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Abstract. As a fairly frequent form of the Axiom of Choice about rel-
atively simple structures (posets), Hausdorff’s Maximal Chain Princi-
ple appears to be little amenable to computational interpretation. This
received view, however, requires revision. When attempting to convert
Hausdorff’s principle into a conservation theorem, we have indeed found
out that maximal chains are more reminiscent of maximal ideals than it
might seem at first glance. The latter live in richer algebraic structures
(rings), and thus are readier to be put under computational scrutiny.
Exploiting the newly discovered analogy between maximal chains and
ideals, we can carry over the concept of Jacobson radical from a ring to
an arbitrary set with an irreflexive symmetric relation. This achievement
enables us to present a generalisation of Hausdorff’s principle first as a
semantic and then as a syntactical conservation theorem. We obtain the
latter, which is nothing but the desired computational core of Hausdorff’s
principle, by passing from maximal chains to paths of finite binary trees
of an adequate inductively generated class. In addition to Hausdorff’s
principle, applications include the Maximal Clique Principle for undi-
rected graphs. Throughout the paper we work within constructive set
theory.
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1 Introduction

Hausdorff’s maximal chain principle asserts that every totally ordered subset of
a partially ordered set S is contained in a maximal one. Equivalently, this can
be put as a completeness criterion in first-order terms: a chain C is maximal
precisely when, for every x ∈ S, if C ∪ { a } is a chain, then a ∈ C. So a chain
C is maximal if and only if, for every a ∈ S, either a ∈ C or a is incomparable
with at least one b ∈ C, i.e.,

a ∈ C ∨ (∃b ∈ C) (a � b ∧ b � a). (1)
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This is somewhat reminiscent of the characterisation of maximal ideals in com-
mutative ring theory [21]. In this setting an ideal J of a commutative unital ring
takes the place of C, and the respective right-hand disjunct of (1) expresses that
the ring element a is invertible modulo J . Moreover, it is possible to describe the
common part of all maximal ideals in first-order terms. This encodes Krull’s Max-
imal Ideal Theorem as an intersection principle, and yields a notion of Jacobson
radical suitable for constructive algebra [21,31,38].

By analogy, we can define the Jacobson radical Jac(C) of a chain C, and prove
(assuming the Axiom of Choice AC) that Jac(C) coincides with the intersection
of all maximal chains containing C. Hence Hausdorff’s principle too can be recast
as an intersection principle. All this will even be done in a slightly more general
fashion. The main point to be stressed is that a simple constructive interpretation
is possible, whence the purpose of this paper is twofold: we communicate a new
choice principle, and describe its constructive underpinning.

We proceed as follows. In Sect. 2, alongside the analogy with ring theory,
we describe our concepts of coalition and Jacobson radical. In Sect. 3 we briefly
relate this to past work [25–27] on the interplay of single- and multi-conclusion
entailment relations [9,35]. In Sect. 4 we give a constructive account of complete
coalitions by means of a suitable inductively generated class of binary trees. In
Sect. 5 we briefly discuss two applications: maximal chains of partially ordered
sets, and maximal cliques of undirected graphs. The main results are Proposi-
tion 1 and its constructive companion Proposition 3.

Foundations

The content of this paper is elementary and can be formalised in a suitable
fragment of constructive set theory CZF [2,3]. Due to the choice of this setting,
sometimes certain assumptions have to be made explicit which otherwise would
be trivial in classical set theory. For instance, a subset T of a set S is detachable
if, for every a ∈ S, either a ∈ T or a /∈ T . A set S is finitely enumerable if there
is n � 0 and a surjective function f : { 1, . . . , n } → S. We write Fin(S) for the
set of finitely enumerable subsets of S. To pin down a rather general, classical
intersection principle, and to point out certain of its incarnations, requires some
classical logic and the Axiom of Choice (AC) in its classically equivalent form of
Zorn’s Lemma (ZL) [40]. For simplicity we switch in such a case to classical set
theory ZFC, signalling this appropriately.

2 Coalitions

Throughout, let S be a set, and let R be an irreflexive symmetric relation on S.
We say that a subset C of S be a coalition1 (with respect to R) if ¬aRb for all
a, b ∈ C. This is the same as demanding that C be R-connected, which is to say

1 Incidentally, the term “coalition”, which we use here for sake of intuition, is standard
terminology in game theory to denote a group of agents [39].
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that a ∈ C only if aRb for every b ∈ C, where R denotes the complementary
relation. For instance, the empty subset is a coalition, as is every singleton subset
of S, by the irreflexivity of R. Notice that coalitions are closed under directed
union. A coalition C is called complete if, for every a ∈ S,

a ∈ C ∨ (∃b ∈ C) aRb. (2)

It is perhaps instructive to read aRb as “a opposes b” (and vice versa, to account
for symmetry), under which reading it makes sense to require irreflexivity. A
coalition is then a subset of S in which no two members oppose one another. A
complete coalition C is such that, given any a ∈ S, this a either belongs to C,
or else C exhibits a witness b which opposes a.

Lemma 1. Every complete coalition is detachable and maximal (with respect to
set inclusion) among coalitions. Conversely, with classical logic every maximal
coalition is complete.

Proof. Let C be a complete coalition. Since aRb for all a, b ∈ C, the second
alternative of completeness (2) entails that a /∈ C; whence C is detachable. As
regards C being maximal, let D be a coalition such that C ⊆ D and let a ∈ D.
By completeness, either a ∈ C right away, or else there is b ∈ C such that aRb,
but the latter case is impossible as D is a coalition. As regards the converse, if C
is a complete coalition and a /∈ C, then C ′ = C ∪{ a } cannot, due to maximality
of C, in turn be a coalition. With classical logic, the latter statement is witnessed
by a certain element b ∈ C. This yields completeness. 	


If C is a coalition, let us write

Comp/C

for the collection of all complete coalitions that contain C, with the special
case Comp = Comp/∅. Since every complete coalition is detachable (Lemma
1), these collections are sets due to the presence in CZF of the Exponentiation
Axiom [2,3].

All this is fairly reminiscent of the characteristics of maximal ideals in ring
theory [21]. Given a commutative ring A with 1, recall from [12,21] that the
Jacobson radical [20] of an ideal J of A can be defined as

Jac(J) = { a ∈ A | (∀b ∈ A)(1 ∈ 〈a, b〉 → (∃c ∈ J) 1 ∈ 〈b, c〉) }, (3)

where sharp brackets denote generated ideals. By plain analogy with the ring-
theoretic setting, let us then define the Jacobson radical of an arbitrary subset
C of S, of course with respect to our default, irreflexive symmetric relation R:

Jac(C) = { a ∈ S | (∀b ∈ S)(aRb → (∃c ∈ C) bRc) }. (4)

In particular, the Jacobson radical of the empty coalition is

Jac(∅) = { a ∈ S | (∀b ∈ S) aRb }.
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Thus, we substitute the property of mutual opposition in (4) for the one of
comaximality in (3), i.e., for the property of two ring elements to generate the
unit ideal. Assuming AC, the Jacobson radical of an ideal J is the intersection of
all maximal ideals that contain J [21]. Similarly, and still with AC, the Jacobson
radical of a coalition C turns out to be the intersection of all complete coalitions
containing C (Proposition 1).

Lemma 2. The Jacobson radical defines a closure operator on S which restricts
to a mapping on coalitions, i.e., if C is a coalition, then so is Jac(C).

Proof. As for the first statement we only show idempotency, i.e., Jac(Jac(C)) ⊆
Jac(C), where C ⊆ S. In fact, if a ∈ Jac(Jac(C)) and b ∈ S is such that aRb,
then there is c ∈ Jac(C) with cRb. It follows that there is c′ ∈ C such that bRc′,
and so a ∈ Jac(C).

As regards the second statement, suppose that C ⊆ S is a coalition, and let
a0, a1 ∈ Jac(C). Assuming that a1Ra0, since a1 ∈ Jac(C), there is c0 ∈ C such
that a0Rc0. Since a0 ∈ Jac(C) too, there is c1 ∈ C such that c0Rc1, which is in
conflict with C being a coalition. 	


Proposition 1 (ZFC). If C is a coalition, then

Jac(C) =
⋂

Comp/C.

Proof. Let a ∈ Jac(C) and suppose that D is a complete coalition which contains
C. By completeness, either a ∈ D right away, or else there is b ∈ D such that aRb.
But since a ∈ Jac(C), the latter case would imply that there were c ∈ C ⊆ D
with bRc, by way of which D would fail to be a coalition after all.

For the right-to-left inclusion we concentrate on the contrapositive. Thus,
suppose that a /∈ Jac(C). Accordingly, there is b such that aRb and C ′ := C∪{ b }
is a coalition. ZL yields a coalition D which is maximal among those containing
C ′. This D is complete by way of being maximal, and it must avoid a, because
if a ∈ D, then D were not a coalition since b ∈ C ′ ⊆ D and aRb. 	


Remark 1. The argument in the right-to-left part of the proof of Proposition 1
can also be used in a more affirmative manner. ZL, which is said to be construc-
tively neutral [4],2 directly implies that

⋂
Max/C ⊆ { a ∈ S | (∀b ∈ S)(aRb → ¬(∀c ∈ C) bRc) },

where Max/C denotes the collection of all maximal coalitions over C. The crucial
direction of Proposition 1 can also be proved in a more direct manner by using
Open Induction [6,11,23] in place of Zorn’s Lemma. For similar cases see [10,
24,29,30].

2 Forms of ZL have been considered over classical [14], intuitionistic [5] as well as
constructive set theory [1,32].
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By a radical coalition C we understand one which is closed with respect
to Jac, i.e., which is such that Jac(C) = C. Clearly, every complete coalition
is radical, and by Lemma 2 so is the intersection of an inhabited family of
complete coalitions. By Proposition 1, in ZFC the radical coalitions are precisely
the intersections of complete coalitions; so in particular

{ a ∈ S | (∀b ∈ S) aRb } = Jac(∅) =
⋂

Comp.

With Proposition 3 we will give a constructive version of Proposition 1 in
Sect. 4, to which end Proposition 2 below will be crucial.

In the following, we write

R(x) = { y ∈ S | xRy }

for the image of x under R, and use Jac(C, x) as a shorthand for Jac(C ∪ {x }).

Proposition 2. The following is provable for the Jacobson radical:

a ∈ Jac(C, x) (∀y ∈ R(x)) a ∈ Jac(C, y)
a ∈ Jac(C)

where a, x ∈ S and C is an arbitrary subset of S.

Proof. Given the displayed premises, to check that a ∈ Jac(C), consider b ∈ S
such that aRb. We need to find c ∈ C such that bRc. The left-hand premise
yields c′ ∈ C ∪ {x } such that bRc′. If c′ ∈ C, then c = c′ is as required. In case
of c′ = x, the right-hand premise for y = b yields a ∈ Jac(C, b). Again with aRb
it follows that there is c ∈ C ∪ { b } such that bRc, whence in fact c ∈ C since R
is irreflexive. 	


Remark 2. Given a binary relation R on S, an R-clique is a subset C such that,
for every a ∈ S,

a ∈ C ⇔ (∀b ∈ C) aRb.

Bell’s Clique Property asserts that, for any reflexive symmetric relation R on S,
an R-clique exists. This is in fact an intuitionistic equivalent of ZL [5]. Clas-
sically, given an irreflexive symmetric relation R, every R-clique is a complete
R-coalition. Conversely, and constructively, every complete R-coalition is an R-
clique. More precisely, a subset C of S is an R-clique if and only if it is R-
connected as well as R-saturated, the latter of which is to say that a ∈ C already
if aRb for all b ∈ C.

3 Entailment for Completeness

Consider on S the relation � ⊆ Fin(S) × S which is defined by the Jacobson
radical, i.e., stipulate

U � a ≡ a ∈ Jac(U).
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Lemma 2 tells us that this � is a single-conclusion entailment relation, which is
to say that it is reflexive, monotone, and transitive in the following sense:

U � a

U � a
(R)

U � a

U, V � a
(M)

U � b U, b � a

U � a
(T)

where the usual shorthand notation is at work with U, V ≡ U ∪ V and U, b ≡
U ∪ {b}. In ZFC, the consequences with respect to � of a coalition U ∈ Fin(S)
are semantically determined by the complete coalitions over U , i.e.,

(∀C ∈ Comp)(C ⊇ U =⇒ a ∈ C) =⇒ U � a.

Proposition 2 implies that the following is provable:

U, x � a (∀y ∈ R(x))U, y � a

U � a

This is to say that the infinitary axiom of completeness (2), which in the present
context can be put in the form

� x,R(x)

is in fact conservative [25,26] over �. To make this precise requires extending
the results of [25,26] to an infinitary setting [36], but upon which those results
go through verbatim. We do not require such a development here; an elementary
constructive interpretation of Proposition 1 will be given in the following section
using instead a suitable inductively generated collection of finite binary trees.
For related uses of conservativity see also, e.g., [16,27,28].

4 Binary Trees for Complete Coalitions

In this section we carry over the approach recently followed in [34] for prime
ideals of commutative rings, so as to accommodate complete coalitions. Readers
familiar with dynamical algebra [13,21,38] will draw a connection between the
tree methods of [13] and the one employed here.

Let again S be a set. For every a ∈ S we first introduce a corresponding
letter Xa. Let

S = (S ∪ {Xa | a ∈ S })∗

be the set of finite sequences of elements of S and such letters, with the usual
provisos on notation, concatenation, etc. Next, we generate inductively a class
T of finite rooted binary trees T ⊆ S as follows:

{ [] } ∈ T (root)
T ∈ T u ∈ Leaf(T ) a ∈ S

T ∪ {ua, uXa } ∈ T (branch) (5)

As usual, by a leaf we understand a sequence u ∈ T without immediate
successor in T . The second rule is to say that, given T ∈ T , if u is a leaf of T ,
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then each element a of S gives rise to a new member of T by way of an additional
branching at u. More precisely, u gives birth to two children ua and uXa. Here
is a possible instance, where a, b ∈ S:

[]

[a]

[a, b] [a,Xb]

[Xa]

As an auxiliary tool, we further need a sorting function sort : S → S which
gathers all occurring letters Xa at the tail of a finite sequence. As the result-
ing order of the entries won’t matter later on, this function may be defined
recursively in the simplest manner, as follows:

sort([]) = []
sort(ua) = a sort(u)

sort(uXa) = sort(u)Xa

Last but not least, given a subset C of S, we introduce a relation �C between
elements of S and sorted finite sequences in S by defining

c �C [a1, . . . , ak,Xb1 , . . . , Xb�
] ≡

(∀x1, . . . , x� ∈ S)
( �∧

j=1

xjRbj → c ∈ Jac(C, a1, . . . , ak, x1, . . . , x�)
)
,

where we drop the quantifier in case of � = 0. In particular,

c �C [] ⇔ c ∈ Jac(C). (6)

Keeping in mind Proposition 1, with AC the semantics of this relation is that
if u = [a1, . . . , ak,Xb1 , . . . , Xb�

] as above, then c �C u precisely when, for
every simultaneous instantiation of respective opponents x1, . . . , x� of b1, . . . , b�,
this c is a member of every complete coalition over C that further contains
a1, . . . , ak, x1, . . . , x�. The case in which this holds with respect to every leaf of
a certain tree T ∈ T will later be of particular interest.

With the relation �C in place, we can now rephrase Proposition 2 as follows.

Lemma 3. Let a, c ∈ S and let u ∈ S be sorted. If c �C au and c �C uXa, then
c �C u.

Proof. Consider u = [a1, . . . , ak,Xb1 , . . . , Xb�
] and suppose that (i) c �C au and

(ii) c �C uXa. To show that c �C u, let x1 ∈ R(b1), . . . , x� ∈ R(b�). We write
C ′ = C ∪ { a1, . . . , ak, x1, . . . , x� } and need to check that c ∈ Jac(C ′). With
x1, . . . , x� fixed, premise (i) yields c ∈ Jac(C ′, a), while (ii) implies that, for
every x ∈ R(a), c ∈ Jac(C ′, x). Now Proposition 2 implies a ∈ Jac(C ′). 	
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Given a subset C and an element c of S, let us say that a tree T ∈ T
terminates for C in c if c �C sort(u) for every leaf u of T . Intuitively, this is to
say that, along every path of T , no matter how we instantiate indeterminates
Xb that we might encounter with a corresponding opponent x of b, if C ′ is a
complete coalition over C and contains the elements we will have collected at the
leaf, then c is a member of C ′. The idea is now to fold up branchings by inductive
application of Lemma 3, to capture termination by way of the Jacobson radical,
and thus to resolve indeterminacy in the spirit of [33].

The following is the constructive counterpart of Proposition 1 and does not
require that C be a coalition to start with.

Proposition 3. Let C be a subset and c an element of S. The following are
equivalent.

1. c ∈ Jac(C).
2. There is T ∈ T which terminates for C in c.

Proof. If c ∈ Jac(C), then c �C [] by (6), which is to say that [] terminates for
C in c. Conversely, suppose that T ∈ T is such that c �C sort(u) for every leaf
u of T . We argue by induction on T to show that c ∈ Jac(C). The case T = []
is trivial (6). Suppose that T is the result of a branching at a certain leaf u of
an immediate subtree T ′, and suppose further that c �C sort(ua) = a sort(u)
as well as c �C sort(uXa) = sort(u)Xa for a certain a ∈ S. Lemma 3 implies
that c �C sort(u), whence we reduce to T ′, to which the induction hypothesis
applies. 	

Membership in a radical coalition C is thus tantamount to termination.

Remark 3. Very much in the spirit of dynamical algebra [13,21,37,38], every tree
T ∈ T represents the course of a dynamic argument as if a given coalition were
complete. Note that every complete coalition Cm of S gives rise to a path through
a given tree T ∈ T . In fact, at each branching, corresponding to an element a of
S, by way of completeness this a either belongs to Cm or else the latter assigns
a value to Xa in the sense of exhibiting a witness b ∈ Cm for which aRb. The
entries in the terminal node of this path, with values assigned appropriately, then
belong to Cm. In particular, if T terminates in c for a certain subset C ⊆ Cm,
then c ∈ Cm because c ∈ Jac(C) ⊆ Jac(Cm) = Cm by Proposition 3 and the
fact that every complete coalition is radical.

Remark 4. In general it cannot be decided effectively, i.e., without using some
excluded middle, whether, given c ∈ S and C ⊆ S, there is a tree T ∈ T which
terminates for C in c.3 This is due to the constructive character of Proposition 3
and the following Brouwer–style counterexample. Let ϕ be a bounded formula.4

Let S = { 0, 1 } and put

Rϕ = { (0, 1) | ϕ } ∪ { (1, 0) | ϕ }.

3 One of the anonymous referees has kindly drawn our attention to this.
4 A set-theoretic formula ϕ is bounded if only set-bounded quantifiers ∀x ∈ y and

∃x ∈ y occur in ϕ.
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By definition, this relation clearly is irreflexive and symmetric. Consider now the
corresponding Jacobson radical Jac(∅). It is easy to see that

0 ∈ Jac(∅) ⇔ ¬ϕ.

Therefore, if Jac(∅) is detachable, then

¬ϕ ∨ ¬¬ϕ.

This is to say that the Weak Restricted Law of Excluded Middle (WREM) holds.

5 Applications

We will now briefly discuss two instantiations of Proposition 1, concerning max-
imal chains of partially ordered sets and maximal cliques in undirected graphs.
In both cases Proposition 3 provides the corresponding constructive underpin-
ning, which we leave to the reader to spell out in detail. Incidentally, the trick
is to start with a relation R of which only the complement R is the relation one
actually one wants to consider. This clearly fits the concept of coalition we are
employing.

Hausdorff’s Principle

Let (S,�) be a partially ordered set. On S we consider the binary relation R of
incomparability, which is

aRb ≡ a � b ∧ b � a,

and for which R means comparability. Classically, a coalition for R is nothing
but a chain, i.e., a totally ordered subset of S, and the complete coalitions are
the maximal chains. As regards the Jacobson radical in this setting, Proposition
1 applied to the empty chain yields that

{ a ∈ S | (∀b ∈ S)(a � b ∨ b � a) } =
⋂

Comp. (7)

This is a way to rephrase Hausdorff’s maximal chain principle [17]. In fact, if S is
not totally ordered by �, as witnessed by a certain element a of S incomparable
to some b ∈ S, then by (7) and classical logic there is a maximal chain that
avoids a. Incidentally, this application helps to calibrate Proposition 1, which
over classical set theory ZF thus turns out equivalent to AC through Hausdorff’s
principle [18,19,22].

Maximal Cliques

Let G = (V,E) be an undirected graph, V being its set of vertices, E its set of
edges, i.e., E is a set of unordered pairs of elements of V . On the set of vertices
we consider the binary relation R of nonadjacency, which is

aRb ≡ a �= b ∧ { a, b } /∈ E.
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In this setting, classically, a coalition for R is nothing but a clique5 [7], i.e., a
subset of V every two distinct elements of which are adjacent, and the complete
coalitions are the maximal cliques. Concerning the Jacobson radical, Proposi-
tion 1 implies that

{ a ∈ V | (∀b ∈ V )(a �= b → { a, b } ∈ E) } =
⋂

Comp.

Similar to the preceding application, this yields a solution to the problem of
finding a maximal clique with AC.6

6 Conclusion

Hausdorff’s Maximal Chain Principle, a forerunner of Zorn’s Lemma [8,40], is
presumably one of the most well-known order-theoretic forms of the Axiom of
Choice. We have seen that the property of a chain to be maximal can be put as
a completeness criterion, reminiscent of the case in commutative ring theory for
maximal ideals. By analogy with Krull’s Theorem for maximal ideals, employing
a suitably adapted form of Jacobson radical, it has become possible to put a new
variant of Hausdorff’s Principle in terms of a universal statement. This has paved
the way to a constructive, purely syntactic rereading by means of an inductively
defined class of finite binary trees which encode computations along generic
maximal chains. It remains to be seen, however, to what extent in a concrete
setting our method allows to bypass invocations of Hausdorff’s Principle.

Along similar lines, we have carried over the concept of Jacobson radical
from commutative rings to the setting of universal algebra and thus to broaden
considerably the range of applications that our approach has opened up so far
[33,34]. In fact, every single-conclusion entailment relation is accompanied by a
Jacobson radical which in turn encodes a corresponding maximality principle. In
particular, this encompasses the Jacobson radical for distributive lattices [12],
commutative rings [31], as well as for propositional theories [15,16]. We keep
for future research to put all this under computational scrutiny, and to compare
with ours the related methods employed in dynamical algebra [13].
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5 A caveat on terminology: this notion is a priori different from the one used in Bell’s
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Algèbre et Théorie des Nombres, pp. 57–100 (2006)

13. Coste, M., Lombardi, H., Roy, M.F.: Dynamical method in algebra: effective Null-
stellensätze. Ann. Pure Appl. Logic 111(3), 203–256 (2001)

14. Felgner, U.: Untersuchungen über das Zornsche Lemma. Compos. Math. 18, 170–
180 (1967)

15. Fellin, G.: The Jacobson radical: from algebra to logic. Master’s thesis. Università
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