. EATCS 89, 159–
163 (2006)

5. Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491–527 (2004).
https://doi.org/10.1007/s00236-004-0140-4

6. Domaratzki, M.: Bond-free DNA language classes. Nat. Comput. 6, 371–402
(2007). https://doi.org/10.1007/s11047-006-9022-8

7. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. Res. Dev. 9(1), 47–68 (1965). https://doi.org/10.1147/rd.91.0047

8. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/.
Accessed Jan 2020

9. Head, T., Weber, A.: Deciding code related properties by means of finite trans-
ducers. In: Capocelli, R., de Santis, A., Vaccaro, U. (eds.) Sequences II, Methods
in Communication, Security, and Computer Science, pp. 260–272. Springer, Berlin
(1993). https://doi.org/10.1007/978-1-4613-9323-8 19

10. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages.
Theoret. Comput. Sci. 290, 1557–1579 (2003). https://doi.org/10.1016/S0304-
3975(02)00069-5

11. Jürgensen, H.: Syntactic monoids of codes. Acta Cybern. 14, 117–133 (1999)
12. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 1, pp. 511–607. Springer, Berlin (1997).
https://doi.org/10.1007/978-3-642-59136-5 8

13. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer descriptions of DNA code
properties and undecidability of antimorphic problems. Inf. Comput. 259(2), 237–
258 (2018). https://doi.org/10.1016/j.ic.2017.09.004

https://doi.org/10.1007/978-3-319-94631-3_5
https://doi.org/10.1007/978-3-319-94631-3_5
https://doi.org/10.1007/s00236-004-0140-4
https://doi.org/10.1007/s11047-006-9022-8
https://doi.org/10.1147/rd.91.0047
http://fado.dcc.fc.up.pt/
https://doi.org/10.1007/978-1-4613-9323-8_19
https://doi.org/10.1016/S0304-3975(02)00069-5
https://doi.org/10.1016/S0304-3975(02)00069-5
https://doi.org/10.1007/978-3-642-59136-5_8
https://doi.org/10.1016/j.ic.2017.09.004


Formal Language Server (LaSer) 295

14. Konstantinidis, S.: An algebra of discrete channels that involve combinations of
three basic error types. Inf. Comput. 167(2), 120–131 (2001). https://doi.org/10.
1006/inco.2001.3035

15. Konstantinidis, S.: Applications of transducers in independent languages, word
distances, codes. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS,
vol. 10316, pp. 45–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60252-3 4

16. Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into
maximal ones. J. Automata Lang. Comb. 21(4), 311–338 (2017). https://doi.org/
10.25596/jalc-2016-311

17. Konstantinidis, S., Meijer, C., Moreira, N., Reis, R.: Symbolic manipulation of code
properties. J. Automata Lang. Comb. 23(1–3), 243–269 (2018). https://doi.org/10.
25596/jalc-2018-243. (This is the full journal version of the paper “Implementation
of Code Properties via Transducers” in the Proceedings of CIAA 2016, LNCS 9705,
pp 1–13, edited by Yo-Sub Han and Kai Salomaa)

18. LaSer: Independent LAnguage SERver. http://laser.cs.smu.ca/independence/.
Accessed Apr 2020

19. Rafuse, M.: Deciding rational property definitions, Honours Undergraduate The-
sis, Department of Mathematics and Computing Science, Saint Mary’s University,
Halifax, NS, Canada (2019)

20. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin
(2009)

21. Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année). Lecture Notes
in Mathematics, vol. 586, pp. 180–188. Springer, Heidelberg (1977). https://doi.
org/10.1007/BFb0087133

22. Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing, Taichung (2005)
23. Zaccagnino, R., Zizza, R., Zottoli, C.: Testing DNA code words properties of regular

languages. Theoret. Comput. Sci. 608, 84–97 (2015). https://doi.org/10.1016/j.tcs.
2015.08.034

https://doi.org/10.1006/inco.2001.3035
https://doi.org/10.1006/inco.2001.3035
https://doi.org/10.1007/978-3-319-60252-3_4
https://doi.org/10.1007/978-3-319-60252-3_4
https://doi.org/10.25596/jalc-2016-311
https://doi.org/10.25596/jalc-2016-311
https://doi.org/10.25596/jalc-2018-243
https://doi.org/10.25596/jalc-2018-243
http://laser.cs.smu.ca/independence/
https://doi.org/10.1007/BFb0087133
https://doi.org/10.1007/BFb0087133
https://doi.org/10.1016/j.tcs.2015.08.034
https://doi.org/10.1016/j.tcs.2015.08.034

	Theoretical and Implementational Aspects of the Formal Language Server (LaSer)
	1 Introduction
	2 Transducer Independences Allowed in LaSer
	3 Rational Independence Expressions
	4 Further Independences
	5 Looking Ahead
	References




