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Abstract. Directed bigraphs are a meta-model which generalises Mil-
ner’s bigraphs by taking into account the request flow between controls
and names. A key problem about these bigraphs is that of bigraph embed-
ding, i.e., finding the embeddings of a bigraph inside a larger one. We
present an algorithm for computing embeddings of directed bigraphs,
via a reduction to a constraint satisfaction problem. We prove sound-
ness and completeness of this algorithm, and provide an implementation
in jLibBig, a general Java library for manipulating bigraphical reactive
systems, together with some experimental results.

1 Introduction

Bigraphical Reactive Systems (BRSs) are a family of graph-based formalisms
introduced as a meta-model for distributed, mobile systems [17,22,25]. In this
approach, system configurations are represented by bigraphs, graph-like data
structures capable of describing at once both the locations and the logical con-
nections of (possibly nested) components. The dynamics of a system is defined
by means of a set of graph rewriting rules, which can replace and change
components’ positions and connections. BRSs have been successfully applied
to the formalization of a wide spectrum of domain-specific models, including
context-aware systems, web-service orchestration languages [4,5,20,28]. BRSs
are appealing because they provide a range of general results and tools, which
can be readily instantiated with the specific model under scrutiny: libraries
for bigraph manipulation (e.g., DBtk [1] and jLibBig [23,24]), simulation tools
[10,19,21], graphical editors [9], model checkers [27], modular composition [26],
stochastic extensions [18], etc.

Along this line, [13,14] introduced directed bigraphs, a strict generalization of
Milner’s bigraphs where the link graph is directed (see Fig. 1). This variant is very
suited for reasoning about dependencies and request flows between components,
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Fig. 1. An example of directed bigraph and its place and link graphs [15].

such as those found in client-server or producer-consumer scenarios. In fact, they
have been used to design formal models of security protocols [12], molecular
biology [2], access control [15], container-based systems [5], etc.

A key notion at the core of these results and tools is that of bigraph embedding.
Informally, an embedding is a structure preserving map from a bigraph (called
guest) to another one (called host), akin a subgraph isomorphism. Finding such
embeddings is a difficult problem; in fact, the sole embedding of place graphs
has been proved to be NP-complete [3]. Several algorithms have been proposed
in literature for bigraphs with undirected links (see e.g. [7,11,23,29,30]), but
there is no embedding algorithm for the more general case of directed bigraphs,
yet.

In this work, we propose an algorithm for computing embedding of directed
bigraphs (which subsume traditional ones), laying the theoretical and technical
foundations for bringing directed bigraphs to tools like the ones listed above.

More precisely, in Sect. 2 we first introduce directed bigraphs and bigraphic
reactive systems, generalizing [5,13]. Then, the notion of directed bigraph embed-
ding is defined in Sect. 3. In Sect. 4 we present a reduction of the embedding prob-
lem for directed bigraphs to a constraint satisfaction problem (CSP) and show
that it provides a sound and complete algorithm for computing embeddings.
This reduction extends our previous (unpublished) work [23] on the embedding
problem for undirected bigraphs. We have implemented this algorithm as an
extension of jLibBig [24], a general Java library for BRSs; this implementation
and some experimental results are reported in Sect. 5. Finally, some conclusions
and directions for future work are drawn in Sect. 6.

2 Reactive Systems on Directed Bigraphs

In this section we introduce a conservative extension of the notions of directed
link graphs and bigraphs, and directed bigraphical reactive systems, originally
defined in [13,14].

2.1 Directed Bigraphs

Definition 1 (Polarized interface). A polarized interface X is a pair
(X−,X+), where X+ and X− are sets of names s.t. X− ∩X+ = ∅; the two sets
are called downward and upward interfaces respectively.

http://mads.uniud.it/downloads/libbig/
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Definition 2 (Polarized signature). A signature is a pair (K, ar), where K
is the set of controls, and ar : K → N × N is a map assigning to each control
its polarized arity, that is, a pair 〈n,m〉 where n,m are the numbers of positive
and negative ports of the control, respectively.

We define ar+, ar− : K → N as shorthand for the positive and negative ports
of controls: ar+ � π1 ◦ ar, ar− � π2 ◦ ar.

The main difference between this definition and that from [13] is that we
allow also for inward ports in controls, whereas in [13], like in [25], controls
have only outward ports. This turns up also in the definition of points and
handles. The addition of negative ports enables us to represent more faithfully
the dependencies between processes, entities and components, according to the
micro-services paradigm.

Definition 3 (Directed Link Graph). A directed link graph A : X → Y is a
quadruple A = (V,E, ctrl, link) where X,Y, V,E and ctrl are defined as before,
while the link map is defined as link : Pnt(A) → Lnk(A) where

Prt+(A) �
∑

v∈V

ar+(ctrl(v)) Prt−(A) �
∑

v∈V

ar−(ctrl(v))

Pnt(A) � X+ � Y − � Prt+(A) Lnk(A) � X− � Y + � E � Prt−(A)

with the following additional constraints:

∀x ∈ X−,∀y ∈ X+.link(y) = x ⇒ link−1(x) = {y} (1)

∀y ∈ Y +,∀x ∈ Y −.link(x) = y ⇒ link−1(y) = {x}. (2)

The elements of Pnt(A) are called the points of A; the elements of Lnk(A) are
called the handles of A.

The constraint (1) means that if there is an upward inner name connected to
a downward inner name, then nothing else can be connected to the latter; con-
straint (2) is similar, on the outer interface. Together, these requirements guaran-
tee that composition of link graphs (along the correct interfaces) is well defined.

Direct link graphs are graphically depicted similarly to ordinary link graphs,
with the difference that edges are represented as vertices of the graph and not
as hyper-arcs connecting points and names.

Directed bigraphs are composed by a directed link graph and a place graph.
Since the definition of place graph is the same as for pure bigraphs, we will omit
it and refer the interested reader to [25].

Definition 4 (Directed Bigraph). An interface I = 〈m,X〉 is composed by
a finite ordinal m, called the width, and by a directed interface X = (X−,X+).

Let I = 〈m,X〉 and O = 〈n, Y 〉 be two interfaces; a directed bigraph with
signature K from I to O is a tuple G = (V,E, ctrl, prnt, link) : I → O where

– I and O are the inner and outer interfaces;
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– V and E are the sets of nodes and edges;
– ctrl, prnt, link are the control, parent and link maps;

such that GL � (V,E, ctrl, link) : X → Y is a directed link graph and GP �
(V, ctrl, prnt) : m → n is a place graph, that is, the map prnt : m � V → n � V
is acyclic. The bigraph G is denoted also as 〈GP , GL〉.
Definition 5 (Composition and identities).

– The composition of two place graphs F : k → m and G : m → n, is defined
in the same way as pure bigraphs (i.e., suitable grafting of forests);

– If F : X → Y and G : Y → Z are two link graphs, their composition is
the link graph G ◦ F � (V,E, ctrl, link) : X → Z such that V = VF � VG,
E = EF � EG, ctrl = ctrlF � ctrlG, and link : Pnt(G ◦ F ) → Lnk(G ◦ F ) is
defined as follows:

Pnt(G ◦ F ) = X+ � Z− � Prt+(F ) � Prt+(G)

Lnk(G ◦ F ) = X− � Z+ � Prt−(F ) � Prt−(G) � E

link(p) �
{

prelink(p) if prelink(p) ∈ Lnk(G ◦ F )
link(prelink(p)) otherwise

where prelink : Pnt(G ◦ F ) � Y + � Y − → Lnk(G ◦ F ) � Y + is linkF � linkG.
The identity link graph at X is idX � (∅, ∅, ∅K, IdX−�X+) : X → X.

– If F : I → J and G : J → K are two bigraphs, their composite is

G ◦ F � 〈GP ◦ FP , GL ◦ FL〉 : I → K

and the identity bigraph at I = 〈m,X〉 is 〈idm, idX−�X+〉.
Definition 6 (Juxtaposition).

– For place graphs, the juxtaposition of two interfaces m0 and m1 is m0 + m1;
the unit is 0. If Fi = (Vi, ctrli, prnti) : mi → ni are disjoint place graphs
(with i = 0, 1), their juxtaposition is defined as for pure bigraphs;

– For link graphs, the juxtaposition of two (directed) link graph interfaces X0

and X1 is (X−
0 � X−

1 ,X+
0 � X+

1 ). If Fi = (Vi, Ei, ctrli, linki) : Xi → Yi are
two link graphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � (V0 � V1, E0 � E1, ctrl0 � ctrl1, link0 � link1) : X0 ⊗ X1 → Y0 ⊗ Y1

– For bigraphs, the juxtaposition of two interfaces Ii = 〈mi,Xi〉 (with i = 0, 1)
is 〈m0+m1, (X−

0 �X−
1 ,X+

0 �X+
1 )〉 (the unit is ε = 〈0, (∅, ∅)〉). If Fi : Ii → Ji

are two bigraphs (with i = 0, 1), their juxtaposition is

F0 ⊗ F1 � 〈FP
0 ⊗ FP

1 , FL
0 ⊗ FL

1 〉 : I0 ⊗ I1 → J0 ⊗ J1.
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Polarized interfaces and directed bigraphs over a given signature K form a
monoidal category DBig(K).

Milner’s pure bigraphs [25] correspond precisely to directed bigraphs with
positive interfaces only and over signatures with only positive ports. We observe
also that the introduction of negative ports is more important than adding direc-
tions to interfaces: directed bigraphs as per [13] can be obtained as a traced
category over the category of pure bigraphs, while we cannot properly represent
controls with negative ports using those with positive ports only.

2.2 Reactive Systems over Directed Bigraphs

In order to define reactive systems over bigraphs, we need to define how a para-
metric reaction rule (i.e., a pair of “redex-reactum” bigraphs) can be instan-
tiated. Essentially, in the application of the rule, the “sites” of the reactum
must be filled with the parameters appearing in the redex. This relation can be
expressed by specifying an instantiation map in the rule.

Definition 7 (Instantiation map). An instantiation map η::〈m,X〉 →
〈m′,X ′〉 is a pair η = (ηP , ηL) where

– ηP : m′ → m is a function which maps sites of the reactum to sites of the
redex; for each j ∈ m′, it determines that the j-th site of the reactum is filled
with the η(j)-th parameter of the redex.

– ηL :
(∑m′−1

i=0 X
)

→ X ′ is a wiring (i.e., a link graph without nodes nor
edges), which is responsible for mapping names of the redex to names of the
reactum. This can be described as a pair of functions ηL = (η+, η−) where
η+ :

(∑m′−1
i=0 X+

)
→ X ′+ and η− : X ′− → ∑m′−1

j=0 X−.

We can now define the dynamics of directed bigraphs, starting with the formal
definition of parametric reaction rules.

Definition 8 (Parametric reaction rule). A parametric reaction rule for
bigraphs is a triple of the form (R : I → J,R′ : I ′ → J, η :: I → I ′) where R is
the parametric redex, R′ the parametric reactum and η is an instantiation map.

We can now define the key notion of reactive systems over directed bigraphs,
which is a generalization of that in [14,25]. Let Ag(K) be the set of agents (i.e.,
bigraphs with no inner names nor sites) over a signature K.

Definition 9 (DBRS). A directed bigraphical reactive system DBG(K,R) is
defined by a signature K and a set R of rewriting rules.

A DBRS DBG(K,R) induces a rewriting relation �⊆ Ag(K) × Ag(K)
according to the following rule:

(RL, RR, η) ∈ R
A = C ◦ (RL ⊗ IdZ) ◦ ω ◦ (D0 ⊗ . . . ⊗ Dm−1)

A′ = C ◦ (RR ⊗ IdZ) ◦ ω′ ◦ (DηP (0) ⊗ . . . ⊗ DηP (m′−1))
A � A′
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where ω and ω′ are called wiring maps and are defined as follows:

ω :
m−1∑

i=0

Xi → X ⊕ Z ω′ :
m′−1∑

j=0

XηP (j) → X ′ ⊕ Z

ω+ :
m−1∑

i=0

X+
i → X+ � Z+ ω′+ :

m′−1∑

j=0

X+
ηP (j)

→ X ′+ � Z+

ω− : X− � Z− →
m−1∑

i=0

X−
i ω′− : X ′− � Z− →

m′−1∑

j=0

X−
ηP (j)

ω′+(j, x) �
{

η+(j, ω+(η(j), x)) if ω+(ηP (j), x) ∈ X+

ω+(ηP (j), x) if ω+(η(j), x) ∈ Z+

ω′−(x) � (j, y) for j ∈ ηP −1
(i) and (i, y) ∈ η−(x)

The difference with respect to the previous versions of BRS is that now
links can descend from the redex (and reactum) into the parameters, as it is
evident from the fact that redexes and reactums in rules may have generic inner
interfaces (I and I ′). This is very useful for representing a request flow which
goes “downwards”, e.g. connecting a port of a control in the redex to a port of
an inner component (think of, e.g., a linked library).

However, this poses some issues when the rules are not linear. If any of Di’s is
cancelled by the rewriting, the controls in it disappear as well, and we may be not
able to connect some name descending from RL or IdZ anymore. More formally,
this means that the map ω− can be defined only if for every x ∈ (X ′− � Z−)
there are j, y such that (ηP (j), y) = η−(x). We can have two cases:

1. for some x, there are no such j, y. This means that ω is not defined and hence
the rule cannot be applied.

2. for each x, there are one or more pairs (j, y) such that (ηP (j), y) = η−(x).
This means that for a given source agent decomposition, there can be several
ways to define ω−, each yielding a different application of the same rule.

Overall, the presence of downward names in parameters adds a new degree of
non-determinism to Directed BRSs, with respect to previous versions of BRSs.

3 Directed Bigraph Embeddings

As we have seen in the previous section, to execute or simulate a BRS it is
necessary to solve the bigraph matching problem, that is, finding the occurrences
of a redex R within a given bigraph A. More formally, this translates to finding
C,Z, ω and D = (D0 ⊗ . . . ⊗ Dm−1) such that A = C ◦ (R ⊗ IdZ) ◦ ω ◦ D. C and
D are called context and parameter, respectively.
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If we abstract from the decomposition of the agent A in context, redex and
parameter we can see how the matching problem is related to the subgraph
isomorphism problem. Therefore, in this section we define the notions of directed
bigraph embedding. The following definitions are taken from [16], modified to suit
the definition of directed bigraphs.

Directed Link Graph. Intuitively an embedding of link graphs is a structure
preserving map from one link graph (the guest) to another (the host). As one
would expect from a graph embedding, this map contains a pair of injections: one
for the nodes and one for the edges (i.e., a support translation). The remaining of
the embedding map specifies how names of the inner and outer interfaces should
be mapped into the host link graph. Outer names can be mapped to any link;
here injectivity is not required since a context can alias outer names. Dually,
inner names can be mapped to hyper-edges linking sets of points in the host link
graph and such that every point is contained in at most one of these sets.

Definition 10 (Directed link graph embedding). Let G : XG → YG and
H : XH → YH be two directed link graphs. A directed link graph embedding
φ : G ↪→ H is a map φ � φv � φe � φi � φo, assigning nodes, edges, inner and
outer names with the following constraints:

(L1) φv : VG � VH and φe : EG � EH are injective;
(L2) ctrlG = ctrlH ◦ φv;
(L3) φi : Y −

H � X+
H � P+

H ⇀ X+
G � Y −

G � P+
G defined as follows

φi(x) �
{

φi−
(x) if x ∈ Y −

H � P+
H

φi+(x) if x ∈ X+
H � P+

H

where
φi−

: Y −
H � P+

H ⇀ Y −
G � P+

G

φi+ : X+
H � P+

H ⇀ X+
G � P+

G

dom(φi+) ∩ dom(φi−
) = ∅

(L4) φo : X−
G � Y +

G ⇀ EH � X−
H � Y +

H � P−
H is a partial map s.t.:

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

where
φo−

: X−
G ⇀ EH � X−

H � P−
H

φo+
: Y +

G ⇀ EH � Y +
H � P−

H

(L5a) img(φe) ∩ img(φo) = ∅;
(L5b) ∀v ∈ VG,∀j ∈ ar(ctrl(v)) . φi((φv(v), j)) = ⊥;
(L6a) φp ◦ link−1

G |EG
= link−1

H ◦ φe;
(L6b) ∀v ∈ VG,∀i ∈ ar(ctrl(v)) . φp ◦ link−1

G ((v, i)) = link−1
H ◦ φport((v, i));

(L7) ∀p ∈ dom(φi) : linkH(p) = (φo � φe)(linkG ◦ φi(p)).

where φp � φi+ � φo− � φport and φport : PG � PH is φport(v, i) � (φv(v), i).

The first three conditions are on the single sub-maps of the embedding. Con-
ditions (L5a) and (L5b) ensures that no components (except for outer names)
are identified; condition (L6a) imposes that points connected by the image of
an edge are all covered. Finally, conditions (L2), (L6b) and (L7) ensure that the
guest structure is preserved i.e. node controls and point linkings are preserved.
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Place Graph. Like link graph embeddings, place graph embeddings are just a
structure preserving injective map from nodes along with suitable maps for the
inner and outer interfaces. In particular, a site is mapped to the set of sites and
nodes that are “put under it” and a root is mapped to the host root or node that
is “put over it” splitting the host place graphs in three parts: the guest image,
the context and the parameter (which are above and below the guest image).

Definition 11 (Place graph embedding [16, Def 7.5.4]). Let G : nG → mG

and H : nH → mH be two place graphs. A place graph embedding φ : G ↪→ H is
a map φ � φv � φs � φr (assigning nodes, sites and roots respectively) such that:

(P1) φv : VG � VH is injective;
(P2) φs : nG � ℘(nH � VH) is fully injective;
(P3) φr : mG → VH � mH in an arbitrary map;
(P4) img(φv) ∩ img(φr) = ∅ and img(φv) ∩ ⋃

img(φs) = ∅;
(P5) ∀r ∈ mG : ∀s ∈ nG : prnt∗H ◦ φr(r) ∩ φs(s) = ∅;
(P6) φc ◦ prnt−1

G

∣∣
VG

= prnt−1
H ◦ φv;

(P7) ctrlG = ctrlH ◦ φv;
(P8) ∀c ∈ nG � VG : ∀c′ ∈ φc(c) : (φf ◦ prntG)(c) = prntH(c′);

where prnt∗H(c) =
⋃

i<ω prnti(c), φf � φv � φr, and φc � φv � φs.

These conditions follow the structure of Definition 10, the main difference is
(P5) which states that the image of a root cannot be the descendant of the image
of another. Conditions (P1), (P2) and (P3) are on the three sub-maps composing
the embedding; (P4) and (P5) ensure that no components are identified; (P6)
imposes surjectivity on children and the last two conditions require the guest
structure to be preserved by the embedding.

Directed Bigraph. Finally, a directed bigraph embedding can be defined as a pair
composed by an directed link graph embedding and a place graph embedding,
with a consistent interplay of these two structures. The interplay is captured by
two additional conditions ensuring that points (resp. handles) in the image of
guest upward (resp. downward) inner names reside in some parameter defined
by the place graph embedding (i.e. descends from the image of a site).

Definition 12 (Directed bigraph embedding). Let G : 〈nG,XG〉 →
〈mG, YG〉 and H : 〈nH ,XH〉 → 〈mH , YH〉 be two directed bigraphs. A directed
bigraph embedding is a map φ : G ↪→ H given by a place graph embedding
φP : GP ↪→ HP and a link graph embedding φL : GL ↪→ HL subject to the
following constraints:

(B1) dom(φi+) ⊆ X+
H � {(v, i)∈P+

H | ∃s ∈ nG, k ∈ N : prntkH(v) ∈ φs(s)};
(B2) img(φo−

) ⊆ X−
H � {(v, i)∈P−

H | ∃s ∈ nG, k ∈ N : prntkH(v) ∈ φs(s)}.
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4 Implementing the Embedding Problem in CSP

In this Section we present a constraint satisfaction problem that models the
directed bigraph embedding problem. The encoding is based solely on integer
linear constraints and is proven to be sound and complete.

Initially, we present the encoding for the directed link graph embedding prob-
lem and for the place graph embedding problem. Then we combine them pro-
viding some additional “gluing constraints” to ensure the consistency of the two
sub-problems. The resulting encoding contains 37 constraint families (reflecting
the complexity of the problem definition, see Sect. 3); hence we take advantage
of the orthogonality of link and place structures for the sake of both exposition
and adequacy proofs. We observe that the overall number of variables and con-
straints produced by the encoding is polynomially bounded with respect to the
size of the involved bigraphs, i.e., the number of nodes and edges.

4.1 Directed Link Graphs

Let us fix the guest and host bigraphs G : XG → YG and H : XH → YH . We
characterize the embeddings of G into H as the solutions of a suitable multi-flux
problem which we denote as DLGE[G,H]. The main idea is to see the host
points (i.e. positive ports, upward inner names and downward outer names) as
sources, and the handles (i.e. edges, negative ports, upward outer names and
downward inner names) as sinks (see Fig. 2). Each point outputs a flux unit
and each handle inputs one unit for each point it links. Units flow towards
each point handle following H edges and optionally taking a “detour” along the
linking structure of the guest G (provided that some conditions about structure
preservation are met). The formal definition of the flux problem is in Fig. 3.

The flux network reflects the linking structure and contains an edge connect-
ing each point to its handle; these edges have an integer capacity limited to 1 and

Network variables

Guest linking

Host points Host handles

Guest points Guest handles

Fig. 2. Schema of the multi-flux network encoding.
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Nh,h′ ∈ {0, . . . , |link−1
H (h′)|} h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H

(3)

Np,h′ ∈ {0, 1} h′ ∈ EH � Y +
H � X−

H � P −
H ,

p ∈ link−1
H (h′)

(4)

Np,p′ ∈ {0, 1} p′ ∈ X+
G � P+

G � Y −
G ,

p ∈ X+
H � P+

H � Y −
H

(5)

Fh,h′ ∈ {0, 1} h ∈ EG � Y +
G � X−

G � P −
G ,

h′ ∈ EH � Y +
H � X−

H � P −
H

(6)

∑

k

Np,k = 1 p ∈ X+
H � P+

H � Y −
H (7)

∑

k

Nk,h = |link−1
H (h)| h ∈ EH � Y +

H � X−
H � P −

H (8)

∑

k

Nh,k =
∑

p∈link−1
G

(h)

∑

k

Nk,p h ∈ EG � Y +
G � X−

G � P −
G (9)

∑

k

Nk,p ≤ 1 p ∈ X+
G � P+

G � Y −
G (10)

Np,p′ = 0 p′ ∈ P+
G , p ∈ X+

H � Y −
H (11)

Nh,h′

|link−1
H (h′)| ≤ Fh,h′ ≤ Nh,h′

h ∈ EG � Y +
G � X−

G � P −
G ,

h′ ∈ EH � Y +
H � X−

H � P −
H ,

link−1
G (h) �= ∅, link−1

H (h′) �= ∅

(12)

Np,p′ ≤ Fh,h′
h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H ,
p ∈ link−1

G (h), p′ ∈ link−1
H (h′)

(13)

Fh,h′ ≤
∑

p∈link−1
G

(h)

p′∈link−1
H

(h′)

Np,p′
h ∈ EG � Y +

G � X−
G � P −

G ,
h′ ∈ EH � Y +

H � X−
H � P −

H ,
link−1

G (h) �= ∅, link−1
H (h′) �= ∅

(14)

∑

k

Fh,k = 1 h ∈ EG � Y +
G � X−

G � P −
G (15)

Np,h′ + Fh,h′ ≤ 1
h ∈ EG, h′ ∈ EH � Y +

H � X−
H � P −

H ,
p ∈ link−1

H (h′)
(16)

Fh,h′ + Fh′′,h′ + Fh′′′,h′ + Fh′v,h′ ≤ 1
h ∈ EG, h′ ∈ Y +

H � X−
H � P −

H ,
h′′ ∈ Y +

G , h′′′ ∈ X−
G , h′v ∈ P −

G

(17)

Fh,h′ = 0 h ∈ EG, h′ ∈ Y +
H � X−

H � P −
H (18)

Fh,h′ ≤ 1 h ∈ EG � Y +
G � X−

G � P −
G , h′ ∈ EH (19)

Np,p′ = 0

v ∈ VG, v′ ∈ VH ,
ctrlG(v) = ctrlH(v) = c, i �= i′ ≤ c,
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(20)

Np,p′ = 0

v ∈ VG, v′ ∈ VH ,
ctrlG(v) �= ctrlH(v)
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(21)

∑

j≤c

N(v,j),(v′,j) = c · Np,p′

v ∈ VG, v′ ∈ VH ,
ctrlG(v) = ctrlH(v) = c, i ≤ c,
p = (v, i) ∈ P+

G � P −
G ,

p′ = (v′, i′) ∈ P+
H � P −

H

(22)

Np,p′ = 0 p ∈ P+
H , p′ ∈ X+

G � Y −
G (23)

Fig. 3. Constraints of DLGE[G,H].
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are represented by the variables defined in (4). The remaining edges of the net-
work are organised in two complete biparted graphs: one between guest and host
handles and one between guest and host points. Edges of the first sub-network
are described by the variables in (3) and their capacity is bounded by the number
of points linked by the host handle since this is the maximum acceptable flux
and corresponds to the case where each point passes through the same hyper-
edge of the guest link graph. Edges of the second sub-network are described by
the variables in (5) and, like the first group of links, have their capacity limited
to 1; to be precise, some of these variables will never assume a value different
from 0 because guest points can receive flux from anything but the host ports
(as expressed by constraint (11)). Edges for the link structure of the guest are
presented implicitly in the flux preservation constraints (see constraint (9)). In
order to fulfil the injectivity conditions of link embeddings, some additional flux
variables (whereas the previous are network variables) are defined by (6). These
are used to keep track and separate each flux on the bases of the points handle.

The constraint families (7) and (8) define the outgoing and ingoing flux of
host points and handles respectively. The former has to send exactly one unit
considering every edge they are involved with and the latter receive one unit for
each of their point regardless if this unit comes from the point directly or from
a handle of the guest.

The linking structure of the guest graph is encoded by the constraint family
(9) which states that flux is preserved while passing through the guest i.e. the
output of each handle has to match the overall input of the points it connects.

Constraints (10), (11), (20), (21), (22) and (23) shape the flux in the sub-
network linking guest and host points. Specifically, (10) requires that each point
from the guest receives at most one unit; this is needed when we want to be
able to embed a redex where some points (e.g. upward inner names) would not
match with an entity of the agent and (those points) would be deleted anyway
when composing the resulting agent back. Constraints (11), (20) and (21) disable
edges between guest ports and host inner names, between mismatching ports
of matching nodes and between ports of mismatching nodes. Constraint (23)
ensures that ascending inner names or descending outer names of the redex are
not matched with positive ports of the agent. Finally, the flux of ports of the
same node has to act compactly, as expressed by (22): if there is flux between
the i-th ports of two nodes, then there should be flux between every other ports.

Constraints (12), (13) and (14) relate flux and network variables ensuring
that the formers assume a true value if, and only, if there is actual flux between
the corresponding guest and host handles. In particular, (13) propagates the
information about the absence of flux between handles disabling the sub-network
linking handles points and, vice versa, (14) propagates the information in the
other way disabling flux between handles if there is no flux between their points.

The remaining constraints prevent fluxes from mixing. Constraint (15)
requires guest handles to send their output to exactly one destination thus ren-
dering the sub-network between handles a function assigning guest handles to
host handles. This mapping is subject to some additional conditions when edges
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are involved: (18) and (19) ensure that the edges are injectively mapped to edges
only, (17) forbids host outer names to receive flux from an edge and an outer
name at the same time. Finally, (16) states that the output of host points cannot
bypass the guest if there is flux between its handle and an edge from the guest.

Adequacy. Let N be a solution of DLGE[G,H]. The corresponding link graph
embedding φ : G ↪→ H is defined as follows:

φv(v) � v′ ∈ VH if ∃i : N(v,i),(v′,i) = 1 φe(e) � e′ ∈ EH if Fe,e′ = 1

φi(x) �
{

φi−
(x) if x ∈ Y −

H � P+
H

φi+(x) if x ∈ X+
H � P+

H

φo(y) �
{

φo−
(y) if y ∈ X−

G

φo+
(y) if y ∈ Y +

G

where

φo−
(y) � y′ ∈ X−

H � P−
H if Fy,y′ = 1 φo+

(y) � y′ ∈ Y +
H � P−

H if Fy,y′ = 1,

φi−
(x) � x′ ∈ Y −

G � P+
G if Nx,x′ = 1, φi+(x) � x′ ∈ X+

G � P+
G if Nx,x′ = 1

and dom(φi+) ∩ dom(φi−
) = ∅.

It is easy to check that these components of φ are well-defined and compliant
with Definition 10.

On the other way around, let φ : G ↪→ H be a link graph embedding. The
corresponding solution N of DLGE[G,H] is defined as follows:

Np,p′ �

⎧
⎪⎨

⎪⎩

1 if p ∈ X+
H � Y −

H ∧ p′ = φi(p)
1 if p′ = (v, i) ∈ P+

G ∧ p = (φv(v), i)
0 otherwise

Np,h′ �
{

1 if h′ = linkH(p) ∧ �p′ : Np,p′ = 1
0 otherwise

Nh,h′ �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if h′ ∈ EH ∧ h ∈ EG ∧ h′ = φe(h)
1 if h′ ∈ Y +

H � X−
H ∧ h ∈ Y +

G � X−
G ∧ h′ = φo(h)

1 if h = (v, i) ∈ P−
G ∧ h′ = (φv(v), i)

0 otherwise

Fh,h′ = 1
�⇐==⇒ Nh,h′ �= 0

Every constraint of DLGE[G,H] is satisfied by the solution just defined.
The constraint satisfaction problem in Fig. 3 is sound and complete with

respect to the directed link graph embedding problem given in Definition 10.

Proposition 1 (Adequacy of DLGE). For any two concrete directed link
graphs G and H, there is a bijective correspondence between the directed link
graph embeddings of G into H and the solutions of DLGE[G,H].
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4.2 Place Graphs

Let us fix the guest and host place graphs: G : nG → mG and H : nH → mH .
We characterize the embeddings of G into H as the solutions of the constraint
satisfaction problem in Fig. 4. The problem is a direct encoding of Definition 11
as a matching problem presented, as usual, as a bipartite graph. Sites, nodes and
roots of the two place graphs are represented as nodes and partitioned into the
guest and the host ones. For convenience of exposition, the graph is complete.

Mh,g ∈ {0, 1} g ∈ nG � VG � mG,
h ∈ nH � VH � mH

(24)

Mh,g = 0 g ∈ nG � VG, h ∈ mH (25)

Mh,g = 0 g ∈ VG � mG, h ∈ nH (26)

Mh,g = 0
g ∈ VG, h ∈ VH ,
ctrlG(g) �= ctrlH(h) (27)

Mh,g = 0
g ∈ mG, h /∈ mH ,
v ∈ prnt∗

H(h) ∩ VG,
ctrlG(v) /∈ Σa

(28)

Mh,g ≤ Mh′,g′
g /∈ mG, g′ ∈ prntG(g),
h /∈ mH , h′ ∈ prntH(h) (29)

∑

h∈VH�mH

Mh,g = 1 g ∈ mG (30)

∑

h∈nH�VH

Mh,g = 1 g ∈ VG (31)

mG ·
∑

g∈nG�VG

Mh,g +
∑

g∈mG

Mh,g ≤ mG h ∈ VH (32)

|prnt−1
H (h)| · Mh,g ≤

∑

h′∈prnt−1
H

(h),

g′∈prnt−1
G

(g)

Mh′,g′ g ∈ VG, h ∈ VH (33)

|prnt−1
G (g) \ nG| · Mh,g ≤

∑

h′∈prnt−1
H

(h)\nh,

g′∈prnt−1
G

(g)\ng

Mh′,g′ g ∈ mG, h ∈ VH (34)

Mh,g +
∑

h′∈prnt∗H (h),g′∈mG

Mh′,g′ ≤ 1 g ∈ VG, h ∈ VH (35)

Fig. 4. Constraints of PGE[G,H].

Edges are modelled by the boolean variables defined in (24); these are the only
variables used by the problem. So far, a solution is nothing more than a relation
between the components of guest and host containing only those pairs connected
by an edge assigned a non-zero value. To capture exactly those assignments that
are actual place graph embeddings some conditions have to be imposed.
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Constraints (25) and (26) prevent roots and sites from the host to be matched
with nodes or sites and nodes or roots respectively. (27) disables matching
between nodes decorated with different controls. Constraint (28) prevents any
matching for host nodes under a passive context (i.e. have an ancestor labelled
with a passive control). (29) propagates the matching along the parent map from
children to parents. Constraints (30) and (31) ensure that the matching is a func-
tion when restricted to guest nodes and roots (the codomain restriction follows
by (25) and (26)). (32) says that if a node from the host cannot be matched
with a root or a node/site from the guest at the same time; moreover, if the host
node is matched with a node then it cannot be matched to anything else.

The remaining constraints are the counterpart of (29) and propagate match-
ings from parents to children. (33) applies to matchings between nodes and says
that if parents are matched, then children from the host node are covered by
children from the guest node. In particular, the matching is a perfect assignment
when restricted to guest children that are nodes (because of (32)) and is a sur-
jection on those that are sites. (34) imposes a similar condition on matchings
between guest roots and host nodes. Specifically, it says that the matching has
to cover child nodes from the guest (moreover, it is injective on them) leaving
child sites to match whatever remains ranging from nothing to all unmatched
children. Finally, (35) prevents matching from happening inside a parameter.

Adequacy. Let M be a solution of PGE[G,H]. The corresponding place graph
embedding φ : G ↪→ H is defined as follows:

φv(g) � h ∈ VH if ∃i : Mh,g = 1 φs(g) � {h ∈ nh � VH | Mh,g = 1}
φr(g) � h ∈ mH � VH if Mh,g = 1

These components of φ are well-defined and compliant with Definition 11.
On the opposite direction, let φ : G ↪→ H be a place graph embedding. The
corresponding solution M of PGE[G,H] is defined as aside. It is easy to check
that every constraint of PGE[G,H] is satisfied by this solution. Hence, the
constraint satisfaction problem in Fig. 4 is sound and complete with respect to
the place graph embedding problem (Definition 11).

Mh,g �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if g ∈ VG ∧ h = φv(g)
1 if g ∈ mG ∧ h = φr(g)
1 if g ∈ nG ∧ h ∈ φs(g)
0 otherwise

Proposition 2 (Adequacy of PGE). For any two concrete place graphs G
and H, there is a bijective correspondence between the place graph embeddings
of G into H and the solutions of PGE[G,H].

4.3 Bigraphs

Let G : 〈nG,XG〉 → 〈mG, YG〉 and H : 〈nH ,XH〉 → 〈mH , YH〉 be two bigraphs.
By taking advantage of the orthogonality of the link and place structures we
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Mv,v′ = Np,p′
v ∈ VH , v′ ∈ VG,
p = (v, k) ∈ P+

H , p′ = (v′, k) ∈ P+
G

(36)

Mv,v′ = Fh,h′ v ∈ VH , v′ ∈ VG, h ∈ P −
G , h′ ∈ P −

H (37)
∑

p′∈X+
G

Np,p′ ≤
∑

h∈prnt∗H (v),g∈nG

Mh,g v ∈ VH , p = (v, k) ∈ P+
H (38)

∑

h∈X−
G

Fh,h′ ≤
∑

h∈prnt∗H (v),g∈nG

Mh,g v ∈ VH , h′ = (v, k) ∈ P −
H (39)

Fig. 5. Constraints of DBGE[G,H].

can define the constraint satisfaction problem capturing bigraph embeddings
by simply composing the constraints given above for the link and place graph
embeddings and by adding four consistency constraints to relate the solutions of
the two problems. These additional constraint families are reported in Fig. 5. The
families (36) and (37) ensure that solutions for DLGE[G,H] and PGE[G,H]
agree on nodes since the map φv has to be shared by the corresponding link and
place embeddings. The families (38) and (39) respectively, ensure that positive
ports (negative ports resp.) are in the same image as upward inner names (down-
ward inner names resp.) only if their node is part of the parameter i.e. only if it
is matched to a site from the guest or it descends from a node that is so.

Conditions (38) and (39) correspond exactly to (B1) and (B2). It thus follows
from Propositions 1 and 2 that the CSP defined by Figs. 3 to 5 is sound and
complete with respect to the bigraph embedding problem given in Definition 12.

Theorem 1 (Adequacy of BGE). For any two concrete bigraphs G and H,
there is a bijective correspondence between the bigraph embeddings of G into H
and the solutions of DBGE[G,H].

5 Experimental Results

The reduction algorithm presented in the previous section has been successfully
integrated into jLibBig, an extensible Java library for manipulating bigraphs and
bigraphical reactive systems which can be used for implementing a wide range
of tools and it can be adapted to support several extensions of bigraphs [24].

The proposed algorithm is implemented by extending the data structures
and the models for pure bigraphs to suit our definition of directed bigraphs.

In this section we test our implementation by simulating a system in which
we want to track the position and the movements of a fleet of vehicles inside a
territory divided in “zones”, which are accessible via “roads”. The rewriting rule
in question and an example agent can be found in Fig. 6.

We evaluate the running time of the different components of our algorithm:
model construction, CSP resolution, building of the actual embedding and execu-
tion of the rewriting rule. Moreover, we want to evaluate how these performances
scale while increasing the size of the agent. The parameters used to build the

http://mads.uniud.it/downloads/libbig/
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Fig. 6. Rewriting rule (left) and example of an agent (right) for the test cases.

tests are: number of zones, number of cars and “connectivity degree”. The last
parameter is a number between 1 and 100 representing the probability of the
existence of a connection between two nodes; a value of 100 means that every
node is connected to all its neighbours.

Fig. 7. Execution times vs. number of
zones, 70 cars and 100% connectivity.

Fig. 8. Execution times vs. connectiv-
ity, 11 × 11 grid and 70 cars.

We consider the following kinds of tests:

1. varying number of zones, with fixed number of cars and connectivity degree;
2. varying connectivity degree, with fixed numbers of zones and cars.

Each test case is made up of four groups of instances, where for each group we
choose an increasing value for their fixed parameters. For each group we choose
ten values for its variable parameter. The instances generation works as follows:
for each test case and for each group of that particular test case we generate
ten random instances for each combination of the values of the fixed parameters
and the variable one. We then take the average of the running times of those ten
random instances. At the end of the process, for each group we have tested 100
instances, 10 for each value of the variable parameter, so 400 instances for each
test case and 1200 in total.

All tests have been performed on an Intel Core i7-4710HQ (4 cores at
3.5 GHz), 8 GB of RAM running on ArchLinux with kernel 5.5.2 and using
OpenJDK 12.

We briefly review the results obtained from these tests and refer to the com-
panion technical report [6] for more details.
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Time vs. Number of Zones. In this case we evaluate how our implementation
scales with an increasing number of zones; see Fig. 7. We can see that the run-
ning time grows exponentially, especially the resolution time. Similarly to the
previous test case, the time spent building the CSP and applying the reaction
rule is negligible even though we can see that the time necessary to build the
CSP increases linearly with the grid size. We can also observe that there is no
correlation between the rewriting time and the number of zones.

Time vs. Connectivity Degree. In this case we evaluate how our implementation
scales with an increasing connectivity degree; see Fig. 8. We can see that the
running time scales exponentially, no matter the grid size or the number of cars.
Once again, we see that although increasing, the time spent building the model
and applying the rewriting rule is negligible.

6 Conclusions and Future Works

In this paper, we have presented a new version of directed bigraphs and bigraphic
reactive systems, which subsume previous versions (such as Milner’s bigraphs).
For this kind of bigraphs we have provided a sound and complete algorithm for
solving the embedding problem, based on a constraint satisfaction problem. The
resulting model is compact and the a number of variables and linear constraints
are polynomially bounded by the size of the guest and host bigraphs. Differently
from existing solutions, this algorithm applies also to non-ground hosts.

The algorithm has been successfully integrated into jLibBig, an extensible
library for manipulating bigraphical reactive systems. The empirical evaluation
of the implementation of our algorithm in jLibBig looks promising. It cannot be
considered a rigorous experimental validation yet, mainly because performance
depends on the implementation and the solver and the model is not optimized
for any specific solver. Moreover, up to now there are no “official” (or “widely
recognized”) benchmarks, nor any other algorithms or available tools that solve
the directed bigraph embedding problem, to compare with.

The proposed approach offers great flexibility: it can be easily applied also
to other extensions of bigraphs and directed bigraphs. An interesting direction
for future work would be to extend the algorithm also to stochastic and proba-
bilistic bigraphs [18]; this would offer useful modelling and verification tools for
quantitative aspects, e.g. for systems biology [2,8]. Approximated and weighted
embeddings are supported in jLibBig, but still as experimental feature. In fact,
the theoretical foundations of these extensions have not been fully investigated
yet, suggesting another line of research.
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