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Abstract. Hyperedge replacement (HR) allows to define context-free
graph languages, but parsing is NP-hard in the general case. Predictive
top-down (PTD) is an efficient, backtrack-free parsing algorithm for sub-
classes of HR and contextual HR grammars, which has been described
and implemented in earlier work, based on a representation of graphs and
grammar productions as strings. In this paper, we define PTD parsers
for HR grammars by graph transformation rules and prove that they are
correct.
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1 Introduction

Hyperedge replacement (HR, [8]) is one of the best-studied mechanisms for gen-
erating graphs. Being context-free, HR grammars inherit most of the favorable
structural and computational properties of context-free string grammars. Unfor-
tunately, simplicity of parsing is not one of these, as there are NP-complete
HR languages [1,14]. Hence, efficient parsing can only be done for suitable sub-
classes. The authors have devised predictive top-down (PTD, [4]) and predictive
shift-reduce (PSR, [6]) parsing for subclasses of HR grammars and, in fact, for
subclasses of contextual HR grammars (CHR grammars, [2,3]), which are a mod-
est extension of HR grammars that allows to overcome some of the structural
limitations of HR languages.

Although the concepts and implementation of PTD parsers have been
described at depth in [4], their correctness has not yet been formally established.
We show in this paper how PTD parsing can be defined by graph transforma-
tion rules and use this in order to prove the correctness of PTD parsers. Our
experience with the correctness proof for PSR parsing in [6] seems to indicate
that a graph- and rule-based definition of parsers can make this task easier.

Related work on using graph transformation for defining parsers has dealt
with LR string grammars [11] and two-level string grammars [12]. For a broader
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discussion of related work on parsing algorithms for graph grammars in general
we refer to [6, Sect. 10.1].

The paper is structured as follows. After recalling graph transformation con-
cepts (Sect. 2) and HR grammars (Sect. 3), we introduce threaded HR grammars
(Sect. 4), which impose a total order on the edges of their derived graphs, which
in turn induces a dependency relation on their nodes. In Sect. 5, we define a
general top-down parser for HR grammars that respects edge order and node
dependencies, and prove it correct. Since this parser is nondeterministic and
hence inefficient, we introduce properties that make the parser predictive, and
backtrack-free (Sect. 6) and show that this yields correct parsers that terminate
for grammars without left recursion.1 We conclude the paper by indicating some
future work (Sect. 7).

2 Preliminaries

In this paper, N denotes the set of non-negative integers and [n] denotes
{1, . . . , n} for all n ∈ N. A∗ denotes the set of all finite sequences over a set A; the
empty sequence is denoted by ε, and the length of a sequence α by |α|. As usual,
→+ and →∗ denote the transitive and the transitive reflexive closure of a binary
relation →. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences
is defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all n ∈ N and a1, . . . , an ∈ A.
The composition of functions f : A → B and g : B → C is denoted as g ◦ f and
defined by (g ◦ f)(x) = g(f(x)) for x ∈ A. The restriction of f to some subset
X ⊆ A is denoted as f |X .

Definition 1 (Hypergraph). An alphabet Σ is a finite set of symbols that
comes with an arity function arity : Σ → N. A hypergraph (over Σ) is a tuple G =
(Ġ, Ḡ, att , lab), where Ġ and Ḡ are finite sets of nodes and hyperedges, respec-
tively, the function att : Ḡ → Ġ∗ attaches hyperedges to sequences of nodes, and
the function lab : Ḡ → Σ labels hyperedges so that |att(e)| = arity(lab(e)) for
every e ∈ Ḡ, i.e., the number of attached nodes of hyperedges is dictated by the
arity of their labels.

GΣ denotes the class of hypergraphs over Σ; 〈〉 denotes the empty hypergraph,
with empty sets of nodes and hyperedges. A set of hyperedges E ⊆ Ḡ induces
the subgraph consisting of these hyperedges and their attached nodes.

For brevity, we omit the prefix “hyper” in the sequel. Instead of “x ∈ Ġ or
x ∈ Ḡ”, we often write “x ∈ G”. We often refer to the functions of a graph G
by attG and labG. An edge carrying a label in an alphabet Σ is also called a
Σ-edge. And a node is called isolated if no edge is attached to it.

Definition 2 (Graph Morphism). Given graphs G and H, a graph morphism
(morphism, for short) m : G → H is a pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ

1 Since this paper is dedicated to proving the correctness of PTD parsers, and it has
been established in [4] that they run in quadratic time at worst, we shall not dwell
on issues of efficiency here.
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and m̄ : Ḡ → H̄ that preserve attachments and labels, i.e., attH ◦ m̄ = ṁ∗ ◦ attG

and labH ◦ m̄ = labG. The morphism is injective or surjective if both ṁ and m̄
are, and a subgraph inclusion of G in H if m(x) = x for every x ∈ G; then we
write G ⊆ H. If m is surjective and injective, it is called an isomorphism, and
G and H are called isomorphic, written as G ∼= H.

For transforming graphs, we use the classical approach of [7], with injective
matching and non-injective rules [9], but without rules that delete nodes.

Definition 3 (Rule). A graph transformation rule r = (P,R, r◦) consists of a
pattern graph P , a replacement graph R, and a mapping r◦ : Ṗ → Ṙ. 2 We briefly
call r a rule and denote it as r : P ◦→ R. An injective morphism m : P → G into
a graph G is a match of r, and r transforms G at m to a graph H as follows:

– Remove all edges m(e), e ∈ P̄ , from G to obtain a graph K.
– Construct H from the disjoint union of K and R by identifying m(x) with

r◦(x) for every x ∈ Ṗ .

Then we write G⇒m
r H, but may omit m if it is irrelevant, and write G⇒R H

if R is a set of rules such that G⇒r H for some r ∈ R.

Sometimes it is necessary to restrict the application of a rule by requiring
the existence or non-existence of certain graphs in the context of its match. Our
definition of application conditions is based on [10].

Definition 4 (Conditional Rule). For a graph P , the set of conditions over
P is defined inductively as follows: (i) a subgraph relation P ⊆ C defines a basic
condition ∃C over P . (ii) if c, c′ are conditions over P , then ¬c, (c ∧ c′), and
(c ∨ c′) are conditions over P .3

An injective morphism m : P → G satisfies a condition c, written m � c, if

– c = ∃C and there is an injective morphism m′ : C → G so that m′|P = m;
– c = ¬c′ and m � c′;
– c = (c′ ∧ c′′) and both m � c′ and m � c′′;
– c = (c′ ∨ c′′) and m � c′ or m � c′′.

A conditional rule r′ = (r, c) consists of a rule r : P ◦→ R and a condition c over
P , and is denoted as r′ : c P ◦→ R. We let G⇒m

r′ H if m � c and G⇒m
r H. Note

that each rule P ◦→ R without a condition can also be seen as a conditional rule
∃P P ◦→ R. If C is a finite set of conditional rules, ⇒C denotes the conditional
transformation relation using these rules.

Examples of graphs and rules, with and without conditions, will be shown below.

2 This corresponds to a DPO rule P ⊇ I → R, where the interface I is the discrete
graph with nodes Ṗ , and the morphism I → R is given by (r◦,∅).

3 We omit nested conditions like “∀(C, ∃C′ ∧ ¬∃C′′)” since we do not need them.
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3 Hyperedge Replacement Graph Grammars

We recall graph grammars based on hyperedge replacement [8].4

Definition 5 (Hyperedge Replacement Grammar). Consider a finite
alphabet Σ and a subset N ⊆ Σ of nonterminals. Edges with labels in N are
accordingly nonterminal edges; those with labels in Σ \ N are terminal edges.

A rule p : P ◦→ R is a hyperedge replacement production (production, for
short) over Σ if the pattern P consists of a single edge e and its attached nodes,
where labP (e) ∈ N , and the mapping p◦ : Ṗ → Ṙ is injective.

A hyperedge-replacement grammar (HR grammar) Γ = 〈Σ,N ,P, Z〉 consists
of Σ and N ⊆ Σ as above, a finite set P of productions over Σ, and a start
graph Z ∈ GΣ .

The language generated by Γ is given by L(Γ ) = {G ∈ GΣ\N | Z ⇒∗
P G}.

Example 1 (HR Grammars for Trees). As a running example for the construc-
tions in this paper, we use the productions in Fig. 1. They derive n-ary trees
like the one in Fig. 2, if the pattern of production s is the start graph. We draw
nodes as circles, and nonterminal edges as boxes that contain their labels. Edges
are connected to their attached nodes by lines, called tentacles. Tentacles are
ordered counter-clockwise around the edge, starting in the north.

Fig. 1. HR productions for trees Fig. 2. A tree

For the purpose of this paper, we restrict ourselves to this simple example
because illustrations would otherwise become too complex. Further examples of
well-known HR languages for which PTD parsers can be built include string
graph languages such as palindromes, non-context-free ones like anbncn, arith-
metic expressions, and Nassi-Shneiderman diagrams.

In our running example, edges of shape with arity( ) = 1 designate root
nodes, whereas edges of shape with arity( ) = 2 connect parent nodes to their
children.

In productions (and later in other rules), nodes of the pattern P have the same
identifier ascribed in P as their images in R under p◦, like x in our example.
In the following, the letters s, l, and b under the arrows in Fig. 1 are used as
identifiers that refer to the corresponding production.

4 In contrast to [8] and [4], “merging rules”, with a non-injective node mapping, are
prohibited here as they complicate the following formal discussion considerably.
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Assumption 1. Throughout the remainder of this paper, we consider only HR
grammars Γ = 〈Σ,N ,P, Z〉 that satisfy the following conditions:

1. Z consists of a single edge e of arity 0.
2. L(Γ ) does not contain graphs with isolated nodes.

These assumptions imply no loss of generality: a new initial nonterminal with a
single start production according to Assumption 1 can be added easily. A gram-
mar that violates Assumption 1 and produces isolated nodes can be transformed
easily into an equivalent grammar that attaches virtual unary edges to those
nodes.

4 Threaded HR Grammars

We now prepare HR grammars for parsing. The edges in graphs, productions and
derivations will be ordered linearly with the idea that the parser is instructed to
process the symbols of a grammar in this order when it attempts to construct a
derivation for a given input graph. The edge order induces a dependency relation
between nodes of a graph as follows: for an edge, an attached node is “known”
if it is also attached to some preceeding edge, which will be processed earlier by
the parser; it is “unknown” otherwise. This defines what we call the profile of an
edge: a node is classified as incoming if it is known, and as outgoing otherwise.

Technically, edge order and profiles are represented by extending the struc-
ture and labels of a graph: Every edge is equipped with two additional tentacles
by which edges are connected to a thread, and the label � of an edge is equipped
with a profile ν ⊆ N indicating the positions of its incoming nodes. Unary hyper-
edges labeled with a fresh symbol distinguish thread nodes from kernel nodes of
a graph.

Definition 6 (Threaded Graph). The profiled alphabet of an alphabet Σ
is Σ̃ = {�ν | � ∈ Σ, ν ⊆ [arity(�)]} ∪ {�} with arity(�ν) = arity(�) + 2 and
arity(�) = 1. The profile of an edge labelled by �ν is ν.

Let G ∈ GΣ̃ . A node v ∈ Ġ is called a thread node if a �-edge is attached to
it and a kernel node otherwise. Ġ and ˜̇G denote the sets of all kernel nodes and
thread nodes of G, respectively. An edge e ∈ Ḡ is a profiled edge if labG(e) = �.
The set of all profiled edges of G is denoted by pe(G). The profile ν divides the
set of attached kernel nodes of e into sets inG(e) = {vi | i ∈ ν} and outG(e) =
{vi | i ∈ [arity(labG(e))] \ ν} of incoming and outgoing nodes, respectively.

A graph G ∈ GΣ̃ is threaded if the following hold:

1. Each node of G has at most one attached �-edge.
2. For every e ∈ pe(G) with labG(e) = �ν and attG(e) = v1 . . . vkvk+1vk+2, the

nodes v1, . . . , vk are kernel nodes of G and vk+1, vk+2 are thread nodes of G.
(Hence, inG(e) and outG(e) partition the kernel nodes of e into incoming and
outgoing nodes.)
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3. The profiled edges and thread nodes of G can be ordered as pe(G) =
{e1, . . . , en} and ˜̇G = {v0, . . . , vn} so that, for i ∈ [n],
(a) attG(ei) ends in vi−1vi and
(b) no edge ej with j ∈ [i − 1] is attached to any node in outG(ei).

We call v0 the first and vn the last thread node of G, and define furthermore
in(G) = Ġ \ ⋃

i∈[n] outG(ei).
The kernel graph of G is the graph G ∈ GΣ obtained by removing the profiles

of edge labels, the �-edges, the thread nodes and their attached tentacles. G̃Σ̃

denotes the set of threaded graphs over Σ̃; 〈•〉 denotes the empty threaded graph
that consists of a single thread node with its attached �-edge.

Remark 1 It is important to note that the profiles of the (profiled) edges of a
threaded graph G are uniquely determined by in(G) and the structure of G. To
see this, let pe(G) = {e1, . . . , en}, threaded in this order. For every v ∈ Ġ, let

first(v) =
{
0 if v ∈ in(G)
i if v /∈ in(G) and i = min{j ∈ [n] | attG(ej) contains v}.

Then v ∈ inG(ei) if v ∈ attG(ei) and first(v) < i.
Let the concatenation H = G ◦ G′ of two threaded graphs G and G′ with

Ḡ ∩ Ḡ′ = ˜̇G ∩ ˜̇G′ = ∅ be the threaded graph H that is constructed from the
union of G and G′ by identifying the last thread node of G with the first thread
node of G′ (and removing one of their attached �-edges). Note that kernel nodes
of G may also occur in G′.

Definition 7 (Threaded Production and HR grammar). A rule p : P ◦→
R is a threaded production if P and R are threaded and the following conditions
are satisfied:

1. the rule p : P ◦→ R, where p◦ is the restriction of p◦ to Ṗ , is a production,
called kernel production of p,

2. p◦ maps the first and last thread nodes of P onto the first and last thread
nodes of R, respectively, and

3. p◦(in(P )) = in(R).

An application G⇒m
p H of a threaded production p to a threaded graph G is

called leftmost, written G⇒
lm

m
p

H, if it replaces the first nonterminal on the thread

of G.
A HR grammar Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 over a profiled alphabet Σ̃ is threaded if

all its productions are threaded.

As in the case of context-free string grammars, the context-freeness of hyper-
edge replacement implies that derivations can be restricted to leftmost ones:

Fact 1. For every threaded HR grammar Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 and every G ∈ L(Γ̃ ),
there is a leftmost derivation Z̃ ⇒

lm

∗̃
P G, i.e., a derivation in which all applications

of productions are leftmost.
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This fact will be important, as top-down parsers for HR grammars attempt
to construct leftmost derivations of a graph.

It follows from Remark 1 and condition 3 of Definition 7 that the profiles of
edges in the replacement graph of a threaded production are uniquely determined
by the profile of the pattern. Hence, given a HR grammar Γ = 〈Σ,N ,P, Z〉 and
an order on R̄ for each of its productions p : P ◦→ R, a unique threaded version
Γ̃ of Γ is obtained as follows:

1. The threaded start graph Z̃ of Γ̃ is given by Z̃ = Z (recall that arity(Z) = 0).
2. Every production p : P ◦→ R of Γ is turned into all threaded productions

p̃ : P̃ ◦→ R̃ where P̃ = P , R̃ = R, and the edges of R̃ are threaded according
to the chosen order on R̄ (which defines the profiles of edges in R̃ uniquely).

While the procedure above creates an exponential number of profiles and thus
productions, in most cases many of them will be useless. A more efficient way
of constructing Γ̃ is thus to choose the threading order and then construct the
useful threaded productions inductively. The procedure would initially construct
the threaded start production (in which in(P ) = ∅) and then, as long as a
replacement graph of one of the constructed productions contains a hitherto
unseen profiled nonterminal, continue by constructing the threaded productions
for this nonterminal. This leads to the following definition:

Definition 8 (Threaded Version of a HR Grammar). Let Γ = 〈Σ,N ,P,
Z〉 be a HR grammar. A threaded version of Γ is a threaded grammar Γ̃ =
〈Σ̃, Ñ , P̃, Z̃〉, such that

1. P = {p | p ∈ P̃} and Z = Z̃,
2. all threaded productions with the same kernel production p : P ◦→ R order

the edges of R identically, and
3. Γ̃ is reduced, i.e., every production p ∈ P̃ can participate in the generation of

a graph in L(Γ̃ ): there is a derivation Z̃
∗⇒̃
P

G⇒
p

G′ ∗⇒̃
P

H such that H ∈ L(Γ̃ ).

Fig. 3. Threaded tree productions

Example 2 (Threaded Tree Grammar). We consider a threaded version of the
tree grammar, given by the threaded productions in Fig. 3. In examples such as
this one we draw thread nodes in gray and omit the attached �-edges, and we
write profiles as ascending sequences of numbers rather than as sets. The profiles
of profiled terminal edges are inscribed into the label symbols, i.e., 1 for 1 and
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Fig. 4. A leftmost threaded derivation of the tree in Fig. 2

ε for ε Moreover, we distinguish threaded productions with the same kernel
productions by the profile of the (unique edge in the) pattern in the production
name. The profiled symbols T ε, ε, 2, 12, and 1 do not appear as they occur
only in useless productions.

It is worthwhile to note that production l̃1 merges thread nodes t and n,
which we indicate in the drawing by annotating the corresponding node in the
replacement graph with “t=n”.

We arrange thread nodes from left to right and draw thread tentacles in gray
so that the kernel graph can be better identified. To make it easier to distinguish
incoming from outgoing attached nodes, we draw the former to the left of an
edge and the latter to the right of it.

In production b̃1, left-recursion was avoided by choosing the terminal edge
to be the first one on the thread. Figure 4 shows a threaded derivation of the
tree in Fig. 2, which is leftmost.

Threaded productions derive threaded graphs to threaded graphs.

Fact 2. If G⇒P̃ H and G is a threaded graph, H is a threaded graph as well,
and in(H) = in(G).
Threaded derivations and unthreaded ones correspond to each other.

Lemma 1. Let Γ = 〈Σ,N ,P, Z〉 be a HR grammar, Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 a
threaded version of Γ , and G a threaded graph such that Z̃ ⇒∗

P̃ G. Then it holds
for all graphs G′ that G ⇒P G′ if and only if there is a threaded graph H with
H = G′ and G⇒P̃ H.

Thus the threaded and unthreaded version of a HR grammar generate the
same language of kernel graphs.

Theorem 1. If Γ = 〈Σ,N ,P, Z〉 is a HR grammar and Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 is a
threaded version of Γ , then L(Γ ) = {G | G ∈ L(Γ̃ )}.
Proof. Easy induction on the length of derivations, using Lemma 1. ��
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5 General Top-Down Parsing for HR Grammars

We define top-down parsers for HR grammars as stack automata, which perform
transitions of configurations that represent the input graph and a stack. Con-
figurations are graphs, and transitions are described by graph transformation
rules. This definition is more precise than the original definition of PTD parsing
in [4], but avoids the technical complications occuring in the precise definition
of PSR parsing for HR grammars [6], where graphs are represented textually as
sequences of literals, and transitions are defined by the transformation of literal
sequences, involving substitution and renaming operations on node identifiers.
The use of graph transformation and graph morphisms avoids the explicit han-
dling of these technical issues.

A configuration consists of a threaded graph as in Definition 6, which repre-
sents its stack and its read input, edges without profile that induce its unread
input, and further edges that serve as flags, distinguishing different types of
nodes.

Definition 9 (Configuration). Given a HR grammar Γ = 〈Σ,N ,P, Z〉 and
its profiled alphabet Σ̃, let �, ⊗, and � be fresh symbols of arity 1. A graph G
without isolated nodes is a configuration (of Γ ) if the following hold:

– The subgraph thread(G) induced by its Σ̃-edges is a threaded graph.
– Exactly one thread node h of thread(G) is attached to a �-edge, representing

the top of the stack.
– Every kernel node of every profiled edge between the start node of the thread

and h is attached to a �-edge, marking it as read.
– Every node of every Σ-edge that is not attached to a profiled edge at the

same time is attached to a ⊗-edge, marking it as unread.
– No node is attached to several edges with labels in {�,⊗,�}.

We let read(G), the read input, denote the subgraph of thread(G) induced by
the profiled edges between the first thread node and h (including the �-edges
attached to those nodes). The (threaded) subgraph of thread(G) induced by the
profiled edges between h and the last node of the thread (again including the �-
edges attached to those nodes) represents the stack stack(G), and the subgraph
unread(G) induced by the Σ-edges represents the unread input. The union of
unread(G) and the kernel of read(G) is the input represented by G, denoted by
input(G).

A configuration G is

– initial if read(G) = 〈•〉 and stack(G) = Z̃, and
– accepting if stack(G) = 〈•〉 and unread(G) = 〈〉.
Definition 10 (Top-Down Parser). Let Γ be a HR grammar and R a set of
conditional rules. A derivation G⇒∗

R H is a parse if G is an initial configuration.
A parse G⇒∗

R H is successful if H is an accepting configuration. A configuration
G is promising (with respect to R) if there is an accepting configuration H so
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that G⇒∗
R H. R is a top-down parser for Γ if, for each initial configuration G,

unread(G) ∈ L(Γ ) if and only if G is promising. R terminates if there is no
infinite parse.

Consider in the following a threaded version Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 of a HR
grammar Γ = 〈Σ,N ,P, Z〉. We define two types of general top-down parsing
rules, called match and expand rules.

Definition 11 (Match and Expand Rules). For every terminal symbol aν ∈
Σ̃ \ Ñ , the match rule taν : P ◦→ R is given as follows:

– The pattern P is a configuration where
• read(P ) = 〈•〉,
• unread(P ) consists of one a-edge e with a ∈ Σ \N and attP (e) = v1 . . . vk

(where arity(a) = k), with a �-edge attached to every vi with i ∈ ν and
a ⊗-edge attached to every vi with i ∈ ν, and

• stack(P ) consists of one aν-edge e with attP (e) = v1 . . . vkvk+1vk+2 such
that vi = vi if i ∈ ν. If i /∈ ν, then vi is not attached to e.

– The replacement R is a configuration where
• read(R) = stack(P ), with a �-edge attached to every vi, for i ∈ [k],
• stack(R) = 〈•〉,
• unread(R) = 〈〉.

– The mapping t◦aν identifies node vi with vi if and only if i /∈ ν.

For each of the threaded productions p : P̃ ◦→ R̃ in P̃, the expand rule
tp : P ◦→ R is given as follows:

– read(P ) = read(R) = 〈•〉,
– unread(P ) = unread(R) = 〈〉,
– stack(P ) = P̃ and stack(R) = R̃,
– the mapping t◦p is the same as in p;

We let RM
Γ̃

denote the set of all match rules for terminal symbols, and RE
Γ̃

the set of all expand rules for productions of Γ̃ . In the following, we will show
that RΓ̃ = RM

Γ̃
∪ RE

Γ̃
is in fact a top-down parser for Γ , hence we call RΓ̃ a

general top-down parser of Γ̃ (for Γ ).

Example 3 (General Top-Down Parser for Trees). The expand rules of the gen-
eral top-down parser for trees in Fig. 5 differ from the threaded productions only
in the �-edge marking the top of the stack. (We draw �- and �-edges around
the nodes to which they are attached, so that they look like distinguished kinds
of nodes. Nodes with an attached ⊗-edge are drawn as ⊗, omitting the attached
edge in the drawing.) The match rules for the two edge patterns needed are
shown in Fig. 6.

Figure 7 shows snapshots of a successful parse of the tree in Fig. 2 with these
rules, where five configurations are omitted for brevity. The parse constructs the
leftmost derivation in Fig. 4.
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Fig. 5. Expand rules of the general top-down parser for trees

Fig. 6. Two match rules of the general top-down parser for trees

Fig. 7. A top-down parse of the tree in Fig. 2

Note that match rules do not change the thread, but just “move” the matched
terminal from the unread to the read subgraph of the configuration. In contrast,
expand rules do not modify the unread or read subgraphs of the configuration,
but just replace the first nonterminal on the thread by the replacement graph of a
threaded production for this nonterminal. We can summarize these observations
in the following fact:
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Fact 3. For a parse G⇒∗
RΓ̃

G′ ⇒r H (where r ∈ RΓ̃ ), the following hold:

1. input(G) ∼= input(G′) ∼= input(H);
2. if r = taν is a match for some a ∈ Σ \ N , then thread(G′) ∼= thread(H);
3. if r = tp for some threaded production p ∈ P̃, then thread(G′) lm⇒p thread(H).

Thus RΓ̃ constitutes a top-down parser: there is a successful parse if and
only if its input graph is in the language of the grammar.

Theorem 2. For every HR grammar Γ and each threaded version Γ̃ of Γ , RΓ̃

is a top-down parser for Γ .

Proof Sketch. Let G⇒∗
RΓ̃

H be a successful parse. Z̃ = thread(G)⇒∗
P̃ thread(H)

and unread(G) = input(G) ∼= input(H) hold by Fact 3; input(H) is the kernel of
thread(H) because H is accepting, and hence unread(G) ∈ L(Γ ) by Lemma 1.

In order to show the opposite direction, let us consider any configuration
G with terminal read input read(G) and H ′ a terminal threaded graph with
kernel H ′ = unread(G). It is easy to prove, by induction on the length of the
derivation, that thread(G)⇒

lm

∗̃
P read(G) ◦ H ′ implies G⇒∗

RΓ̃
H where H is an

accepting configuration obtained from read(G)◦H ′ by adding a �-edge to the last
thread node and �-edges to all kernel nodes, i.e., G is promising. Now let G be an
initial configuration with unread(G) ∈ L(Γ ). By Lemma 1, there is a threaded
graph H ′ with kernel unread(G) and thread(G) = Z̃ ⇒

lm

∗̃
P H ′ = read(G) ◦ H ′.

Hence, G must be promising. ��
If Γ̃ is not left-recursive, the general top-down parser terminates. Here, we say

that Γ̃ = 〈Σ̃, Ñ , P̃, Z̃〉 is left-recursive if there is a threaded graph G consisting
of a single nonterminal edge labeled A (for some nonterminal A) and there is a
derivation G⇒+

P̃ H for some graph H such that the first profiled edge of H is
also labeled with A.

Theorem 3 (Termination). Let Γ̃ be a threaded version of a HR grammar.
The general top-down parser RΓ̃ terminates unless Γ̃ is left-recursive.

Proof Assume that there is an infinite parse G⇒t1 G1 ⇒t2 G2 ⇒t3 · · · with ti ∈
RΓ̃ for i ∈ N. Since unread(G) is finite and each match operation “removes” an
unread edge, there must be a k ∈ N such that ti is an expand rule for all i > k.
As their number is finite, there must be numbers i and j, k < i < j, such that
stack(Gi) and stack(Gj) start with edges labeled with the same nonterminal. By
Fact 3, thread(Gi)⇒

lm

+
P̃ thread(Gj), which proves that Γ̃ is left-recursive. ��

Inconveniently, the steps of the general top-down parser are nondeterministic:

1. The expansion of a nonterminal Aν may choose any of its productions.
2. The match of an edge aν may choose any unread edge fitting the profile ν.

We consider a parse G⇒∗
RΓ̃

H as a blind alley if the configuration H is not
accepting, but does not allow further steps (using RΓ̃ ). This is the case if
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– stack(H) starts with an edge aν , but taν does not apply (edge mismatch), or
– stack(H) = 〈•〉 but unread(H) = 〈〉 (input too big).

Due to nondeterminism, a successful parse may nevertheless exist in such a
situation. Exploring the entire search space of parses to determine whether a
successful one exists is very inefficient.

6 Predictive Top-Down Parsing for HR Grammars

The aim of predictive top-down parsing for threaded HR grammars is to avoid
backtracking, the major source of inefficiency of a straightforward implementa-
tion of the general top-down parser. So we have to cope with the nondeterminism
identified in the previous section. In every configuration of a parse, it must effi-
ciently be possible to predict which choices of moves are wrong in the sense that
they lead into a blind alley, whereas other moves could still lead to a success-
ful parse if there is any. However, this is most likely not achievable for every
threaded HR grammar Γ̃ because Theorem 2 in combination with the known
NP-completeness of some HR languages would otherwise imply that P=NP. For
such a grammar, certain configurations will allow more than one expansion, and
it may be the case that any of them is promising, or just some of them (or none).

Thus backtrack-free parsing only seems to be possible for HR grammars that
make correct moves of their top-down parsers predictable.

Let us first define predictive expand rules that will prevent a parser from
running into blind alleys by additionally checking so-called lookahead conditions.
Henceforth, given a rule r : P ◦→ R and a condition c over P , we denote the
conditional rule r′ : c P ◦→ R by r[c].

Definition 12 (Predictive expand rules). Let Γ be a HR grammar, Γ̃ a
threaded version of Γ , and RΓ̃ = RM

Γ̃
∪ RE

Γ̃
its general top-down parser. For an

expand rule tpν : P ◦→ R ∈ RE
Γ̃
, a condition c over P is a lookahead condition

for tpν if the following holds:

For every derivation G⇒∗
RΓ̃

H ⇒m
tpν H ′ where G is an initial configuration

and H is promising,5 if m � c then H ′ is promising.

A set R = {tpν [cpν ] | tpν ∈ RE
Γ̃
} of conditional rules is a set of predictive

expand rules for Γ̃ if cpν is a lookahead condition for every tpν ∈ RE
Γ̃
.

In the following, we briefly describe a simple way to check whether a set of
predictive expand rules can be obtained from RE

Γ̃
. For this purpose, let G be any

initial configuration and tpν : P ◦→ R any expand rule so that G⇒∗
RΓ̃

H ⇒m
tpν H ′

where H ′ is promising, i.e., there is an accepting configuration F such that

5 From now on, we call a configuration promising if it is in fact promising with respect
to RΓ̃ .
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either H ⇒m
tpν H ′ ⇒∗

RE
Γ̃

K ⇒RM
Γ̃

K ′ ⇒∗
RΓ̃

F (1)

or H ⇒m
tpν H ′ ⇒∗

RE
Γ̃

F (2)

Consider case (1) first. There is an isomorphism iso : unread(K) → unread(H)
because K is obtained from H by expand rules only. Let e be the edge of
unread(K) that is read by the match operation K ⇒RM

Γ̃
K ′ and E the subgraph

of K induced by e. Clearly, m(P ) as well as iso(E) are both subgraphs of H.
Now select a graph C and an injective morphism m′ so that P ⊆ C, m = m′|P ,
and m′(C) = m(P ) ∪ iso(E). By definition, m � ∃C. In case (2), unread(H) is
empty and m � ∃P .

We can make use of this as follows. For an expand rule tpν , performing
the above analysis for all derivations of types (1) and (2) yields only finitely
many distinct graphs C (up to isomorphism). These graphs C1, . . . , Cn can be
computed by procedures similar to the construction of FIRST and FOLLOW
sets for LL(k) parsing [15, Sect. 5.5]. Defining ĉpν = ∃C1 ∨ ∃C2 ∨ · · · ∨ ∃Cn we
thus obtain for all promising graphs H,H ′ that H ⇒m

tpν H ′ implies m � ĉpν .
Thus, by contraposition, if H is promising and H ⇒m

tpν H ′ but m � ĉpν , then H ′

cannot be promising.
Note, however, that m � ĉpν does not necessarily imply that H ′ is promising

if H ⇒m
tpν H ′ and H is promising. Therefore, ĉpν can in general not directly serve

as a lookahead condition. To solve this problem, we define a relation � on expand
rules. For this purpose, let us consider two different expand rules tpν

a
, tpν

b
∈ RE

Γ̃
with isomorphic left-hand sides. Without loss of generality, we assume that the
left-hand sides are identical. We define tpν

a
� tpν

b
if there is an initial configuration

G and a derivation G⇒∗
RΓ̃

H ⇒m
tpν

a
H ′ where H ′ is promising and m � ĉpν

b
. In

fact, relation � can be defined while conditions ĉpν
i

are constructed.6
Note that � is in general not an ordering and that it may even contain

cycles tpν
a

� tpν
b

� · · · � tpν
a
. But if there are no such cycles, one can create

(by topological sorting) a linear ordering ≺ on all expand rules with isomorphic
left-hand sides (where we again assume that they have in fact identical left-hand
sides) so that tpν

a
� tpν

b
always implies tpν

a
≺ tpν

b
. We then define, for each expand

rule tpν , the condition cpν ≡ ĉpν ∧ ¬c1 ∧ ¬c2 ∧ · · · ∧ ¬cn where {c1, c2, . . . cn} =
{ĉp̄ν | tp̄ν ≺ tpν }. The following lemma states that these conditions can serve as
lookahead conditions for predictive expand rules:

Lemma 2. Let Γ be a HR grammar, Γ̃ a threaded version of Γ , and RΓ̃ =
RM

Γ̃
∪ RE

Γ̃
its general top-down parser. If � is acyclic and the condition cpν is

defined as above for each expand rule tpν ∈ RE
Γ̃
, then {tpν [cpν ] | tpν ∈ RE

Γ̃
} is a

set of predictive expand rules for Γ̃ .

6 ĉpν
i

identifies edges that must occur in H if H ⇒m
tpν

b
H ′′ where H ′′ is promising. And

if these edges may also occur in H if H ′ is promising, we define tpν
a

� tpν
b
.
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Proof. Consider any derivation G⇒∗
RΓ̃

H ⇒RE
Γ̃

H ′ where G is an initial config-
uration, and H is promising. Then there is an expand rule tpν so that H ⇒m

tpν K
and K is promising. By construction, m � ĉpν . If there were a smaller expand
rule tp̄ν ≺ tpν with m � ĉp̄ν , then this would imply tpν � tp̄ν because K is
promising, and therefore, tpν ≺ tp̄ν , contradicting the linearity of ≺. Therefore,
m � ¬ĉp̄ν for tp̄ν ≺ tpν and m � ĉpν , i.e., tpν is the only expand rule that satisfies
its lookahead condition for H, i.e., m � cpν . ��

The proof shows that these lookahead conditions always select a unique
expand rule. Clearly, this cannot succeed for situations where expand rules can
turn a promising configuration into two or more promising successor configura-
tions.

However, the existence of a set of predictive expand rules is not sufficient for
obtaining a predictive top-down parser. The threaded HR grammar must satisfy
the following property as well:

Definition 13 (Free edge choice property). Let Γ be a HR grammar, Γ̃ a
threaded version of Γ , and RΓ̃ = RM

Γ̃
∪RE

Γ̃
its general top-down parser. Γ̃ is said

to possess the free edge choice property if, for every derivation G⇒∗
RΓ̃

H ⇒RM
Γ̃

H ′

where G is an initial configuration and H is promising, H ′ is promising as well.

Theorem 4. Let Γ be a HR grammar, Γ̃ a threaded version of Γ without left-
recursion, and RΓ̃ = RM

Γ̃
∪ RE

Γ̃
its general top-down parser. Rptd = RM

Γ̃
∪ R is

a terminating top-down parser for Γ that cannot run into blind alleys if R is a
set of predictive expand rules for Γ̃ and Γ̃ has the free edge choice property.

Proof. Let Γ , Γ̃ , and Rptd be as in the theorem. Moreover, let Γ̃ satisfy the free
edge choice property, and let R be a set of predictive expand rules for Γ̃ . Each
derivation G⇒∗

Rptd H where G and H are initial and accepting configurations,
resp., is also a successful parse in RΓ̃ , i.e., unread(G) ∈ L(Γ ) by Theorem 2.

Now let G be any initial configuration with unread(G) ∈ L(Γ ), i.e., G is
promising. Any infinite derivation G⇒Rptd H1 ⇒Rptd H2 ⇒Rptd · · · would also
be an infinite parse G⇒RΓ̃

H1 ⇒RΓ̃
H2 ⇒RΓ̃

· · · , contradicting Theorem 3.
Finally assume that Rptd runs into a blind alley starting at G, i.e., there

is a derivation G⇒∗
Rptd H, H is not accepting, and there is no configuration

H ′ so that H ⇒Rptd H ′. By the free edge choice property and R being a set of
predictive expand rules, H must be promising, i.e., there is a configuration H ′′

so that H ⇒RM
Γ̃

H ′′ or H ⇒RE
Γ̃

H ′′. In either case, there is a configuration H ′ so
that H ⇒Rptd H ′, contradicting the assumption. ��

This theorem justifies to call a threaded HR grammar Γ̃ predictively top-
down parsable (PTD for short) if Γ̃ satisfies the free edge choice property and
there is a set of predictive expand rules for Γ̃ .

Example 4 (A Predictive Top-Down Tree Parser). The threaded tree grammar
in Example 2 is PTD. To see this, let us construct lookahead conditions for
expand rule tb̃1 and tl̃1 as described above.
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Inspection of expand rule tb̃1 shows that choosing this rule cannot produce
a promising configuration if the unread part of the input does not contain a
-edge starting at node x. The existence of this edge is hence requested by the

graph condition ĉb̃1 ≡ ∃Cb̃1 , defined by the supergraph Cb̃1 of the pattern of
tb̃1 (see Fig. 8). No such edge can be requested for expand rule tl̃1 ; each match
of tl̃1 satisfies ĉl̃1 ≡ ∃Cl̃1 since Cl̃1 is just the pattern of tl̃1 . Condition ĉl̃1 is
in particular satisfied if choosing tb̃1 produces a promising configuration, and
therefore tb̃1 � tl̃1 . By Lemma 2, we can choose lookahead conditions cb̃1 ≡
ĉb̃1 ≡ ∃Cb̃1 and cl̃1 ≡ ĉl̃1 ∧ ¬cb̃1 ≡ ¬∃Cb̃1 .

Fig. 8. Graphs defining ĉb̃1 ≡ ∃Cb̃1 and ĉl̃1 ≡ ∃Cl̃1 for expand rule tb̃1 and tl̃1 , resp.

Fig. 9. Predictive expand operations of the tree parser

Figure 9 shows the resulting predictive expand rules for the nonterminal T
of the tree parser. For brevity, lookahead conditions show only those subgraphs
that must or must not exist in order to apply tb̃1 or tl̃1 . The match rules and
the expand rule ts̃ε for the start production remain the same as in Example 3.
Moreover, it is easy to see that match rule t 1 produces a promising configuration
for each of its matches, i.e., the threaded tree grammar has the free edge choice
property. With these modified expand rules, the predictive parser can select the
same parse as in Fig. 7. As mentioned earlier, other well-known examples that
allow for predictive parsing include palindromes, anbncn, arithmetic expressions,
and Nassi-Shneiderman diagrams.

7 Conclusions

In this paper, we have defined PTD parsers for HR grammars by graph transfor-
mation rules, and shown their correctness. The definition is consistent with the
implementation of PTD parsers in the graph parser distiller grappa7 described
7 Available at www.unibw.de/inf2/grappa. grappa also distills PSR and generalized

PSR parsers for CHR grammars [5,13].

www.unibw.de/inf2/grappa
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in [4], but some features are still missing: First, productions that merge nodes
of the left-hand side have been omitted. Such productions may occur when a
HR grammar is “left-factorized” in order to allow for predictive expansion. (This
corresponds to left-factorization of CF string grammars for LL-parsing.) Second,
PTD parsing for contextual HR grammars [2,3] has not been considered. Finally,
a more sophisticated way of calculating lookahead conditions, by approximating
Parikh images, has been ignored.

So our next step will be to extend our definitions and proofs to cover these
concepts as well. Our ultimate goal ist to use this definition to relate the power
of PTD parsing to that of PSR parsing, probably by using a definition of PSR
parsing that is based on graph transformation as well.

Acknowledgements. The authors thank Annegret Habel for her valuable suggestions
in several stages of this work.
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