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Abstract. An automata network is a finite graph where each node holds
a state from some finite alphabet and is equipped with an update func-
tion that changes its state according to the configuration of neighboring
states. More concisely, it is given by a finite map f : Qn → Qn. In this
paper we study how some (sets of) automata networks can be simu-
lated by some other (set of) automata networks with prescribed update
mode or interaction graph. Our contributions are the following. For non-
Boolean alphabets and for any network size, there are intrinsically non-
sequential transformations (i.e. that can not be obtained as composition
of sequential updates of some network). Moreover there is no univer-
sal automaton network that can produce all non-bijective functions via
compositions of asynchronous updates. On the other hand, we show that
there are universal automata networks for sequential updates if one is
allowed to use a larger alphabet and then use either projection onto or
restriction to the original alphabet. We also characterize the set of func-
tions that are generated by non-bijective sequential updates. Following
Tchuente, we characterize the interaction graphs D whose semigroup of
transformations is the full semigroup of transformations on Qn, and we
show that they are the same if we force either sequential updates only,
or all asynchronous updates.

1 Introduction

An automata network is a network of entities each equipped with a local update
function that changes its state according to the states of neighboring entities.
Automata networks have been used to model different kind of networks: gene net-
works, neural networks, social networks, or network coding (see [9] and references
therein). They can also be considered as a model of distributed computation with
various specialized definitions [18,19]. The architecture of an automata network
can be represented via its interaction graph, which indicates which update func-
tions depend on which variables. An important stream of research is to determine
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how the interaction graph affects different properties of the network or to design
networks with a prescribed interaction graph and with a specific dynamical prop-
erty (see [8] for a review of known results). On the other hand, automata networks
are usually associated with an update mode describing how local update func-
tions of each entity are applied at each step of the evolution. In particular, three
categories of update modes can be distinguished: sequential (one node update at
a time), asynchronous (any subset of nodes at a time) or synchronous (all nodes
simultaneously). Studying how changing the update mode affects the properties
of an automata network with fixed local update functions is another major trend
in this field [12,13,15]. Comparing the computational power of sequential and
parallel machines is of course at the heart of computer science, but the question-
ing on update modes is also meaningful for applications of automata networks
in modeling of natural systems where the synchronous update mode is often
considered unrealistic.

For both parameters (interaction graphs and update modes), the set of prop-
erties that could be potentially affected is unlimited. In this paper, instead of
choosing a set of properties to analyze, we adopt an intrinsic approach: we study
how some (sets of) automata networks can be simulated by some other (set of)
automata networks with prescribed update mode or interaction graph.

Notations. We will always consider alphabets of the form [[q]] = {0, . . . , q − 1}
for some q and usually denote by n the number of nodes of the network which
are identified by integers in the interval [1, n]. An automata network is a map
f : [[q]]n → [[q]]n. An element x ∈ [[q]]n is a configuration and xv denotes the
state of node v in configuration x. By extension fv denotes the map x �→ f(x)v.
The rank of f is the size of its image. For any set of coordinates V ⊆ [1, n],
f (V ) : [[q]]n → [[q]]n denotes the following map:

f (V )(x)i =

{
f(x)i if i ∈ V

xi else.

The notation is extended to words of subsets w = (w1, . . . , wk) as follows: f (w) =
f (wk) ◦ · · · ◦ f (w1). For v ∈ [1, n] we overload this notation by f (v) = f ({v}).

We will often consider semigroups of functions under compositions: 〈X〉
where X is a set of functions that denotes the semigroup generated by com-
positions of elements of X. We denote the fact that S1 is a sub-semigroup of S2

by S1 ≤ S2. For any set X, Sym(X) is the set of permutations on X. We denote
the set of all networks f : [[q]]n → [[q]]n as F(n, q). We denote by Sym(n, q) the set
of f ∈ F(n, q) which are bijective and by Sing(n, q) the set of f ∈ F(n, q) which
are non-bijective. For any set F of functions in F(n, q), what they can simulate
(asynchronously, sequentially, synchronously) is denoted as follows:

〈F 〉Asy :=
〈{

f (V ) : f ∈ F, V ⊆ [1, n]
}〉

,

〈F 〉Seq :=
〈{

f (v) : f ∈ F, v ∈ [1, n]
}〉

,

〈F 〉Syn = 〈F 〉 .
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Then we say that F simulates g ∈ F(n, q) asynchronously (sequentially, syn-
chronously, respectively) if g ∈ 〈F 〉Asy (〈F 〉Seq, 〈F 〉Syn, respectively). When
F = {f} we use notations 〈f〉Asy, 〈f〉Seq, 〈f〉Syn, respectively.

Previous Works. Simulation of automata networks is the topic of two main
strands of work. The first stream investigates what a single network can simulate.
The main observation, made in [2], is that there is no sequentially complete
network for F(n, q), i.e. for all f ∈ F(n, q), 〈f〉Seq 
= F(n, q). This was refined in
several ways. Firstly, there is no sequentially complete network for singular (i.e.
non-permutation) transformations: for all f ∈ F(n, q), Sing(n, q) 
≤ 〈f〉Seq [2].
Secondly, for all n ≥ 2 and q ≥ 2 (unless n = q = 2), there exists a sequentially
complete network for permutations: there exists f ∈ F(n, q) such that 〈f〉Seq =
Sym(n, q) [7]. These results illustrate a clear dichotomy between permutations
and non-permutations. Thirdly, the simulation model was extended in [2] to
include situations whereby a large network f ∈ F(m, q) could simulate a smaller
network g ∈ F(n, q) for n ≤ m; notably, there always exists a complete network
of size m = n + 1 which can sequentially simulate any g ∈ F(n, q).

Another strand of work considers simulation by (possibly large) sets of net-
works. Firstly, Tchuente [16] investigated what networks with a prescribed reflex-
ive interaction graph D could simulate synchronously. The main result is that
this set of networks F(D, q) is complete, i.e. 〈F(D, q)〉Syn = F(n, q), if and only if
D is strongly connected and has a vertex of in-degree n. Secondly, in the context
of in-situ computation (a.k.a. memoryless computation), Burckel proved that
any network could be sequentially simulated, if we allow the updates to differ at
each time step; in our language: for all n and q, 〈F(n, q)〉Seq = F(n, q) [4]. This
seminal result was subsequently refined (see [6,10]); notably linear bounds on
the shortest word required to simulate a transformation were obtained in [5,6].

Our Contributions. In this paper, we are further developing both strands of the
theory of simulation of automata networks. We make the following contribu-
tions. We first consider simulation by a single network. Firstly, we show that
for any q ≥ 3 and any n ≥ 2, there exists a network g ∈ F(n, q) which is not
sequentially simulatable. Secondly, we consider asynchronous simulation, and
we show that there is no asynchronously complete network: for all f ∈ F(n, q),
Sing(n, q) 
≤ 〈f〉Asy. This is a clear strengthening of the result in [2] for sequen-
tial simulation. Thirdly, we extend the framework to let a network over a large
alphabet f ∈ F(n, q′) simulate a network g ∈ F(n, q) over a smaller alphabet.
We consider two ways to extend the alphabet, and for each we prove the exis-
tence of sequentially complete networks for q′ = 2q and q′ = q + 1, respectively.
We then consider simulation by large sets of networks. The seminal result in [4]
shows that instructions (updates of the form f (v) for some v ∈ [1, n]) can sim-
ulate any network; in this paper, we determine what singular instructions can
simulate (and even idempotent instructions for q ≥ 3). We finally strengthen
the main result in [16] by showing that it also holds when considering sequential
and asynchronous updates as well.
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Proof. Complete proofs of all lemmas, propositions and theorems can be found
in [3].

2 Sequential Simulation

We say g ∈ F(n, q) is sequentially simulatable if g ∈ 〈f〉Seq for some f ∈
F(n, q). Recall that unless n = q = 2 any g ∈ Sym(n, q) is sequentially simulat-
able since there is a universal f ∈ F(n, q) such that 〈f〉Seq = Sym(n, q) [7]. Con-
cerning non-bijective maps, the situation is radically different for non-Boolean
alphabets as shown in the following theorem. For any function φ ∈ F(n, q), we
denote by O(()φ) the set of its orphans: O(()φ) = {c ∈ [[q]]n : φ−1(c) = ∅}. The
analysis of oprhans configurations under sequential updates is the key behind
the following theorem.

Theorem 1. For any n ≥ 2 and q ≥ 3, there exists h ∈ F(n, q) which is not
sequentially simulatable.

The functions which are not sequentially simulatable produced in the proof
of Theorem 1 have two configurations a and b in [[q]]n with the same image and
another d which is an orphan with the following property: for each coordinate i
where ai and bi differ, di is different from both ai and bi. Note that this situation
is impossible in the Boolean case since if ai 
= bi then necessarily di ∈ {ai, bi}.

F. Bridoux did an exhaustive search in F(n, 2) with n = 2 and n = 3 to
test which one are sequentially simulatable [1]. It turns out that all f ∈ F(3, 2)
are sequentially simulatable. However, some functions in F(2, 2) are not and one
example is the circular permutation 00 → 01 → 11 → 10 → 00 [1, Proposition
12]. More details (including the code of the test program) are available at http://
theyssier.org/san2020.

3 Asynchronous Simulation

In this section, we consider asynchronous simulation, where at each step we allow
any update f (T ) for T ⊆ [1, n]. We then refine the result in [2] that there is no
network that can sequentially simulate all singular networks.

We say that a function h : B → C, where B and C are finite sets, is balanced
if for any c, c′ ∈ C, |h−1(c)| = |h−1(c′)|. In particular, if f ∈ F(n, q) is bijective,
then all its coordinate functions fv : [[q]]n → [[q]] must be balanced.

Theorem 2. For all f ∈ F(n, q), Sing(n, q) 
≤ 〈f〉Asy.

Proof. Suppose, for the sake of contradiction, that Sing(n, q) ≤ 〈f〉Asy. We first
show that not all coordinate functions of f are balanced. There exists S ⊆ [1, n]
such that f (S) has rank qn−1. (Otherwise, no function in 〈f〉Asy has rank qn−1.)
Then there exist a, b ∈ [[q]]n such that

∣∣∣∣(f (S)
)−1

(x)
∣∣∣∣ =

⎧⎪⎨
⎪⎩

2 if x = a

0 if x = b

1 otherwise.

http://theyssier.org/san2020
http://theyssier.org/san2020
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Then let v ∈ S such that av 
= bv. We have

|f−1
v (av)| =

∑
x:xv=av

∣∣∣∣(f (S)
)−1

(x)
∣∣∣∣ = 2 +

∑
x:xv=av,x �=a

1 = qn−1 + 1,

thus fv is not balanced.
Thus, suppose fv is not balanced, and let q0 ∈ [[q]] such that |f−1

v (q0)| < qn−1.
Say a network h ∈ F(n, q) is defective if h−1(x) = ∅ for some x with xv = q0.
Let g ∈ Sing(n, q) not be deficient, and have a nontrivial gv; and suppose g =
f (w1···wk). Let i = max{1 ≤ j ≤ k : v ∈ wj}, then f (wi) is defective, and so is
f (w1···wi). Since f (wi+1···wk) fixes the coordinate v, f (w1···wk) = g is also deficient,
which is the desired contradiction. �

Similarly to Theorem1, the obstacle in Theorem 2 was found in the set of
maps of rank qn − 1. We now show that maps of rank qn − 2 form another
obstruction to having complete simulation in the asynchronous case. Let T (n, q)
be the set of networks in F(n, q) whose rank is not equal to qn − 1. It is clear
that T (n, q) is a semigroup, generated by maps of rank qn or qn − 2.

Proposition 1. For all f ∈ F(n, q), T (n, q) 
≤ 〈f〉Asy.

Proof. Suppose, for the sake of contradiction, that T (n, q) ≤ 〈f〉Asy. Firstly, all
the coordinate functions of f are balanced. Indeed, let g(x) = x + (1, . . . , 1) and
express g = f (w1···wk). Then f (wi) is bijective and hence fv is balanced for all
v ∈ wi; since

⋃k
i=1 wi = [1, n], we obtain that fv is balanced for all v ∈ [1, n].

Secondly, the proof of Theorem2 showed that there is no f (S) of rank qn − 1.
Now, there are two types of networks with rank qn − 2:

– Say g is of type I if there exists a ∈ [[q]]n such that |g−1(a)| = 3 (and hence
any other x 
= a has |g−1(x)| ≤ 1).

– Say h is of type II if there exist a, b ∈ [[q]]n such that |h−1(a)| = |h−1(b)| = 2
(and hence any other x /∈ {a, b} has |h−1(x)| ≤ 1).

By an argument similar to the proof of Theorem2, there is no S ⊆ [1, n] such
that f (S) is of type I. Let g be of type I and let us express it as g = f (w1···wk).
Each f (wl) has rank at least qn − 2, and there exists 1 ≤ i ≤ k such that f (wi) is
singular. By the argument above, f (wi) is of type II and so is h := f (w1···wi), say
|h−1(a)| = |h−1(b)| = 2. Denote g = h′ ◦ h for h′ := f (wi+1···wk). If h′(a) = h′(b),
then g has rank at most qn − 3; otherwise |g−1(h′(a))| = |g−1(h′(b))| = 2 and
hence g is of type II, which is the desired contradiction. �

4 Simulation Using Larger Alphabets

As said earlier, there is no universal automata network in F(n, q) able to sequen-
tially simulate all functions of F(n, q) (actually Theorem 2 gives a stronger nega-
tive result). In this section, we revisit this problem when the simulator is allowed
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Fig. 1. Definition and sequential behavior of ρ : [[2]]3 → [[2]]3 from Theorem3. Label on
arcs represent the coordinate updated.

to use a larger alphabet. In this case we can consider two natural types of sim-
ulations: one requires the simulation to work on any initial configuration of the
simulator and uses a projection onto configurations of the simulated functions;
the other does not use projection, but works only on initial configurations using
the alphabet of the simulated function.

Definition 1. Let n ∈ N, 2 ≤ q < q′ and consider f ∈ F(n, q′). We say that f
is (n,q)-universal by factor if there is a surjection π : [[q′]] → [[q]] such that for
any h ∈ F(n, q) there is a word w ∈ [1, n]∗ such that

∀x ∈ [[q′]]n, π ◦ f (w)(x) = h ◦ π(x)

where π(x1, . . . , xn) = (π(x1), . . . , π(xn)). f is said (n,q)-universal by initializa-
tion if for any h ∈ F(n, q) there is a word w ∈ [1, n]∗ such that

∀x ∈ [[q]]n, f (w)(x) = h(x).

We are going to show that universality can be achieved for each kind of sim-
ulation. In both cases, the larger alphabet allows us to encode more information
than the configuration of the simulated function. This additional information is
used as a global controlling state that commands transformations applied on the
simulated configuration and evolves according to a finite automaton. In the case
of simulation by factor, the encoding is straightforward but the global controlling
state is uninitialized. The key is to use a control automaton with a synchronizing
word (see Fig. 1). In the case of simulation by initialization, the difficulty lies in
the encoding.

The following theorems were obtained by F. Bridoux during his PhD thesis
[1].

Theorem 3. For any q ≥ 2 and n ≥ 3, there exists f ∈ F(n, 2q) which is
(n, q)-universal by factor.
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Proof. We can see any configuration of [[2q]]n as a pair made of a configura-
tion of [[q]]n and a Boolean configuration, so we can as well describe f as a
function acting on [[q]]n × [[2]]n to simplify notations and use the surjective map
π : [[q]]n × [[2]]n → [[q]]n that projects onto the first component. We will actu-
ally choose f which is the identity map on the coordinates 4 to n on the
Boolean component. So, to simplify even further, we will define a function
f : [[q]]n × [[2]]3 → [[q]]n × [[2]]3.

Consider first the function ρ : [[2]]3 → [[2]]3 defined by Fig. 1 and consider the
map Ψ : [[q]]n × [[2]]3 → [[q]]n defined by:

Ψ(x, y)1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + 1 mod q if y = 101,

1 if x = (0)n and (y = 011 or y = 001),
0 if x = 1(0)n−1 and y = 011,

x1 otherwise,

Ψ(x, y)2 =

{
x2 + 1 mod q if x1 = 0 and y = 111,

x2 otherwise,

Ψ(x, y)3 =

{
x3 + 1 mod q if x1 = x2 = 0 and y = 011,

x3 otherwise,

∀i ∈ [4, n], Ψ(x, y)i =

{
xi + 1 mod q if x1 = x2 = · · · = xi−1 = 0,

xi otherwise.

Then we define f by f(x, y) =
(
Ψ(x, y), ρ(y)

)
. We now prove properties about

f implying that it is (n, q)-universal by factor.

Claim 1. For any (x, y) ∈ [[q]]n × [[2]]3 it holds f ((3)q,2,3,1,1,2,1,3)(x, y) = (x, 101).

Proof. First, let us remark that updating q times coordinate 3 starting from
(x, y), there are two cases:

– y 
= 011 or x1 
= 0 or x2 
= 0 and then the component x is not modified;
– y = 011 and x1 = x2 = 0, and then the modification x3 ← x3 + 1 is applied

q times.

Therefore we have f ((3)q)(x, y) = (x′, y′) with

x′ = (x1, x2, x3 + q, . . . ) = (x1, x2, x3, . . . ) = x.

To show that the update sequence ((3)q, 2, 3, 1, 1, 2, 1, 3) does not modify the
component x, it is sufficient to verify the following:

– coordinate 1 is not updated when y ∈ {101, 011, 001};
– coordinate 2 is not updated when y = 111;
– when coordinate 3 is updated and y = 011, it is updated q times.
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By definition of f ((3)q,2,3,1,1,2,1,3), we obtain:

x000
(3)q−−→ x000

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x100
(3)q−−→ x101

2−→ x111
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x010
(3)q−−→ x010

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x110
(3)q−−→ x110

2−→ x110
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x001
(3)q−−→ x000

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x011
(3)q−−→ x011

2−→ x001
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x101
(3)q−−→ x101

2−→ x111
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x111
(3)q−−→ x110

2−→ x110
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101.

�
Let us now show that, starting from (x, 101), f can realize three kinds of

transformations on x that will turn out to be sufficient to generate all F(n, q).

– Let c ∈ Sym(n, q) be the following circular permutation:

c : ((0)n → 1(0)n−1 → · · · → (q − 1)(0)n−1 → 01(0)n−2 → . . . ).

then for any x ∈ [[q]]n we have f (1,2,2,1,(3,4,...,n))(x, 101) = (c(x), 011) because:

x101
1−→ c(1)(x)101 2−→ c(1)(x)111 2−→ c([1,2])(x)111 1−→ c([1,2])(x)011

3−→ c([1,3])(x)011 4−→ c([1,4])(x)011 5−→ . . .
n−→ c(x)011.

– Consider the transposition k = ((0)n ↔ 1(0)n−1), then we have, for any
x ∈ [[q]]n, f (2,1,1)(x, 101) = (k(x), 011) because:

x101
2−→ x111

1−→ x011
1−→ k(x)011.

– Finally, consider the assignment d = ((0)n → 1(0)n−1), then for any x ∈ [[q]]n

it holds f (2,1,2,1)(x, 101) = (d(x), 001) because:

x101
2−→ x111

1−→ x011
2−→ x001

1−→ d(x)001.

Since functions c, k and d generate F(n, q) (see [14] or [11]), the theorem
follows. �
Theorem 4. For any q ≥ 2 and n ≥ 3q, there is f ∈ F(n, q + 1) which is
(n, q)-universal by initialization.

5 Simulation by Sets of Networks

So far we studied what a single function can simulate. We know shift our interest
to semigroups generated by some sets of functions.
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5.1 Singular Instructions

An instruction is any f (v) for some f ∈ F(n, q) and some v ∈ [1, n]. Burckel
showed that any network is the composition of instructions: 〈F(n, q)〉Seq =〈{

f (v) : f ∈ F(n, q), v ∈ [1, n]
}〉

= F(n, q). As an immediate consequence, any
permutation in Sym(n, q) is the composition of permutation instructions:
Sym(n, q) is exactly

〈{
f (v) ∈ Sym(n, q) : f ∈ F(n, q), v ∈ [1, n]

}〉
. We now deter-

mine what singular instructions generate: let

S(n, q) :=
〈{

f (v) ∈ Sing(n, q) : f ∈ F(n, q), v ∈ [1, n]
}〉

.

Proposition 2. The semigroup S(n, q) generated by singular instructions con-
sists of all networks f such that there exist a, b ∈ [[q]]n with f(a) = f(b) and
dH(a, b) = 1.

Any network f can be seen as a vertex colouring of the Hamming graph
H(n, q) (x colored by f(x)). From the proposition above, networks in S(n, q) cor-
respond to improper colouring. Since the chromatic number of H(n, q) is equal
to q, we deduce that any network with rank at most q − 1 can be generated by
singular instructions. However, the network f(x) = (x1 + . . . + xn, 0, . . . , 0) can-
not be generated by singular instructions, since it generates a proper colouring
of the Hamming graph.

A network f is idempotent if f2 = f . Idempotents are pivotal in the theory
of semigroups, for they are the identity elements of the subgroups of a given
semigroup. In particular it is interesting to know whether a semigroup S is
generated by its set of idempotents, because then any element s ∈ S can be
expressed as a product of consecutively distinct idempotents: s = e1e2 . . . ek. We
remark that if f ∈ S(n, q) is idempotent and has rank qn − 1, then it must be
an assignment instruction.

Theorem 5. S(n, q) is generated by assignment instructions for q ≥ 3.

The previous result could be proved using the so-called fifteen-puzzle. In the
original puzzle, an image is cut into a four-by-four grid of tiles; one of the tiles
is removed, thus creating a hole; the remaining fifteen tiles are scrambled by
sliding a tile into the hole. The player is then given the scrambled image, and
has to reconstruct it by repeatedly sliding a tile in the hole.

Clearly, this game can be played on any simple graph D, where a hole is
created at a vertex (say h), and one can “slide” one vertex into the hole, the
hole thus moving to that vertex. If the hole goes back to its original place h,
then we have created a permutation of V (D)\h. The set of all possible permuta-
tions is closed under composition and hence it forms a group, called the puzzle
group G(D,h). Wilson [17] fully characterised that group for 2-connected simple
graphs; we give a simpler version of the theorem below.

Theorem 6. (Wilson’s fifteen-puzzle theorem). Let D be a 2-connected
simple graph, then G(D,h) ∼= G(D,h′) for all vertices h, h′ ∈ V (D). Moreover,
if D is the undirected cycle, then G(D,h) is trivial. Otherwise, the following
hold.
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1. If D is not bipartite and has at least eight vertices, then G(D,h) =
Sym(V (D) \ h).

2. If D is bipartite, then G(D,h) = Alt(V (D) \ h).

Using assignment instructions (a → b) to simulate a network f of rank qn −1
can be viewed as playing the fifteen-puzzle on the Hamming graph H(n, q): the
first (a1 → b1) places a hole in vertex a1 and any subsequent (ak → bk) slides
the vertex ak into the hole bk (and the hole moves to ak instead). Since H(n, q)
is not bipartite for q ≥ 3 (and it has at least nine vertices for n ≥ 2), we can
apply Wilson’s theorem and, after a bit more work, prove Theorem5 that way.
However, the hypercube H(n, 2) is bipartite, then the puzzle group is only the
alternating group. Thus, S(n, 2) is not generated by assignment instructions,
and in particular f = (010 · · · 0 ↔ 110 · · · 0) ◦ (000 · · · 0 → 100 · · · 0) cannot be
generated by assignment instructions.

5.2 Simulation by Graphs

The interaction graph of f ∈ F(n, q) is the (directed graph) which has vertex
set V = [1, n] and has an arc from u to v if and only if fv depends essentially on
u, i.e. there exists a, b ∈ [[q]]n such that aV \u = bV \u and fv(a) 
= fv(b). For any
graph D with n nodes, we denote the set of networks in F(n, q) whose interaction
graph is a subgraph of D as F(D, q).

A graph is reflexive if for any vertex v, (v, v) is an arc in D. Note that for any
reflexive graph D it holds 〈F(D, q)〉Seq ⊆ 〈F(D, q)〉Asy = 〈F(D, q)〉Syn . The first
inclusion is trivial; the equality follows from the fact that for any f ∈ F(D, q)
and any S ⊆ [1, n], f (S) belongs to F(D, q) as well. Moreover, it is clear that
if 〈F(H, q)〉Seq = F(n, q), then H is reflexive (otherwise, 〈F(H, q)〉Seq would not
contain any permutation). The reflexive graphs which can simulate the whole
of F(n, q) synchronously were classified by Tchuente in [16]. In fact, the same
graphs can simulate the whole of F(n, q) asynchronously or sequentially.

Theorem 7. Let D be a reflexive graph on n vertices. Then the following are
equivalent.

1. 〈F(D, q)〉Seq = F(n, q).
2. 〈F(D, q)〉Asy = F(n, q).
3. 〈F(D, q)〉Syn = F(n, q).
4. D is strongly connected and it has a vertex of in-degree n.

A permutation of variables is any network f := φ̄ defined by fi(x) = xφ(i)

for some φ ∈ Sym([1, n]). We first show that we can permute variables freely if
the graph is strongly connected (and is reflexive for the sequential case).

Lemma 1. The following are equivalent for a reflexive graph D.

1. 〈F(D, q)〉Seq contains all permutations of variables of F(n, q).
2. 〈F(D, q)〉Asy contains all permutations of variables of F(n, q).
3. D is strong.
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Proof (Proof of Theorem 7). Clearly, 1 implies 2, which in turn is equivalent to 3.
We prove 2 implies 4. Let D such that 〈F(D, q)〉Asy = F(n, q). By Lemma 1, D
is strong. We now prove that D has a vertex of in-degree n. Otherwise, let
f ∈ F(D, q) of rank qn − 1. Let a ∈ O(()f) and b with |f−1(b)| = 2 (and hence
|f−1(x)| = 1 for any other x). We then have∑

x∈[[q]]n

f(x) mod qn = b − a 
= 0.

On the other hand, it is easily seen that for any y ∈ [[q]], |f−1
v (y)| is a multiple

of qn−dv where dv is the in-degree of v in D, hence∑
x∈[[q]]n

fv(x) mod q =
∑

y∈[[q]]

|f−1
v (y)|y mod q = 0.

Doing this componentwise for all v, we obtain
∑

x∈[[q]]n f(x) = 0, which is the
desired contradiction.

We prove 4 implies 1. We only need to show that all instructions in F(n, q)
belong to 〈F(D, q)〉Seq. Let u be a vertex of in-degree n, then we already have
any instruction updating u. Let v be another vertex, and g be an instruction
updating v, then g = (u ↔ v)◦h◦(u ↔ v), where h is the instruction updating u
such that hu = gv ◦(u ↔ v). Then (u ↔ v) ∈ 〈F(D, q)〉Seq according to Lemma 1.
Thus, any instruction can be generated. �

6 Future Work

The contrast between the complete sequential simulator for Sym(n, q) and the
existence of non-bijective functions that are not sequentially simulatable in the
non-Boolean case is striking. We would like first to settle the Boolean case:
we conjecture that all functions of F(n, 2) are sequentially simulatable for large
enough n. For q ≥ 3, in order to better understand the set of sequentially simulat-
able networks, one could for instance analyze how much synchronism is required
to simulate them (how large are the sets V in the asynchronous updates f (V )

used to simulate them). In particular, one may ask whether, for all n, there exists
some network with n entities that require a synchronous update f ([1,n]) in order
to be simulated asynchronously. Besides, the networks considered in Sects. 2, 3
and 4 have an unconstrained interaction graph. The situation could be very dif-
ferent when restricting all networks to particular a family of interaction graphs
(bounded degree, bounded tree-width, etc.). Finally, still concerning interaction
graphs, the characterization of Theorem 7 is about reflexive graphs. We would
like to extend it to any graph (not necessarily reflexive).
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