
Scalable Algorithms for Abduction via
Enumerative Syntax-Guided Synthesis

Andrew Reynolds1, Haniel Barbosa2, Daniel Larraz1, and Cesare Tinelli1(B)

1 Department of Computer Science, The University of Iowa, Iowa City, USA
cesare-tinelli@uiowa.edu

2 Department of Computer Science, Universidade Federal de Minas Gerais (UFMG),

Belo Horizonte, Brazil

Abstract. The abduction problem in logic asks whether there exists a
formula that is consistent with a given set of axioms and, together with
these axioms, suffices to entail a given goal. We propose an approach
for solving this problem that is based on syntax-guided enumeration.
For scalability, we use a novel procedure that incrementally constructs a
solution in disjunctive normal form that is built from enumerated formu-
las. The procedure can be configured to generate progressively weaker
and simpler solutions over the course of a run of the procedure. Our
approach is fully general and can be applied over any background logic
that is handled by the underlying SMT solver in our approach. Our
experiments show our approach compares favorably with other tools for
abductive reasoning.

1 Introduction

The abduction problem for theory T , a set of axioms A and goal G asks whether
there exists a formula ϕ such that: (i) A ∧ ϕ is T -satisfiable and (ii) A ∧
ϕ |=T G. In other words, it asks for a formula ϕ that is consistent with the
axioms and when added to it allows the goal to be proven. Ideally, ϕ should be
as weak as possible and typically, it is expected to satisfy additional syntactic
restrictions, such as, for instance, on its quantifier prefix. Abductive reasoning
has gained a variety of applications recently, including extending knowledge bases
for failed verification conditions [16] and invariant generation [17,20]. Despite the
usefulness of abductive reasoning, and the recent development of a few abductive
reasoners, such as GPiD [19] and Explain [15], general tools for automatic
abductive inference are not yet mainstream.

Independently from the research on abduction, many high-performance
general-purpose solvers for syntax-guided synthesis (SyGuS) have also been
developed in the past decade. These solvers have been applied successfully in
a number of domains, including the implementation of network protocols [36],

This work was partially supported by NSF grant #1656926 and DARPA grants
#N66001-18-C-4006 and #N66001-18-C-4012.

c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12166, pp. 141–160, 2020.
https://doi.org/10.1007/978-3-030-51074-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51074-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-51074-9_9

142 A. Reynolds et al.

data processing [22], and code optimization [29]. The performance and scal-
ability of SyGuS solvers has made considerable progress in recently years, as
demonstrated by an annual competition [4].

In this paper, we investigate scalable approaches to solving the abduction
problem using (enumerative) syntax-guided synthesis techniques. We impose no
requirements on the background theory T other than it must be supported by an
existing SMT solver and amenable to syntax-guided synthesis, as we explain in
more detail later. Our immediate goal is to leverage the power of syntax-guided
synthesis solvers. Our longer term goal is to standardize the interface for these
solvers for abduction problems and make them available to users of program
analysis and automated reasoning who would benefit from high performance
automated reasoning systems for abduction.

Contributions

– We introduce a novel procedure for solving abduction problems using enu-
merative syntax-guided synthesis.

– We give an extension of the procedure that is capable of generating progres-
sively weaker solutions to a given abduction problem.

– We provide an implementation of these techniques in cvc4sy [31], a state-
of-the-art SyGuS solver implemented within the SMT solver cvc4 [8], and
discuss several experiments we designed to test its effectiveness. We show
that it has compelling advantages with respect to to other approaches for
abduction including those implemented in Explain [15] and GPiD [19].

2 Preliminaries

We work in the context of many-sorted first-order logic with equality (�) and
assume the reader is familiar with the notions of signature, terms, and so on
(see, e.g., [21]). A theory is a pair T = (Σ, I) where Σ is a signature and I is
a non-empty class of Σ-interpretations, the models of T , that is closed under
variable reassignment (i.e., every Σ-interpretation that differs from one in I only
in how it interprets the variables is also in I) and isomorphism. A Σ-formula ϕ
is T -satisfiable (respectively, T -unsatisfiable) if it is satisfied by some (resp., no)
interpretation in I. A satisfying interpretation for ϕ is a model ϕ. A formula ϕ
is valid in T (or T -valid), written |=T ϕ, if every model of T is a model of ϕ. We
write ϕ[x] for a tuple x of distinct variables to indicate that the free variables
of ϕ occur in x. Given ϕ[x], we write ϕ[t] to denote the result of replacing every
occurrence of every variable of x in ϕ with the corresponding term in the tuple
t. We write conjunctions of formulas as sets.

Syntax-Guided Synthesis (SyGuS). Syntax-guided synthesis [2] is a recent
paradigm for automated synthesis that combines semantic and syntactic restric-
tions on the space of solutions. Specifically, a SyGuS problem for a function f
in a theory T consists of

Scalable Algorithms for Abduction via Enumerative SyGuS 143

1. semantic restrictions, a specification given by a (second-order) T -formula of
the form ∃f.∀x. ϕ[f,x], and

2. syntactic restrictions on the solutions for f , given by a context-free gram-
mar R.

The grammar R is a triple (s0, S,R) where s0 is an initial symbol, S is a set
of symbols with s0 ∈ S, and R is a set of production rules of the form s → t,
where s ∈ S and t is a term built from the symbols in the signature of theory
T , free variables, and symbols from S. The rules define a rewrite relation over
such terms, also denoted by →, as expected. We say a term t is generated by
R if s0 →∗ t where →∗ is the reflexive-transitive closure of → and t does not
contain symbols from S. For example, the terms x, (x + x) and ((1 + x) + 1) are
all generated by the grammar R = (I, {I}, {I → x, I → 1, I → (I+ I)}). A solution
for the SyGuS problem for f is a lambda term λx.e of the same type as f such
that (i) ∀x. ϕ[λx.e, x] is T -valid and (ii) e is generated by R.

A number of recent approaches for the syntax-guided synthesis problem
exist that target specific classes of semantic and syntactic restrictions, including
programming-by-examples [22], single invocation conjectures [32], and pointwise
specifications [5,27]. General purpose methods for solving the syntax-guided
synthesis problem are generally based on enumerative counterexample-guided
inductive synthesis (CEGIS) [34,35]. Enumerative approach uses a grammar to
generate candidate solutions systematically based on some term ordering, typ-
ically term size (e.g., the number of non-nullary function applications in the
term). The generated candidate solutions are then tested for correctness using
a verification oracle (typically an SMT solver). This process is accelerated by
the use of counterexamples for previously discarded candidates, i.e., valuations
for the input variables x, or points, that witness the failure of those candi-
dates to satisfy the specification. Despite its simplicity, enumerative CEGIS is
the de-facto approach for solving the general class of SyGuS problems, as imple-
mented in a several recent tools, notably cvc4sy [31] and the enumerative solver
ESolver [3]. Its main downside remains scalability to cases where the required
solution is very large. As we will show in Sect. 4, we present a more scalable
procedure for the abduction problem that builds on top of enumerative CEGIS
and is capable of quickly finding (conjunctive) solutions.

3 The Abduction Problem

In general, the abduction problem for a set A of axioms and a goal G is the
problem of finding a formula S that is consistent with A and, together with A,
entails the goal. We refine the problem by restricting it to first-order logic and to
a given background theory T , and also considering syntactic restrictions on the
solution S. We refer to this as the syntax-restricted abduction problem, which
we formalize in the following definition.

Definition 1 (Abduction Problem). The (syntax-restricted) abduction
problem for a theory T , a conjunction A[x] of axioms, a goal G[x] and a grammar

144 A. Reynolds et al.

R, where axioms and goal are first-order formulas, is that of finding a first-order
formula S[x] such that:

1. A ∧ S |=T G,
2. A ∧ S is T -satisfiable, and
3. S is generated by grammar R.

In practice, as in SyGuS, syntactic restrictions on the solution space may be
used to capture user-requirements on the desired shape of a solution. They can
also be used as a mechanism for narrowing the search space to one where one
believes the solver is likely to find a solution. Observe that the formulation of the
problem includes the case with no syntactic restriction as a trivial case of a gram-
mar that accepts all formulas in the signature of the theory T . In the abduction
solver we have developed for this work, the syntax restriction is optional. When
it is missing, a grammar generating the full language is constructed internally
automatically.

Syntax-restricted abduction bears a strong similarity to SyGuS.1 We exploit
this similarity by leveraging much of the technology we developed for SyGuS,
with the goal of achieving generality and scalability.

Normally, an abduction problem admits many solutions. Thus, it may be
useful to look for solutions that optimize certain criteria, such as generality with
respect to entailment in T , or minimality with respect to size or number of free
variables. Our evaluation contains several case studies where we explore this
aspect in detail.

Recent Applications. Abduction has a long history in logic and automatic
reasoning (see, e.g., [24]). More recently, it has found many useful applications
in program analysis. It has been used for identifying the possible facts a verifi-
cation tool is missing to either discharge or validate a verification condition [16],
inferring library specifications that are needed for verifying a client program [37],
and synthesizing specifications for multiple unknown procedures called from a
main program [1]. Other applications of abduction includes loop invariant gener-
ation [17,20], where it is used to iteratively strengthen candidate solutions until
they are inductive and strong enough to verify a program, and compositional
program verification [25], where it is used for inferring not only loop invariants
but also preconditions required for the invariants to hold. Abductive inference
has also been applied to modular heap reasoning [12], and the synthesis of miss-
ing guards for memory safety [18].

4 Abduction via Enumerative Syntax-Guided Synthesis

In this section, we fix a theory T and describe our approach for solving the abduc-
tion problem in T using enumerative syntax-guided synthesis. We first present a
basic procedure for abduction in the following section, and then extend it to gen-
erate (conjunctive) solutions in a highly scalable manner. We then describe how

1 In fact, it could be readily recast as SyGuS, if one ignored Condition 2 in Definition 1.

Scalable Algorithms for Abduction via Enumerative SyGuS 145

Fig. 1. Basic procedure for the abduction problem for axioms A, goal G and grammar R.

either approach can be extended to be incremental so that it constructs progres-
sively logically weaker solutions over time. For simplicity, we restrict ourselves to
abduction problems where axioms, goals, and solutions are quantifier-free. Note,
however, that the procedure can be used for abduction problems where these
components are quantified, as long the restrictions below (lifted to quantified
formulas) are satisfied.

Requirements on T . We assume that the T -satisfiability of quantifier-free
formulas is decidable. For each sort of T , we also assume a distinguished set of
variable-free terms of that sort which we call values (e.g., numerals and negated
numerals in the case of integer arithmetic) such that every T -satisfiable formula
is satisfied by a valuation of its free variables to sort elements denoted by values.
Finally, we require the availability of a computable function Eval that takes a
first-order formula ϕ[x] and a tuple p of values of the same length as x, and
returns � if ϕ[p] is T -satisfiable and ⊥ otherwise. These restrictions are met by
most theories used in Satisfiability Modulo Theories (SMT).

4.1 Enumerative Counterexample-Guided Inductive Synthesis for
Abduction

We start with a basic CEGIS-style synthesis procedure for solving the syntax-
restriction abduction problem where points that represent counterexamples for
candidate solutions are cached and used to discard subsequent candidates. The
procedure is presented in Fig. 1. It takes as input: axioms A, goal G and gram-
mar R, and maintains an internally set P of points that satisfy the axioms and
falsify the goal. On line 3, it invokes the stateful sub-procedure NextEnum(R)
which enumerates the formulas generated by grammar R based on enumerative
techniques used in SyGuS solvers. We will refer to the return formula c as the
current candidate solution. Then, using the (fast) evaluation function Eval, it
checks at line 4 that c is satisfied by none of the counterexample points in P. If
the check fails, the procedure discards c and loops back to line 3 because adding

146 A. Reynolds et al.

c to A would definitely be not enough to entail G. If the check succeeds, it also
checks, at line 5, whether c ∧ A ∧ ¬G is T -satisfiable. If so, it obtains a witness
point p for the satisfiability, adds it to current set of points P on line 6, and
discards c; otherwise, it checks that c is consistent with A before returning it as
a possible solution.

Example 1. Let T be the theory of linear integer arithmetic with the usual sig-
nature. Let A be the set {y � 0}, let G be the set {x+ y + z � 0}, and assume R
is a grammar generating all linear arithmetic atomic formulas over the variables
x, y, z. The results of the procedure are summarized in the table below. We pro-
vide, for each iteration, the candidate c generated by syntax-guided enumeration
on line 3, the Boolean value of the conditions on lines 4, 5 and 7 of the proce-
dure when applicable, and the point (x, y, z) added to P in when the condition
on line 5 evaluates to true. The last column specifies the solution returned on
that iteration if any.

c line 4 line 5 p ∈ P line 7 return
1 x � 0 true true (0, 0,−1)
2 x < 0 true true (−1, 0, 0)
3 y � 0 false
4 y < 0 true false false
5 z � 0 false
6 z < 0 false
7 x + y � 0 false
8 x + y < 0 false
9 x + z � 0 true false true x + z � 0

On the first iteration, the syntax-guided enumeration generates the formula x �
0 as the candidate solution c. This fails to imply the goal, specifically, with
(x, y, z) = (0, 0,−1) the axioms and c are satisfied and the goal is falsified. The
second candidate fails for similar reasons for point (−1, 0, 0). The check on line
4 fails for five of the next six candidates, with the exception of the candidate
y < 0. This candidate is falsified by both points in P but it must be discarded
since it is inconsistent with the axioms (line 7). Finally, the candidate x + z � 0
generated on the ninth iteration passes all the tests and is returned as a solution
for this abduction problem.
�

4.2 A Procedure for Abduction Based on Unsat Core Learning

This section extends the procedure from Fig. 1 with techniques that make it
scalable when the intended solution to the abduction problem is a conjunction
of formulas. The procedure is applicable to cases where the language generated
by grammar R is closed under conjunction. In essence, the procedure in this
section applies when s0 → s0 ∧ s0 is a production rule in R where s0 is the
start symbol of R. However, it avoids enumerating conjunctive formulas directly,
preferring instead to generate them as sets of (non-conjunctive) formulas.

Scalable Algorithms for Abduction via Enumerative SyGuS 147

Fig. 2. Procedure for the abduction problem for A, G and R based on unsat core
learning.

This procedure is presented in Fig. 2. Similarly to the basic procedure from
the previous section, it maintains a set of points P that satisfy the axioms and
falsify the goal. Additionally, the new procedure maintains a set E of enumerated
formulas, and a set U of subsets of E that are inconsistent with the axioms. The
procedure modifies to each of these three sets during the course of its run. Each
loop iteration attempts to construct a set C of formulas whose conjunction is
a solution to the abduction problem. This is in contrast to the basic procedure
from Fig. 1 which considers only individual formulas as candidate solutions.

To construct the candidate set C, the procedure uses a helper function
EnsureCexFalsify which ensures that (i) C is non-empty, (ii) the conjunction
of the formulas in C is falsified by each point in P and (iii) no subset of C occurs
in U. The first condition is to ensure that the candidate is generated by the
grammar. The second condition ensures that C along with our axioms suffices to

148 A. Reynolds et al.

prove the goal. The third condition ensures that C is consistent with the axioms.
If we are able to successfully construct a candidate solution set C, then line
6 checks whether that candidate indeed suffices when added to the axioms to
show the goal. If it does not, we add a counterexample point to P; otherwise, we
construct a (ideally minimal) subset of Cmin of C that also suffices to show the
goal. This information can be readily computed by an SMT solver [10] with sup-
port respectively for model generation and for unsatisfiable core generation [13],
two features common to most modern solvers, including cvc4. We then check
whether Cmin is consistent with our axioms. If it is consistent, we return it as
a solution to the abduction problem; if it is not, we add some subset of it to U
that is also inconsistent with the axioms, where again the subset can be com-
puted by an SMT solver with support for unsatisfiable cores. Adding such subset
amounts to learning that subset should never be included in future candidate
solutions. To maintain the invariant that no subset of C occurs in U, we remove
one enumerated formula e ∈ u from C on line 12. In the case where a point is
added to P (line 15) or when an unsat core is added to U (line 12), we run the
method EnsureCexFalsify starting from the current resultant set C. This will force
the procedure to try to construct a new candidate solution based on the set E.
When this strategy fails to construct a candidate, the inner loop terminates and
the next formula is added to E based on syntax-guided enumeration.

We now revisit Example 1. As demonstrated in this example, GetAbductUCL
is often capable of generating solutions to the abduction problem faster than the
one from Fig. 1, albeit those solutions may be logically stronger.

Example 2. We revisit Example 1, where A is the set {y � 0} and G is {x+y+z �
0}. A run of the procedure from Fig. 2 is summarized in the table below. We list
iterations of the outer loop of the procedure (lines 2–18) in the first column of this
table. For each iteration, we provide the formula that is added to our pool E (line
3), and the considered candidate set C upon a successful call to EnsureCexFalsify.
Notice that the inner loop of the procedure may consider multiple candidates C
for a single iteration of the outer loop. For each candidate, when applicable, we
give the result of the evaluation of the condition on line 6, the point p added to
P if that condition is false (line 15), the minimal candidate set Cmin constructed
on line 7, the evaluation of the condition on line 8, the set of formulas added to
our set of unsatisfiable cores if that condition is false (line 12), and finally the
formula (if any) returned as a solution (line 9).

e ∈ E C line 6 p ∈ P Cmin line 8 u ∈ U return

1 x � 0 {x � 0} false (0, 0, −1)
2 x < 0 {x < 0} false (−1, 0, 0)

{x < 0, x � 0} true C false {x < 0, x � 0}
3 y � 0
4 y < 0 {y < 0} true C false {y < 0}
5 z � 0 {x � 0, z � 0} true C true x � 0 ∧ z � 0

Scalable Algorithms for Abduction via Enumerative SyGuS 149

We assume the same ordered list of formulas enumerated from Fig. 1. On the
first iteration, we add x � 0 to our pool of enumerated formulas E. The helper
function EnsureCexFalsify constructs the set C = {x � 0} since (vacuously) it is
true for all points in P. Similar to the first iteration of Fig. 1, on line 6 we learn
that x � 0 does not suffice with our axioms to show the goal; a counterexample
point is (x, y, z) = (0, 0,−1) which is added to P. Afterwards, EnsureCexFalsify is
not capable of constructing another C since there are no other formulas in E. In
contrast to Fig. 1 which discards the formula x � 0 at this point, here it remains
in E and can be added as part of C in future iterations.

On the second iteration, we add x < 0 to our pool. We check the candidate set
C = {x < 0}, which fails to imply the goal for counterexample point (x, y, z) =
(−1, 0, 0). To construct the next candidate set C, we must find an additional
formula from E that evaluates to false on this point (or otherwise we again
would fail to imply our goal). Indeed, x � 0 ∈ E evaluates to false on this point,
and thus EnsureCexFalsify returns the set {x < 0, x � 0}. This set suffices to
prove the goal given the axioms, that is, the condition on line 6 succeeds; the
unsatisfiable core Cmin computed for this query is the same as C. However, on line
8, we learn that this set is inconsistent with our axioms (in fact, the set by itself
is equivalent to false). On line 12, we add {x < 0, x � 0} to U. In other words,
we learn that any solution that contains both these formulas is inconsistent with
our axioms. Learning this subset will help prune later candidate solutions. The
procedure on this iteration proceeds by removing one of these formulas from
our candidate solution set C. Subsequently the helper function EnsureCexFalsify
cannot construct a new candidate subset due to {x < 0, x � 0} ∈ U and since
no other formulas occur in E.

On the third iteration, y � 0 is added to our pool. However, no candidate
solution can be constructed, where notice that y � 0 evaluates to � on both
points in P. On the fourth iteration, y < 0 is added to our pool and the candidate
solution set {y < 0} is constructed, where notice that this formula evaluates to
⊥ on both points in P. This formula suffices to show the goal from the axioms,
but is however inconsistent with our axioms. Thus, {y < 0} is added to our set of
unsatisfiable cores U. In other words, we have learned that no solution C should
include the formula y < 0 since it is alone inconsistent with our axioms.

On the fifth iteration, z � 0 is added to our pool. The only viable candidate
that falsifies all points in P and does not contain a subset from U is {x � 0, z �
0}. This set is a solution to the abduction problem and so the formula x �
0 ∧ z � 0 is returned. Due to our assumption that R admits conjunctions, this
formula meets the syntax restrictions of our grammar. A run of this procedure
required the enumeration of only 5 formulas before finding a solution whereas
the basic one in Fig. 1 required 9.
�

While the solution in the previous example x � 0 ∧ z � 0 was found in
fewer iterations, notice that it is logically stronger than the solution x + z �
0 produced in Example 1, since x � 0 ∧ z � 0 entails x + z � 0 but not
vice versa. We remark that the main advantage of procedure Fig. 2 is that is
typically capable of generating any feasible solution to the abduction problem

150 A. Reynolds et al.

faster than the procedure from Fig. 1. This is especially the case if the only
solutions to the abduction problem consist of a large conjunction of literals of
small term size �1 ∧ . . . ∧ �n. The basic procedure does not scale to this case, if
its enumeration is by formula size, since it will have to wait until the conjunction
above is enumerated as an individual formula.

Furthermore, we remark that procedure in this section can be configured to
have the same solution completeness guarantees as the basic procedure from
Fig. 1. In particular, our choice of e in the EnsureCexFalsify method chooses the
most recently enumerated formula when the candidate pool C is empty. Since
a single loop of the procedure is terminating and due to the above policy for
selection, the procedure will terminate in the worst case when the enumerated
pool E contains a formula that by itself is the solution to the synthesis conjecture.

4.3 Incremental Weakening for Abduction

The user may be interested in obtaining an abduction problem solution that
maximizes some criteria and is not necessarily the first one discovered by (either
of) the procedures we have described so far. In this section, we describe an exten-
sion to our approach for abduction that maintains the advantage of returning
solutions quickly while still seeking to generate the best solution in the long run
according to metric such as logical weakness.

We observe that it is straightforward to extend our enumerative syntax-
guided approach to generate multiple solutions. We are interested, however, in
generating increasingly better solutions over time. We briefly give an overview of
how the procedures of Fig. 1 and Fig. 2 can be extended in this way and discuss
a few relevant details of the extension. We focus on the problem of generating
the logically weakest solution to the abduction problem in this section.

Figure 3 presents an incremental procedure for generating (multiple) solu-
tions to a given abduction problem. The procedure requires that the language
restriction R admit disjunctive formulas which is the case, for instance, if
s0 → s0 ∨ s0 is a production rule in R where s0 is again the start symbol.
It maintains a formula S that, when not ⊥, represents the logically weakest solu-
tion to the abduction problem known so far. In its main loop, on line 3, the
procedure calls one of the previous procedures for generating single solutions to
the abduction problem (written GetAbduct∗). Line 4 then checks whether a new
solution can be constructed that is logically weaker with respect to the axioms
than the current one. In particular, this is the case if C∧A∧ ¬S is T -satisfiable,
which means that there is at least one point that satisfies the current candidate
but not the current solution S. In that case, the current solution S is updated to
S ∨ C, which is by construction guaranteed to also be a solution to the abduc-
tion problem. If no such point can be found, then C is redundant with respect
to the current candidate solution since it does not generalize it. Optionally, the
procedure may learn a subset u of C that is also redundant with respect to the
current candidate solution. This subset can be learned as an unsatisfiable core
when using the procedure GetAbductUCL as the sub-procedure on line 3.

Scalable Algorithms for Abduction via Enumerative SyGuS 151

Fig. 3. Incremental abduction procedure for axioms A, goal G and grammar R.

4.4 Implementation Details

We implemented the procedures above in the state-of-the-art SMT solver
cvc4 [8]. cvc4 incorporates a SyGuS solver, cvc4sy, implementing several
strategies for enumerative syntax-guided synthesis [31]. It accepts as input both
SMT problems written in the SMT-LIB version 2.6 format [9], and synthesis
problems written in the SyGuS version 2.0 format [30]. SMT-LIB version 2.6 is
a scripting language that allows one to assert a formula F to the solver with a
command of the form (assert F). The solver checks the satisfiability the formu-
las asserted so far in response to the command (check-sat). We extended cvc4’s
SMT-LIB parser to support also commands of the form (get-abduct p G R) where
p is a symbol, the identifier of the expected solution formula; G is a formula, the
goal of the abduction problem; and the optional R is a grammar expressed in
the SyGuS version 2.0 format. This command asks the solver to find a formula
that is a solution to the abduction problem (A,G), where A, standing for the
set of axioms, consists of the conjunction of the currently asserted formulas. The
expected response from the solver is a definition of the form (define-fun p () Bool

S) where p is the identifier provided in the first argument of get-abduct and S is
a formula that solves the abduction problem.

Internally, invoking a get-abduct command causes a synthesis conjecture to be
constructed and passed to cvc4sy. The latter normally accepts conjectures of the
form ∃f.∀x. ϕ[f,x] where ϕ is quantifier-free. Thus, we must pass the abduction
problem in two parts: (i) the synthesis conjecture ∃P.∀x.¬(P (x)∧A∧¬G) where
x collects the free variables of A and of G,2 stating that the expected solution
P along with the axioms A must entail the goal G, and (ii) a side condition
∃x. P (x) ∧ A stating that P must be consistent with the axioms. The synthesis
conjecture is of a form that can be readily handled by cvc4sy and processed
using its current techniques. We have modified it so that it considers the side
condition as well during solving, as described in Figs. 1 and 2.

2 We assume that all free symbols in A and G are variables.

152 A. Reynolds et al.

The procedure in Fig. 2 is implemented as a strategy on top of the basic
enumerative CEGIS loop of cvc4sy. We give some noteworthy implementation
details here. Firstly, we use a data structure for efficiently checking whether any
subset of C occurs in our set of unsatisfiable cores U, which keeps the sets in U
in an index and is traversed dynamically as formulas are added to C. We chose
enumerated formulas on line 2 of EnsureCexFalsify by selecting first the most
recently generated formula, and then a random one amongst those that meet
the criteria to be included in C. Finally, since the number of candidate solutions
can be exponential in the worst case for a given iteration of the inner loop of
this procedure, we use a heuristic where formulas cannot be added to C more
than once in the same iteration of the loop, making the number of candidate
sets tried on a given iteration linear in the size of E in the worst case.

5 Evaluation

We evaluated our approach3 in comparison with cvc4sy’s enumerative CEGIS, a
general purpose synthesis approach, as well as with GPiD [19] and Explain [15],
state-of-the-art solvers for similar abduction problems as the one defined here. In
the comparison below, we refer to the basic procedure from Fig. 1 as cvc4sy+b
and the one from Fig. 2 as cvc4sy+u. Experiments ran on a cluster with Intel
E5-2637 v4 CPUs, Ubuntu 16.04. Each execution of a solver on a benchmark
was provisioned one core, 300 s and 8 GB RAM.

5.1 Benchmarks

Since abduction tools are generally focused on specific application domains, there
is no standard language or benchmark library for evaluation. Moreover, these
tools use abduction as part of a larger verification toolchain. As here we did
not target a specific application but rather the abduction problem as a whole,
an evaluation with their benchmarks would require integrating our solver in the
tools as an alternative abduction engine. This was not feasible due to either
the source code not being available or the verification and abduction engines
being too tightly coupled for us to use our solver as an alternative. Thus we had
to generate our own abduction benchmark sets. We did so using benchmarks
relevant for verification from SMT-LIB [9], the standard test suite for SMT
solvers. We chose as a basis the SMT-LIB logics QF LIA, QF NIA, and QF SLIA
due to their relevance for verification. For QF NIA, we focus on the benchmark
family VeryMax and on kaluza for QF SLIA. In QF LIA we excluded benchmark
families whose benchmarks explode in size without the let operator. This was
necessary to allow a comparison with Explain, whose parser does not fully
support let, on let-free benchmarks. We considered both benchmarks that were
(annotated as) satisfiable and unsatisfiable for generating abduction problems,
according to the following methodology.

3 Full material at http://cvc4.cs.stanford.edu/papers/abduction-sygus/.

http://cvc4.cs.stanford.edu/papers/abduction-sygus/

Scalable Algorithms for Abduction via Enumerative SyGuS 153

Given a satisfiable SMT-LIB problem ϕ = ψ1 ∧ · · · ∧ ψn
4 in the theory T ,

we see it as an encoding of a validity problem ψ1 ∧ · · · ∧ ψn−1 |= ¬ψn that
could not be proven. We consider the abduction problem where G is ¬ψn, A is
ψ1 ∧ · · · ∧ ψn−1, and R is a grammar that generates any quantifier-free formula
in the language of T over the free variables of G and A. A solution S to this
problem allows the validity of ϕ to be proven, since ϕ ∧ S is unsatisfiable.

Given an unsatisfiable SMT-LIB problem ϕ, let U = {ψ1, . . . , ψn} be a
minimal unsatisfiable core for this formula, i.e. any conjunctive set U {ψ}, for
some ψ ∈ U , is satisfiable. Let ψmax be U ’s component with maximal size. We
will call ψmax the reference to the abduction problem. We consider the abduction
problem whose G is ¬ψG, for some ψG ∈ U and ψG = ψmax, whose axioms A are
U {ψG, ψmax} and R as before is a grammar that generates any formula in the
language of T over the free variables of G and A. A solution S to this problem
allows proving the validity of U {ψG, ψmax} |= ψG, since U {ψmax} ∪ {S}
is unsatisfiable. Solving this abduction problem amounts to “completing” the
original unsatisfiable core with the further restriction that this completion is at
least as weak as the reference, as well as consistent with all but one of the other
core components, seen as axioms for the abduction problem.

From satisfiable SMT-LIB benchmarks we generated 2025 abduction prob-
lems in QF LIA, 12214 in QF NIA and 11954 in QF SLIA. For unsatisfiable
benchmarks we were limited not only by the benchmark annotations but also by
being able to find minimal unsatisfiable cores. We used the Z3 SMT solver [14] to
generate minimal unsatisfiable cores with a 120s timeout. Excluding benchmarks
whose cores had less than three assertions (so we could have axioms, a goal and
a reference), we ended up with 97 problems in QF LIA, 781 in QF NIA and 2546
in QF SLIA. We chose the reference as the component of the unsatisfiable core
with maximal size and the goal as the last formula in the core (viewed as a list)
after the reference was removed.

Table 1. Comparison of abduction problems from originally SAT SMT-LIB bench-
marks.

Logic # cvc4sy+b cvc4sy+u

Solved Unique Weaker Solved Unique Weaker

QF LIA 2025 721 261 183 594 134 2

QF SLIA 11954 10902 3 466 10980 81 0

QF NIA 12214 1492 171 671 1712 391 45

Total 26593 13329 435 1320 13628 606 47

5.2 Finding Missing Assumptions in SAT Benchmarks

In this section we evaluate how effective cvc4sy+b and cvc4sy+u are in (i)
finding any solution to the abduction problem and (ii) finding logically weak
4 SMT-LIB problems are represented as sequences of assertions. Here we considered

each ψi as one of these assertions.

154 A. Reynolds et al.

solutions. The evaluation is done on the abduction problems produced from
satisfiable SMT-LIB benchmarks as above. Results are summarized in Table 1.
The number of solved problems corresponds to the problems for which a given
cvc4 configuration could find a solution within 300s. cvc4sy+u solves a sig-
nificant number of problems more than cvc4sy+b in all logics but QF LIA.
In both QF LIA and QF NIA we can see a significant orthogonality between
both approaches. We attribute these both to the fragility of integer arithmetic
reasoning, where the underlying ground solver checking the consistency of can-
didate solutions is greatly impacted by the shape of the problems it is given.
Overall, the procedure in cvc4sy+u leads to a better success rate than the
basic procedure in cvc4sy+b. Solution strength was evaluated on commonly
solved problems considering the solutions produced according to the incremen-
tal procedures shown in Sect. 4.3, in which the overall solution is a disjunction
of individual solutions found over time. As expected, cvc4sy+u is able to solve
more problems but at the cost of often producing stronger (and bigger) solu-
tions than cvc4sy+b. This is particularly the case in QF SLIA and QF NIA,
in which cvc4sy+u both solves many more problems and often finds stronger
solutions.

5.3 Completing UNSAT Cores

Here we evaluate how effective cvc4sy+b and cvc4sy+u are in solving the
abduction problem with the extra restriction of finding a solution that is at least
as weak as a given reference formula. We use the abduction problems produced
from unsatisfiable SMT-LIB benchmarks following the methodology of Sect. 5.1
as the basis for this evaluation.

Table 2. Comparison of abduction problems from originally UNSAT SMT-LIB bench-
marks.

Logic # cvc4sy+b cvc4sy+u

Solved Unique Solved Unique

QF LIA 97 6 0 6 0

QF SLIA 2546 2546 32 2514 0

QF NIA 781 86 49 41 4

Total 3424 2638 81 2561 4

The results are summarized in Table 2. cvc4sy+b significantly outperforms
cvc4sy+u in QF SLIA, in which the references are very simple formulas (gener-
ally with size below 3), for which the specialized procedure of cvc4sy+u is not
necessary. Overall, as in the previous section when checking who finds the weak-
est solution, cvc4sy+b has as advantage over cvc4sy+u for finding solutions
as weak as the reference.

Scalable Algorithms for Abduction via Enumerative SyGuS 155

5.4 Comparison with Explain

Explain [15] is a tool for abductive inference based on quantifier elimination. It
accepts as input a subset of SMT-LIB and we extended it to support abduction
problems as generated in Sect. 5.1. However, Explain imposes more restrictions
to their solutions, only producing those with a minimal number of variables
and for which every other solution with those variables is not stronger than it.
Their rationale is finding “simple” solutions, according to the above criteria,
which are more interesting to their applications. Since we do not apply these
restrictions in cvc4, nor is in the scope of this paper incorporating them into
our procedure, it should be noted that comparing cvc4 and Explain puts the
latter at a disadvantage. We considered satisfiable SMT-LIB problems in the
QF LIA logic for our evaluation, as QF LIA is better supported by Explain
(Table 3).

Table 3. Comparison with Explain in 2025 abduction problems in QF LIA

Solved Unique Total time

cvc4sy+b 721 261 418849 s

cvc4sy+u 594 125 449424 s

Explain 33 0 532839 s

All problems solved by Explain are solved by cvc4sy+u. Of these 33 prob-
lems, cvc4sy+u, in incremental mode, finds a solution with the same minimal
number of variables as Explain for 25 of them. Of the 8 problems to which
it only finds solutions with more variables, in 4 of them the difference is of a
single variable. All other 4 are in the slacks benchmark family, which contains
crafted problems. A similar comparison occurs with cvc4sy+b. This shows that
even though cvc4 is not optimized to minimize the number of variables it its
solutions, it can still often finds solutions that are optimal (or close to optimal)
according to Explain’s criteria, while solving a much larger number of problems
with a fully general approach.

5.5 Comparison with GPiD

We also compared cvc4 with GPiD [19], a framework for generating impli-
cates, i.e. logical consequences of formulas. As Echenim et al. say in their paper,
negating the implicate of a satisfiable formula ϕ yields the “missing hypothesis”
for making ϕ unsatisfiable. Therefore GPiD solves a similar problem to that
of Sect. 5.2, differing by they always considering an empty set of axioms and
the whole original formula as the goal. Given this similarity, we compare the
performance of GPiD in generating implicates for satisfiable benchmarks and
of cvc4sy+b and cvc4sy+u in solving abduction problems generated from
those same benchmarks. We did not consider the benchmarks from the previous

156 A. Reynolds et al.

sections because we were not able to produce abduces, which are the syntac-
tic components GPiD uses to find implicates, for other logics using the tools in
GPiD public repository5. Thus we restricted our analysis to 400 abduction prob-
lems produced, as per the methodology of Sect. 5.1, from satisfiable QF UFLIA
benchmarks that were used in [19]. Note however that the cvc4 configurations
will require solutions to be consistent with all but the last assertion in the prob-
lems (which are the axioms in the respective abduction problem). Since that,
as far as we know, this is not a requirement in GPiD, effectively cvc4sy+b
and cvc4sy+u are solving a harder problem than GPiD. We formulated the
abduction problem this way, rather than as with all assertions as goals, to avoid
trivializing the abduction problem, for which the negation of the goal would
always be a solution. Also note that the presence of uninterpreted functions in
the abduction problem requires solutions to be generated in a higher-order back-
ground logic, which cvc4 supports after a recent extension [7]. As in [19], we used
GPiD’s version with the Z3 backend. We present their results with (GPiD-1)
and without (GPiD) the restriction to limit the set of abduces to size 1.

Table 4. Comparison with GPiD on 400 abduction problems in the QF UFLIA logic.

Solved Unique Total time

cvc4sy+b 214 0 57290 s

cvc4sy+u 342 0 18735 s

GPiD 193 0 69 s

GPiD-1 398 54 1188 s

Results are summarized in Table 4. cvc4sy+u significantly outperforms
cvc4sy+b, both in the number of problems solved and in total time, besides
being almost 20% faster on commonly solved problems. We also see that solu-
tion finding in GPiD is heavily dependent on which abduces are considered when
building solutions, as it solves almost all benchmarks when limited to abduces
of size 1 but barely half when unrestricted. It should also be noted that GPiD
takes pre-computed abduces, whose production time is not accounted for in the
evaluation. Despite this, cvc4sy+u is only on average 30% slower on commonly
solved problems than GPiD-1 and solves many more problems than GPiD. The
big variation of GPiD results in terms of what pre-determined set of candidates
can be used in the computation is a severe limitation of their tool. Similarly,
while the method proposed in [19] is theory agnostic, their tooling for producing
abduces imposes strong limitations on the usage of GPiD for theories other than
QF UFLIA.

5 At https://github.com/sellamiy/GPiD-Framework.

https://github.com/sellamiy/GPiD-Framework

Scalable Algorithms for Abduction via Enumerative SyGuS 157

6 Related Work

The procedure introduced in Sect. 4.2 based on unsat core learning follows a
recent trend in enumerative syntax-guided synthesis solving that aims to improve
scalability by applying divide-and-conquer techniques, where candidate solutions
are built from smaller enumerated pieces rather than being directly enumerated.
While previous approaches, both for pointwise [5,27] and for unrestricted specifi-
cations [6], have targeted general-purpose function synthesis, we specialize divide
and conquer for solving the abduction problem with a lean (see Sect. 4.4) and
effective (see Sect. 5) procedure.

Abductive inference tools for the propositional case include the AbHS and
AbHS+ tools [26,33], based on SAT solvers [11] and hitting set procedures, and
the Hyper [23] tool, that includes a series of algorithmic improvements over the
former, and uses a MaxSAT solver for computing the hitting set. Like AbHS,
GetAbductUCL checks entailment and consistency using two separate calls to the
underlying solver, and uses its failures for the selection of new candidates. In
contrast, GetAbductUCL keeps this information in two dedicated data structures
rather than encoding it with an implicit hitting set. Another significant differ-
ence is that the set of hypotheses in the propositional case is fixed and finite,
whereas in our setting it is generated dynamically from a grammar. More general
approaches, to which our work bears more resemblance and to which we provided
an experimental comparison in Sect. 5, are GPiD [19] and Explain [15]. GPiD
uses an off-the-shelf SMT solver as a black box to generate ground implicates.
It can be used with any theory supported by the underlying SMT solver, simi-
larly to our SyGuS-based approach. While we enumerate formulas that compose
the solution for the abduction problem GPiD’s authors use abducibles, which
are equalities and disequalities over the variables in the problem. They similarly
build candidates in a refinement loop by combining abducibles according to con-
sistency checks performed by an underlying SMT solver. They use an order on
abducibles to guide the search, which is analogous to the enumeration order in
enumerative synthesis. Explain on the other hand is built on top of an SMT
solver for the theories of linear integer arithmetic and of equality with unin-
terpreted functions, although its abduction inference procedure in principle can
work with any theory that admits quantifier elimination. The method imple-
mented in Explain is based on first determining a subset of the variables in the
abduction problem and trying to build the weakest solution over these variables
via quantifier elimination, while computing minimal satisfying assignments to
ensure that a found solution covers a minimal subset. This method, however, is
not complete, as it can miss solutions. The tool also allows the user to specify
costs for each variable, so that a given minimal set may be favored.

7 Conclusion

We have described approaches for solving the abduction problem using a modern
enumerative solver for syntax-guided synthesis. Our evaluation shows that proce-
dures based on enumerative CEGIS scale for several non-trivial abduction tasks,

158 A. Reynolds et al.

and have several compelling advantages with respect to other approaches like
those used in Explain and GPiD. In several cases, it suffices to use a basic pro-
cedure for enumerative CEGIS to generate solutions to abduction problems that
are optimal according to certain metrics. Moreover, the generation of feasible
solutions can be complemented and accelerated via a procedure for generating
conjunctions of enumerated formulas as shown in Fig. 2.

We believe that new abduction capabilities presented in this paper and imple-
mented in cvc4 will be useful in all the applications of abduction we describe
in Sect. 3. In addition, we see a number of promising applications in the context
of SMT itself. For example, we plan to use abduction to generate useful condi-
tional rewrite rules for SMT solvers. Many such rules are used internally by SMT
solvers to simplify their input formulas by (equivalence-preserving) term rewrit-
ing. The manual identification and selection of good rewrite rules is a tedious
and error-prone process. Abduction can be used to generalize a recent approach
for the semi-automated development of rewrite rules [28] by synthesizing (most
general) conditions under which two terms are equivalent. This in turn can be
used to develop new solving strategies in the SMT solver based on those rewrite
rules.

References

1. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. ACM
SIGPLAN Not. 51(1), 789–801 (2016)

2. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 1–8. IEEE (2013)

3. Alur, R., Černý, P., Radhakrishna, A.: Synthesis through unification. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 163–179. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 10

4. Alur, R., Fisman, D., Singh, R., Solar-Lezama, A.: SyGuS-comp 2017: results and
analysis. In: Proceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidel-
berg, Germany, 22 July 2017, pp. 97–115 (2017)

5. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis via
divide and conquer. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 319–336. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 18

6. Barbosa, H., Reynolds, A., Larraz, D., Tinelli, C.: Extending enumerative function
synthesis via SMT-driven classification. In: Barrett, C.W., Yang, J. (eds.) Formal
Methods in Computer-Aided Design (FMCAD), pp. 212–220. IEEE (2019)

7. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending SMT
solvers to higher-order logic. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI),
vol. 11716, pp. 35–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29436-6 3

8. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

9. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

https://doi.org/10.1007/978-3-319-21668-3_10
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
www.SMT-LIB.org

Scalable Algorithms for Abduction via Enumerative SyGuS 159

10. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories
(chap. 26). In Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
825–885. IOS Press (2009)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam
(2009)

12. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H: Compositional shape analysis
by means of bi-abduction. In: Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 289–300 (2009)

13. Cimatti, A., Griggio, A., Sebastiani, R.: Computing small unsatisfiable cores in
satisfiability modulo theories. J. Artif. Intell. Res. (JAIR) 40, 701–728 (2011)

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Dillig, I., Dillig, T.: Explain: a tool for performing abductive inference. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 684–689. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 46

16. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. ACM SIGPLAN Not. 47(6), 181–192 (2012)

17. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abduc-
tive inference. ACM SIGPLAN Not. 48(10), 443–456 (2013)

18. Dillig, T., Dillig, I., Chaudhuri, S.: Optimal guard synthesis for memory safety. In:
Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 491–507. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 32

19. Echenim, M., Peltier, N., Sellami, Y.: A generic framework for implicate generation
modulo theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 279–294. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 19

20. Echenim, M., Peltier, N., Sellami, Y.: Ilinva: using abduction to generate loop
invariants. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019. LNCS (LNAI), vol.
11715, pp. 77–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29007-8 5

21. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
Cambridge (2001)

22. Gulwani, S.: Programming by examples: applications, algorithms, and ambiguity
resolution. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706,
pp. 9–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 2

23. Ignatiev, A., Morgado, A., Marques-Silva, J.: Propositional abduction with implicit
hitting sets. In: ECAI 2016–22nd European Conference on Artificial Intelligence,
29 August–2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence, PAIS 2016, pp. 1327–1335 (2016)

24. Josephson, J.R., Josephson, S.G. (eds.): Abductive Inference: Computation, Phi-
losophy, Technology. Cambridge University Press, Cambridge (1994)

25. Li, B., Dillig, I., Dillig, T., McMillan, K., Sagiv, M.: Synthesis of circular composi-
tional program proofs via abduction. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 370–384. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36742-7 26

26. Moreno-Centeno, E., Karp, R.M.: The implicit hitting set approach to solve com-
binatorial optimization problems with an application to multigenome alignment.
Oper. Res. 61(2), 453–468 (2013)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-39799-8_46
https://doi.org/10.1007/978-3-319-08867-9_32
https://doi.org/10.1007/978-3-319-94205-6_19
https://doi.org/10.1007/978-3-319-94205-6_19
https://doi.org/10.1007/978-3-030-29007-8_5
https://doi.org/10.1007/978-3-030-29007-8_5
https://doi.org/10.1007/978-3-319-40229-1_2
https://doi.org/10.1007/978-3-642-36742-7_26
https://doi.org/10.1007/978-3-642-36742-7_26

160 A. Reynolds et al.

27. Neider, D., Saha, S., Madhusudan, P.: Synthesizing piece-wise functions by learning
classifiers. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
186–203. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 11

28. Nötzli, A., et al.: Syntax-guided rewrite rule enumeration for SMT solvers. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 279–297. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 20

29. Phothilimthana, P.M., Thakur, A., Bod́ık, R., Dhurjati, D.: Scaling up superopti-
mization. In: Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
2016, Atlanta, GA, USA, 2–6 April 2016, pp. 297–310 (2016)

30. Raghothaman, M., Reynolds, A., Udupa, A.: The SyGuS language standard version
2.0 (2019)

31. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25543-5 5

32. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21668-3 12

33. Saikko, P., Wallner, J.P., Järvisalo, M.: Implicit hitting set algorithms for reasoning
beyond NP. In: Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa,
25–29 April 2016, pp. 104–113 (2016)

34. Solar-Lezama, A., Rabbah, R.M., Bod́ık, R., Ebcioglu, K.: Programming by sketch-
ing for bit-streaming programs. In: Sarkar, V., Hall, M.W. (eds.) Conference on
Programming Language Design and Implementation (PLDI), pp. 281–294. ACM
(2005)

35. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pp. 404–
415. ACM (2006)

36. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,
Alur, R.: TRANSIT: specifying protocols with concolic snippets. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013, Seattle, WA, USA, 16–19 June 2013, pp. 287–296 (2013)

37. Zhu, H., Dillig, T., Dillig, I.: Automated inference of library specifications for
source-sink property verification. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301,
pp. 290–306. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03542-
0 21

https://doi.org/10.1007/978-3-662-49674-9_11
https://doi.org/10.1007/978-3-662-49674-9_11
https://doi.org/10.1007/978-3-030-24258-9_20
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-03542-0_21
https://doi.org/10.1007/978-3-319-03542-0_21

	Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis
	1 Introduction
	2 Preliminaries
	3 The Abduction Problem
	4 Abduction via Enumerative Syntax-Guided Synthesis
	4.1 Enumerative Counterexample-Guided Inductive Synthesis for Abduction
	4.2 A Procedure for Abduction Based on Unsat Core Learning
	4.3 Incremental Weakening for Abduction
	4.4 Implementation Details

	5 Evaluation
	5.1 Benchmarks
	5.2 Finding Missing Assumptions in SAT Benchmarks
	5.3 Completing UNSAT Cores
	5.4 Comparison with Explain
	5.5 Comparison with GPiD

	6 Related Work
	7 Conclusion
	References

