Skip to main content

Microwave in the Treatment of Primary Liver Cancers

  • Living reference work entry
  • First Online:
Interventional Oncology
  • 24 Accesses

Abstract

Microwave ablation (MWA) technology has become a key tool within the interventional oncologists’ toolbox. This introductory chapter will dive into the intricacies of MWA, beginning with the individual components of a MWA system and how they interact with the unique electrical and thermal properties of liver tissue. Moving forward, the focus will then shift toward the clinical application of MWA for patients with primary liver cancer. Considering the efficient heating capabilities of MWA, the review will explore the latest techniques to maximize the effectiveness of MWA and how to avoid and manage complications. This chapter will also delve into the most recent clinical outcomes from MWA therapy for primary liver cancer. As future developments in combination therapy and immunotherapy continue to mature, practitioners should lean into the success of MWA to continue growing as a field. Through careful exploration of the technical aspects, strategies, and clinical outcomes, this chapter will give readers a deeper understanding of the current role of MWA in the field of interventional oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Laeseke PF, Lee FT, Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20(9):1224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fallahi H, Prakash P. Antenna designs for microwave tissue ablation. Crit Rev Biomed Eng. 2018;46(6):495–521.

    Article  PubMed  Google Scholar 

  3. Chiang J, Hynes KA, Bedoya M, Brace CL. A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation. Radiology. 2013 Aug;268(2):382–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prakash P, Converse MC, Webster JG, Mahvi DM. An optimal sliding choke antenna for hepatic microwave ablation. IEEE Trans Biomed Eng. 2009 Oct;56(10):2470–6.

    Article  PubMed  Google Scholar 

  5. Lee JK, Siripongsakun S, Bahrami S, Raman SS, Sayre J, Lu DS. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom Radiol (NY). 2016;41(4):659–66.

    Article  CAS  PubMed  Google Scholar 

  6. Brace CL, Diaz TA, Hinshaw JL, Lee FT. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol. 2010;21(8):1280–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bawden SJ, Hoad C, Kaye P, Stephenson M, Dolman G, James MW, et al. Comparing magnetic resonance liver fat fraction measurements with histology in fibrosis: the difference between proton density fat fraction and tissue mass fat fraction. MAGMA. 2022.

    Google Scholar 

  8. Liu D, Brace CL. CT imaging during microwave ablation: analysis of spatial and temporal tissue contraction. Med Phys. 2014;41(11):113303.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yopp AC, Mansour JC, Beg MS, Arenas J, Trimmer C, Reddick M, et al. Establishment of a multidisciplinary hepatocellular carcinoma clinic is associated with improved clinical outcome. Ann Surg Oncol. 2014;21(4):1287–95.

    Article  PubMed  Google Scholar 

  10. Tsoris A, Marlar CA. Use of the child pugh score in liver disease. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022 [cited 2023 Feb 12]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK542308/

  11. Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85.

    CAS  PubMed  Google Scholar 

  12. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–93.

    Article  PubMed  Google Scholar 

  13. Ahmed M. Technology Assessment Committee of the Society of Interventional Radiology. Image-guided tumor ablation: standardization of terminology and reporting criteria – a 10-year update: supplement to the consensus document. J Vasc Interv Radiol. 2014;25(11):1706–8.

    Article  PubMed  Google Scholar 

  14. Kim YS, Lee WJ, Rhim H, Lim HK, Choi D, Lee JY. The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol. 2010;195(3):758–65.

    Article  PubMed  Google Scholar 

  15. Laimer G, Schullian P, Jaschke N, Putzer D, Eberle G, Alzaga A, et al. Minimal ablative margin (MAM) assessment with image fusion: an independent predictor for local tumor progression in hepatocellular carcinoma after stereotactic radiofrequency ablation. Eur Radiol. 2020;30(5):2463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu S, Wu J, Ding W, Zhang C, Luo Y, Bai X, et al. The tumor ghost on MRI after microwave ablation for hepatocellular carcinoma: a new modality to assess the ablative margin. Eur J Radiol [Internet] 2023 Jan 1 [cited 2023 Feb 2];158. Available from: https://www.ejradiology.com/article/S0720-048X(22)00467-3/fulltext

  17. Joo I, Morrow KW, Raman SS, McWilliams JP, Sayre JW, Lu DS. CT-monitored minimal ablative margin control in single-session microwave ablation of liver tumors: an effective strategy for local tumor control. Eur Radiol. 2022;32(9):6327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Solbiati L, Gazelle GS. Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology. 1999;210(3):655.

    Article  CAS  PubMed  Google Scholar 

  19. Omata M, Tateishi R, Yoshida H, Shiina S. Treatment of hepatocellular carcinoma by percutaneous tumor ablation methods: ethanol injection therapy and radiofrequency ablation. Gastroenterology. 2004;127:S159–66.

    Article  PubMed  Google Scholar 

  20. Dodd GD, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177(4):777–82.

    Article  PubMed  Google Scholar 

  21. Bedoya M, Muñoz del Rio A, Chiang J, Brace CL. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med Phys. 2014;in press

    Google Scholar 

  22. Harari CM, Magagna M, Bedoya M, Lee FT, Lubner MG, Hinshaw JL, et al. Microwave ablation: comparison of simultaneous and sequential activation of multiple antennas in liver model systems. Radiology. 2015:142151.

    Google Scholar 

  23. Han Y, Zhao W, Wu M, Qian Y. Efficacy and safety of single- and multiple-antenna microwave ablation for the treatment of hepatocellular carcinoma and liver metastases: a systematic review and network meta-analysis. Medicine. 2022;101(51):e32304.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thamtorawat S, Hicks RM, Yu J, Siripongsakun S, Lin WC, Raman SS, et al. Preliminary outcome of microwave ablation of hepatocellular carcinoma: breaking the 3-cm barrier? J Vasc Interv Radiol. 2016;27(5):623–30.

    Article  PubMed  Google Scholar 

  25. Lu DSK, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol. 2002;178(1):47–51.

    Article  PubMed  Google Scholar 

  26. Lu DSK, Raman SS, Limanond P, Aziz D, Economou J, Busuttil R, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14(10):1267–74.

    Article  PubMed  Google Scholar 

  27. Yu NC, Raman SS, Kim YJ, Lassman C, Chang X, Lu DSK. Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model. J Vasc Interv Radiol. 2008;19(7):1087–92.

    Article  PubMed  Google Scholar 

  28. Dodd GD 3rd, Dodd NA, Lanctot AC, Glueck DA. Effect of variation of portal venous blood flow on radiofrequency and microwave ablations in a blood-perfused bovine liver model. Radiology 2013.

    Google Scholar 

  29. Chiang J, Martin J, Nickel K, Kimple R, Brace C. Potential mechanisms of the heat-sink effect during microwave ablation of an in-vivo porcine liver model. J Vasc Interv Radiol. 2015;26(2):S117–8.

    Article  Google Scholar 

  30. Chiang J, Loecher M, Moulin K, Meloni MF, Raman SS, McWilliams JP, et al. 4D flow MR imaging to improve microwave ablation prediction models: a feasibility study in an in vivo porcine liver. J Vasc Interv Radiol. 2020;31(10):1691–1696.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chiang J, Cristescu M, Lee MH, Moreland A, Hinshaw JL, Lee FT, et al. Effects of microwave ablation on arterial and venous vasculature after treatment of hepatocellular carcinoma. Radiology. 2016:152508.

    Google Scholar 

  32. Chiang J, Hynes K, Brace CL. Flow-dependent vascular heat transfer during microwave thermal ablation. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5582–5.

    PubMed Central  Google Scholar 

  33. Kim YS, Rhim H, Lim HK, Choi D, Lee WJ, Kim SH. Hepatic infarction after radiofrequency ablation of hepatocellular carcinoma with an internally cooled electrode. J Vasc Interv Radiol. 2007;18(9):1126–33.

    Article  PubMed  Google Scholar 

  34. Ladra González MJ, Echevarría Canoura M, Fernández Castroagudín J, Bustamante MM. A massive hepatic infarction after radiofrequency ablation. Cir Esp. 2013;91(2):122–4.

    Article  PubMed  Google Scholar 

  35. Meloni MF, Andreano A, Lava M, Lazzaroni S, Okolicsanyi S, Sironi S. Segmental portal vein thrombosis after microwave ablation of liver tumors: report of two cases. Eur J Radiol Extra. 2010;76(3):e95–8.

    Article  Google Scholar 

  36. An C, Li WZ, Huang ZM, Yu XL, Han YZ, Liu FY, et al. Small single perivascular hepatocellular carcinoma: comparisons of radiofrequency ablation and microwave ablation by using propensity score analysis. Eur Radiol. 2021;31(7):4764–73.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Feng Y, Wang L, Lv H, Shi T, Xu C, Zheng H, et al. Microwave ablation versus radiofrequency ablation for perivascular hepatocellular carcinoma: a propensity score analysis. HPB. 2021;23(4):512–9.

    Article  PubMed  Google Scholar 

  38. Worakitsitisatorn A, Lu DS, Lee MW, Asvadi NH, Moshksar A, Yuen AD, et al. Percutaneous thermal ablation of subcapsular hepatocellular carcinomas: influence of tumor-surface contact and protrusion on therapeutic efficacy and safety. Eur Radiol. 2020;30(3):1813–21.

    Article  PubMed  Google Scholar 

  39. Yao J, Liu B, Wang X, Yu J, Cheng Z, Han Z, et al. Long-term efficacy of microwave ablation in the treatment of subcapsular hepatocellular carcinomas of ≤3 cm in diameter: a multicenter, propensity score-matched study. Int J Hyperth. 2022;39(1):209–16.

    Article  CAS  Google Scholar 

  40. Zheng H, Liu K, Yang Y, Liu B, Zhao X, Chen Y, et al. Microwave ablation versus radiofrequency ablation for subcapsular hepatocellular carcinoma: a propensity score-matched study. Eur Radiol. 2022;32(7):4657–66.

    Article  CAS  PubMed  Google Scholar 

  41. Kang TW, Rhim H, Kim EY, Kim YS, Choi D, Lee WJ, et al. Percutaneous radiofrequency ablation for the hepatocellular carcinoma abutting the diaphragm: assessment of safety and therapeutic efficacy. Korean J Radiol. 2009;10(1):34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Filippiadis DK, Spiliopoulos S, Konstantos C, Reppas L, Kelekis A, Brountzos E, et al. Computed tomography-guided percutaneous microwave ablation of hepatocellular carcinoma in challenging locations: safety and efficacy of high-power microwave platforms. Int J Hyperth. 2018;34(6):863–9.

    Article  Google Scholar 

  43. Xu K, Li Z, Wang C, Tian C, Jiao D, Han X, et al. 3.0-T closed MR-guided microwave ablation for HCC located under the hepatic dome: a single-center experience. Int J Hyperth. 2022;39(1):1044–51.

    Article  Google Scholar 

  44. Tanaka S, Shimada M, Shirabe K, Maehara SI, Tsujita E, Taketomi A, et al. Surgical outcome of patients with hepatocellular carcinoma originating in the caudate lobe. Am J Surg. 2005;190(3):451–5.

    Article  PubMed  Google Scholar 

  45. Dou JP, Yu J, Cheng ZG, Han ZY, Liu FY, Yu XL, et al. Ultrasound-guided percutaneous microwave ablation for hepatocellular carcinoma in the caudate lobe. Ultrasound Med Biol. 2016;42(8):1825–33.

    Article  PubMed  Google Scholar 

  46. Peng Y, Cui D, Li W, Ding M, Shi Y, Wang T, et al. Ultrasound-guided percutaneous microwave ablation for hepatocellular carcinoma originating in the caudate lobe: a pilot clinical study. J Cancer Res Ther. 2021;17(3):764–70.

    Article  PubMed  Google Scholar 

  47. McWilliams JP, Plotnik AN, Sako EY, Raman SS, Tan N, Siripongsakun S, et al. Safety of hydroinfusion in percutaneous thermal ablation of hepatic malignancies. J Vasc Interv Radiol. 2014;25(7):1118–24.

    Article  PubMed  Google Scholar 

  48. Raman SS, Lu DSK, Vodopich DJ, Sayre J, Lassman C. Minimizing diaphragmatic injury during radio-frequency ablation: efficacy of subphrenic peritoneal saline injection in a porcine model. Radiology. 2002;222(3):819–23.

    Article  PubMed  Google Scholar 

  49. Liu C, He J, Li T, Hong D, Su H, Shao H. Evaluation of the efficacy and postoperative outcomes of hydrodissection-assisted microwave ablation for subcapsular hepatocellular carcinoma and colorectal liver metastases. Abdom Radiol. 2021;46(5):2161–72.

    Article  Google Scholar 

  50. Brace CL, Laeseke PF, Prasad V, Lee FT. Electrical isolation during radiofrequency ablation: 5% dextrose in water provides better protection than saline. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; 2006. p. 5021–4.

    Chapter  Google Scholar 

  51. Yamakado K, Nakatsuka A, Akeboshi M, Takeda K. Percutaneous radiofrequency ablation of liver neoplasms adjacent to the gastrointestinal tract after balloon catheter interposition. J Vasc Interv Radiol. 2003;14(9 Pt 1):1183–6.

    Article  PubMed  Google Scholar 

  52. Raman SS, Aziz D, Chang X, Sayre J, Lassman C, Lu D. Minimizing diaphragmatic injury during radiofrequency ablation: efficacy of intraabdominal carbon dioxide insufflation. Am J Roentgenol. 2004;183(1):197–200.

    Article  Google Scholar 

  53. Raman SS, Aziz D, Chang X, Ye M, Sayre J, Lassman C, et al. Minimizing central bile duct injury during radiofrequency ablation: use of intraductal chilled saline perfusion--initial observations from a study in pigs. Radiology 2004;232(1):154–159.

    Google Scholar 

  54. Felker ER, Lee-Felker SA, Ajwichai K, Tan N, Lu DS, Durazo FA, et al. Intraductal cooling via a nasobiliary tube during radiofrequency ablation of central liver Tumors reduces biliary injuries. AJR Am J Roentgenol. 2015;204(6):1329–35.

    Article  PubMed  Google Scholar 

  55. Ohnishi T, Yasuda I, Nishigaki Y, Hayashi H, Otsuji K, Mukai T, et al. Intraductal chilled saline perfusion to prevent bile duct injury during percutaneous radiofrequency ablation for hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23(8 Pt 2):e410–5.

    PubMed  Google Scholar 

  56. Feretis M, Wang Y, Zhang B, Liau SS. Biliary cooling during radiofrequency ablation of liver tumours close to central biliary tree: a systematic review and pooled analysis. Eur J Surg Oncol. 2021;47(4):743–7.

    Article  CAS  PubMed  Google Scholar 

  57. Ge N, Huang J, Shi Z, Yu X, Shen S, Wu X, et al. Safety and efficacy of microwave ablation for periductal hepatocellular carcinoma with intraductal cooling of the central bile ducts through a percutaneous transhepatic cholangial drainage tube. J Interv Med. 2019;2(2):84–90.

    PubMed  PubMed Central  Google Scholar 

  58. Zhi-yu H, Ping L, Xiao-ling Y, Zhi-gang C, Fang-yi L, Jie Y. A clinical study of thermal monitoring techniques of ultrasound-guided microwave ablation for hepatocellular carcinoma in high-risk locations. Sci Rep. 2017;7:41246.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Livraghi T, Meloni F, Solbiati L, Zanus G. Collaborative Italian Group using AMICA system. Complications of microwave ablation for liver tumors: results of a multicenter study. Cardiovasc Intervent Radiol. 2012;35(4):868–74.

    Article  PubMed  Google Scholar 

  60. Poggi G, Tosoratti N, Montagna B, Picchi C. Microwave ablation of hepatocellular carcinoma. World J Hepatol. 2015;7(25):2578–89.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang P, Wang Y, Yu X, Dong B. Malignant liver Tumors: treatment with percutaneous microwave ablation – complications among cohort of 1136 patients. Radiology. 2009;251(3):933–40.

    Article  PubMed  Google Scholar 

  62. Patel IJ, Rahim S, Davidson JC, Hanks SE, Tam AL, Walker TG, et al. Society of interventional radiology Consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions – part II: recommendations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol. 2019;30(8):1168–1184.e1.

    Article  PubMed  Google Scholar 

  63. Davidson JC, Rahim S, Hanks SE, Patel IJ, Tam AL, Walker TG, et al. Society of interventional radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions-part I: review of anticoagulation agents and clinical considerations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol. 2019 Aug;30(8):1155–67.

    Article  PubMed  Google Scholar 

  64. Ogawa T, Kawamoto H, Kobayashi Y, Nakamura S, Miyatake H, Harada R, et al. Prevention of biliary complication in radiofrequency ablation for hepatocellular carcinoma-cooling effect by endoscopic nasobiliary drainage tube. Eur J Radiol. 2010;73(2):385–90.

    Article  PubMed  Google Scholar 

  65. Dominique E, El Otmany A, Goharin A, Attalah D, de Baere T. Intraductal cooling of the main bile ducts during intraoperative radiofrequency ablation. J Surg Oncol. 2001;76(4):297–300.

    Article  CAS  PubMed  Google Scholar 

  66. Elias D, Sideris L, Pocard M, Dromain C, De Baere T. Intraductal cooling of the main bile ducts during radiofrequency ablation prevents biliary stenosis. J Am Coll Surg. 2004;198(5):717–21.

    Article  PubMed  Google Scholar 

  67. Choi D, Lim HK, Kim MJ, Kim SJ, Kim SH, Lee WJ, et al. Liver abscess after percutaneous radiofrequency ablation for hepatocellular carcinomas: frequency and risk factors. AJR Am J Roentgenol. 2005;184(6):1860–7.

    Article  PubMed  Google Scholar 

  68. de Baère T, Risse O, Kuoch V, Dromain C, Sengel C, Smayra T, et al. Adverse events during radiofrequency treatment of 582 hepatic tumors. AJR Am J Roentgenol. 2003;181(3):695–700.

    Article  PubMed  Google Scholar 

  69. Shibata T, Yamamoto Y, Yamamoto N, Maetani Y, Shibata T, Ikai I, et al. Cholangitis and liver abscess after percutaneous ablation therapy for liver tumors: incidence and risk factors. J Vasc Interv Radiol. 2003;14(12):1535–42.

    Article  PubMed  Google Scholar 

  70. Kwak DH, Yu Q, Malavia M, Sellers E, Said A, Patel M, et al. Risk factors for abscess development following percutaneous microwave ablation therapy of hepatic tumors. Cardiovasc Intervent Radiol. 2022.

    Google Scholar 

  71. Kambadakone A, Baliyan V, Kordbacheh H, Uppot RN, Thabet A, Gervais DA, et al. Imaging guided percutaneous interventions in hepatic dome lesions: tips and tricks. World J Hepatol. 2017;9(19):840–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hermida M, Cassinotto C, Piron L, Assenat E, Pageaux GP, Escal L, et al. Percutaneous thermal ablation of hepatocellular carcinomas located in the hepatic dome using artificial carbon dioxide pneumothorax: retrospective evaluation of safety and efficacy. Int J Hyperth. 2018;35(1):90–6.

    Article  Google Scholar 

  73. Vo Chieu VD, Werncke T, Hensen B, Wacker F, Ringe KI. CT-guided microwave ablation of liver Tumors in anatomically challenging locations. Cardiovasc Intervent Radiol. 2018;41(10):1520–9.

    Article  PubMed  Google Scholar 

  74. Raissi D, Sanampudi S, Yu Q, Winkler M. CT-guided microwave ablation of hepatic malignancies via transpulmonary approach without ancillary techniques. J Clin Imaging Sci. 2022;12:2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qi H, Zhang H, Wan C, Xie L, Song Z, Fan W. CT-guided microwave ablation through the lungs for treating liver tumors near the diaphragm. Oncotarget. 2017;8(45):79270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Livraghi T, Lazzaroni S, Meloni F, Solbiati L. Risk of tumour seeding after percutaneous radiofrequency ablation for hepatocellular carcinoma. Br J Surg. 2005;92(7):856–8.

    Article  CAS  PubMed  Google Scholar 

  77. Andreano A, Galimberti S, Franza E, Knavel EM, Sironi S, Lee FT, et al. Percutaneous microwave ablation of hepatic tumors: prospective evaluation of postablation syndrome and postprocedural pain. J Vasc Interv Radiol. 2014;25(1):97–105.e1-2.

    Article  PubMed  Google Scholar 

  78. Ziemlewicz TJ, Hinshaw JL, Lubner MG, Knott EA, Willey BJ, Lee FT, et al. Radiofrequency and microwave ablation in a porcine liver model: non-contrast CT and ultrasound radiologic-pathologic correlation. Int J Hyperth. 2020;37(1):799–807.

    Article  Google Scholar 

  79. Takeyama N, Vidhyarkorn S, Chung DJ, Siripongsakun S, Kim HJ, Lu DSK, et al. Does hepatobiliary phase sequence qualitatively outperform unenhanced T1-weighted imaging in assessment of the ablation margin 24 hours after thermal ablation of hepatocellular carcinomas? Abdom Radiol. 2016;41(10):1942–55.

    Article  Google Scholar 

  80. Kim SM, Shin SS, Lee BC, Kim JW, Heo SH, Lim HS, et al. Imaging evaluation of ablative margin and index tumor immediately after radiofrequency ablation for hepatocellular carcinoma: comparison between multidetector-row CT and MR imaging. Abdom Radiol (NY). 2017;42(10):2527–37.

    Article  PubMed  Google Scholar 

  81. Liu K, Zheng H, Sui X, Liu B, Meng M, Feng Y, et al. Microwave ablation versus surgical resection for subcapsular hepatocellular carcinoma: a propensity score-matched study of long-term therapeutic outcomes. Eur Radiol. 2022.

    Google Scholar 

  82. Dou JP, Han ZY, Cheng ZG, Liu FY, Yu XL, Yu J, et al. The effect of tumor location on long-term results of microwave ablation for early-stage hepatocellular carcinoma. Abdom Radiol (NY). 2020;45(11):3923–33.

    Article  PubMed  Google Scholar 

  83. Feng H, Yang C, Xu F, Zhao Y, Jin T, Wei Z, et al. Therapeutic efficacy of microwave coagulation versus liver resection for hepatocellular carcinoma within the Milan criteria: a propensity score matching analysis. Eur J Surg Oncol. 2022;48(2):418–24.

    Article  PubMed  Google Scholar 

  84. Lee MW, Raman SS, Asvadi NH, Siripongsakun S, Hicks RM, Chen J, et al. Radiofrequency ablation of hepatocellular carcinoma as bridge therapy to liver transplantation: a 10-year intention-to-treat analysis. Hepatology. 2017;65(6):1979–90.

    Article  CAS  PubMed  Google Scholar 

  85. Takami Y, Ryu T, Wada Y, Saitsu H. Evaluation of intraoperative microwave coagulo-necrotic therapy (MCN) for hepatocellular carcinoma: a single center experience of 719 consecutive cases. J Hepatobiliary Pancreat Sci. 2013;20(3):332–41.

    Article  PubMed  Google Scholar 

  86. Sun Q, Shi J, Ren C, Du Z, Shu G, Wang Y. Survival analysis following microwave ablation or surgical resection in patients with hepatocellular carcinoma conforming to the Milan criteria. Oncol Lett. 2020;19(6):4066–76.

    PubMed  PubMed Central  Google Scholar 

  87. Sokolich J, Buggs J, LaVere M, Robichaux K, Rogers E, Nyce S, et al. HCC liver transplantation wait list dropout rates before and after the mandated 6-month wait time. Am Surg. 2020;86(11):1592–5.

    Article  PubMed  Google Scholar 

  88. Kulik L, Heimbach JK, Zaiem F, Almasri J, Prokop LJ, Wang Z, et al. Therapies for patients with hepatocellular carcinoma awaiting liver transplantation: a systematic review and meta-analysis. Hepatology. 2018;67(1):381.

    Article  CAS  PubMed  Google Scholar 

  89. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68(2):723–50.

    Article  PubMed  Google Scholar 

  90. Kolarich AR, Ishaque T, Ruck J, Solomon AJ, Massie A, Segev DL, et al. Radiofrequency ablation versus transarterial chemoembolization in patients with hepatocellular carcinoma awaiting liver transplant: An analysis of the scientific registry of transplant recipients. J Vasc Interv Radiol. 2022;33(10):1222–1229.e1.

    Article  PubMed  Google Scholar 

  91. DuBay DA, Sandroussi C, Kachura JR, Ho CS, Beecroft JR, Vollmer CM, et al. Radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. HPB (Oxford). 2011;13(1):24–32.

    Article  PubMed  Google Scholar 

  92. Som A, Reid NJ, DiCapua J, Cochran RL, An T, Uppot R, et al. Microwave ablation as bridging therapy for patients with hepatocellular carcinoma awaiting liver transplant: a single Center experience. Cardiovasc Intervent Radiol. 2021;44(11):1749–54.

    Article  PubMed  Google Scholar 

  93. Couillard AB, Knott EA, Zlevor AM, Mezrich JD, Cristescu MM, Agarwal P, et al. Microwave ablation as bridging to liver transplant for patients with hepatocellular carcinoma: a single-Center retrospective analysis. J Vasc Interv Radiol. 2022;33(9):1045–53.

    Article  PubMed  Google Scholar 

  94. Kim GH, Kim PH, Kim JH, Kim PN, Won HJ, Shin YM, et al. Thermal ablation in the treatment of intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. Eur Radiol. 2022;32(2):1205–15.

    Article  PubMed  Google Scholar 

  95. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic Cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149(6):565–74.

    Article  PubMed  Google Scholar 

  96. Yang H, Cheng Z, Han Z, Liu F, Yu X, Yu J, et al. Assessment of the outcomes of intrahepatic cholangiocarcinoma after ultrasound-guided percutaneous microwave ablation based on albumin–bilirubin grade. Cardiovasc Intervent Radiol. 2021;44(2):261–70.

    Article  PubMed  Google Scholar 

  97. Xu C, Li L, Xu W, Du C, Yang L, Tong J, et al. Ultrasound-guided percutaneous microwave ablation versus surgical resection for recurrent intrahepatic cholangiocarcinoma: intermediate-term results. Int J Hyperth. 2019;36(1):351–8.

    Article  Google Scholar 

  98. Zhang R, Shen L, Zhao L, Guan Z, Chen Q, Li W. Combined transarterial chemoembolization and microwave ablation versus transarterial chemoembolization in BCLC stage B hepatocellular carcinoma. Diagn Interv Radiol. 2018;24(4):219–24.

    PubMed  PubMed Central  Google Scholar 

  99. Li X, Chen B, An C, Cheng Z, Han Z, Liu F, et al. Transarterial chemoembolization combined with microwave ablation versus microwave ablation only for Barcelona clinic liver cancer stage B hepatocellular carcinoma: a propensity score matching study. J Cancer Res Ther. 2020;16(5):1027–37.

    Article  CAS  PubMed  Google Scholar 

  100. Kim D, Erinjeri JP. Postablation immune microenvironment: synergy between interventional oncology and immuno-oncology. Semin Intervent Radiol. 2019;36(4):334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Erinjeri JP, Thomas CT, Samoilia A, Fleisher M, Gonen M, Sofocleous CT, et al. Image-guided thermal ablation of tumors increases the plasma level of interleukin-6 and interleukin-10. J Vasc Interv Radiol. 2013;24(8):1105–12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zang C, Zhao Y, Liu G, Li K, Qin L, Zhang Y, et al. Variations in dynamic tumor-associated antigen-specific T cell responses correlate with HCC recurrence after thermal ablation. Front Immunol. 2022;13:982578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Slovak R, Ludwig JM, Gettinger SN, Herbst RS, Kim HS. Immuno-thermal ablations – boosting the anticancer immune response. J Immunother Cancer. 2017;5(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Duan X, Wang M, Han X, Ren J, Huang G, Ju S, et al. Combined use of microwave ablation and cell immunotherapy induces nonspecific immunity of hepatocellular carcinoma model mice. Cell Cycle. 2020;19(24):3595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang H, Hou X, Cai H, Zhuang X. Effects of microwave ablation on T-cell subsets and cytokines of patients with hepatocellular carcinoma. Minim Invasive Ther Allied Technol. 2017;26(4):207–11.

    Article  PubMed  Google Scholar 

  106. Zhou L, Fu JL, Lu YY, Fu BY, Wang CP, An LJ, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol. 2010;45(9):968–78.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou Y, Xu X, Ding J, Jing X, Wang F, Wang Y, et al. Dynamic changes of T-cell subsets and their relation with tumor recurrence after microwave ablation in patients with hepatocellular carcinoma. J Cancer Res Ther. 2018;14(1):40–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. K. Lu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chiang, J., Lu, D.S.K. (2024). Microwave in the Treatment of Primary Liver Cancers. In: Fong, Y., Covey, A., Ahmed, M., Kessler, J., Iannitti, D.A., Dupuy, D.E. (eds) Interventional Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-51192-0_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51192-0_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51192-0

  • Online ISBN: 978-3-030-51192-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics