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Abstract. This paper describes a method of computing plausible states
of a system as a logical model. The problem of analyzing state-based sys-
tems as they evolve over time has been studied widely in the automated
reasoning community (and others). This paper proposes a specific app-
roach, one that is tailored to situational awareness applications. The
main contribution is a calculus for a novel specification language that
is built around disjunctive logic programming under a possible models
semantics, stratification in terms of event times, default negation, and a
model revision operator for dealing with incomplete or erroneous events
– a typical problem in realistic applications. The paper proves the cal-
culus correct wrt. a formal semantics of the specification language and
it describes the calculus’ implementation via embedding in Scala. This
enables immediate access to rich data structures and external systems,
which is important in practice.

1 Introduction

This paper is concerned with logic-based modeling and automated reasoning
for estimating the current state of a system as it evolves over time. The main
motivation is situational awareness [12], which requires the ability to understand
and explain a system’s state, at any time, and at a level that matters to the user,
even if only partial or incorrect information about the external events leading
to that state is available. In a supply chain context, for example, one cannot
expect that events are reported correctly and in a timely manner. Sensors may
fail, transmission channels are laggy, reports exist only in paper form, not every
player is willing to share information, etc. Because of that, it is often impossible
to know with full certainty the actual state of the system. The paper addresses
this problem and proposes to instead derive a set of plausible candidate states as
an approximation of ground truth. The states may include consequences relevant
for situational awareness, e.g., that a shipment will be late. A human operator
may then make decisions or provide additional details, this way closing the loop.

The plausible candidate states are represented as models of a logical specifi-
cation and a given a set of external timestamped events. The proposed modeling
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paradigm is logic programming, and models are computed in a bottom-up way. It
adopts notions of stratification, default negation and a possible model semantics
for its (disjunctive) program rules. Stratification is in terms of event time, with
increasing time horizons for anytime reasoning; default negation is needed to
reason in absence of information such as event reports; disjunctions are needed
to derive alternate candidate states. In order to deal with less-than-perfect event
data, the modeling language features a novel model revision operator that allows
the programmer to formulate conditions under which a model computation with
a corrected set of events should be attempted in an otherwise inconsistent state.
The following informal overview illustrates these features.

1.1 Main Ideas and Design Rationale

A model, or program, is comprised of a set of rules of the form head ← body .
The head can be a non-empty disjunction of atoms, or a fail head. The former
rules open the solution (models) space for a fixed set of external events, while fail
head rules limit it and specify amended event sets for new solution attempts.
The body is a conjunction of atoms and negated (via “not”) conjunctions of
atoms. Negation is “default negation”, i.e., a closed world assumption is in place
for evaluating the latter. Rules may contain first-order variables and must be
range restricted. This guarantees that only ground heads can be derived from
ground facts when a rule is evaluated in a bottom-up way. Our notion of range
restriction is somewhat non-standard, though, and permits extra variables inside
negation. These variables are implicitly existentially quantified (“not ∃x . . . ”).

We need, however, syntactic restrictions that enforce stratification in terms
of “time”. This entails that rule evaluation does not depend on facts from the
future. In fact, this is a reasonable assumption for situational awareness, whose
any-time character requires to understand the current situation based on the
available information up to now only. Technically, every atom must have a ded-
icated “time” argument, a N-sorted variable, which, together, with earlier-than
constraints (via “<” or “≤”) enforces stratification. The details of that will have
to wait until later (Definition 1). An example rule is

hungry(t, x) ∨ thirsty(t, x) ← get up(t, x),not(t − 6 ≤ s, s ≤ t,meal(s, x)) . (1)

It could say “if x gets up at time t and didn’t have a meal in 6 hours prior then x is
hungry or thirsty at t, or both”. A set of facts, say, {get up(8, bob),meal(12, bob)}
then entails hungry(8, bob) ∨ thirsty(8, bob). Notice that in the relevant rule
instance the negated body element not(8 − 6 ≤ s, s < 8,meal(s, bob))
is satisfied by the facts (using the closed-world assumption), as for the
only relevant meal-instance meal(12, bob) the arithmetic constraint is false.
The possible model semantics [26], which we adopt, interprets disjunctions
(also) inclusively. Each resulting case {hungry(8, bob)}, {thirsty(8, bob)} and
{hungry(8, bob), thirsty(8, bob)} together with the facts yields a possible model.

Stratification in terms of time makes default negation with existentially quan-
tified variables possible; no need to look into the future. We impose a secondary
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kind of stratification that also makes it more efficient. It rests on distinguish-
ing two types of atoms: EDB atoms and IDB atoms (extensional/intensional
database, respectively). EDB atoms are for external events, the given facts, and
IDB atoms are for derived facts. A disjunctive head can contain IDB atoms
only. Now, an IDB atom within a negation has to be strictly earlier (<) than
the head, while an EDB atom within a negation can be non-strictly earlier (≤).
This make sure that a truth value for a negated expression cannot change later,
in the course of rule evaluation in increasing time order. The rule (1) above is
stratified if meal is EDB, otherwise “s ≤ t” would have to be “s < t”. A rule
like hungry(t, x) ← get up(t, x),not hungry(t, x) cannot be stratified.

Rules with fail heads enable the programmer to specify when a (partial)
model candidate is unsatisfiable and to say how to potentially fix this situation.
A rule of the form fail() ← body without arguments to fail is a usual integrity
constraint, e.g.:

fail() ← hungry(t, x), eat(s, x), t − 4 ≤ s, s < t (2)

The rule (2) rejects that x is both hungry and has eaten within the last 4 hours.
Together with rule (1) and the EDB {eat(7, bob), get up(8, bob)} one obtains the
sole possible model {eat(7, bob), get up(8, bob), thirsty(8, bob)}.

The second usage is of the form fail(+a,−b) ← body , where a and b are EDB
atoms with timestamps not in the future. When the rule body is satisfied, the
model computation restarts with a added and b removed from the EDB. For
example, the rule

fail(−eat(s, x)) ← get up(t, x), eat(s, x), t − 1 ≤ s, s < t (3)

rejects a model candidate where x has eaten within one hour before getting up.
The rule correspondingly removes the eat event from the EDB and the model
computation restarts. One could further add

fail(−get up(t, x)) ← get up(t, x), eat(s, x), t − 1 ≤ s, s < t (4)

to (1)–(3) as an alternative to fix the problem. The principle is that as soon as
the earliest fail head is derived, the model candidate at that time is given up.
Then alternate model computations are started for all fail heads derivable for
that time. Later times are not considered. In the example, thus, both restarts
prescribed by rules (3) and (4) are tried.

1.2 Related Work and Novelty

Assigning models to logic programs as their intended meaning has been studied
for decades. We only mention the stable models semantics [14,18], its extension
for disjunctive programs [11,15], and the possible model semantics [26,27] as
the most relevant in the following discussion. Both ascribe meaning to a given
program in terms of minimal models, but differ in the way disjunctive rule heads
are interpreted (exclusive vs. inclusive, respectively).
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Most reasoning tasks around stable models are rather complex, e.g., model
existence for propositional disjunctive programs is ΣP

2 -complete [10]. This com-
plexity translates into generate-and-test algorithms even without default nega-
tion. For instance, the tableau calculus in [22] for negation-free programs gener-
ates in its branches model candidates, whose minimality need to be tested by a
subsequent theorem prover call. Another need for generate-and-test algorithms
for stable models comes from default negation. In the general case, these algo-
rithms need to guess a stable model candidate and verify its minimality for a
certain negation-free program obtained by simplification with this candidate, the
Gelfond-Lifschitz transformation.

In contrast, our approach avoids the intricacies of generate-and-test algo-
rithms. This is achieved by using the possible model semantics [26] and a spe-
cific concept of stratification for dealing with default negation. The latter fits in
the framework of local stratification [25]. A similar concept of stratification by
time has been employed for expressing greedy algorithms in Datalog [30]). The
usual stratified case, by predicates, but without quantification within negation
was already been considered in [26].

As indicated in Sect. 1.1 our language features a fail operator for model revi-
sion. This feature is the one that possible stands out most among the other men-
tioned. A rule fail(−p(x)) ← q(x), p(x) applied to the facts {q(a), p(a)} derives
the model {q(a)}. This cannot be achieved without belief revision, as given facts
have to be satisfied.

Belief revision [1,24] is the process of changing beliefs to take into account
a new piece of information. It has also been studied extensively in a logic pro-
gramming context and in a general way. For instance, Schwind and Inoue [29]
consider the problem of revision by a program in a rather expressive setting,
generalized logic programs equipped with stable model semantics. The perhaps
closest approach to ours are the revision specifications of [19,20]. Revision pro-
grams generalize logic programming with stable model semantics by an explicit
deletion operator. Each revised model is obtained from the initial interpretation
by means of insertions and deletions specified by a Gelfond-Lifschitz type reduced
program. In that way, our approach is related, but simpler, as it revises only the
EDB and does not require a generate-and-test algorithm. On the other hand,
the semantics of our revisions takes timestamps into account, so that intended
revisions are only those that are derivable “now”.

The focus on the paper is not on situational awareness as such. We merely
mention that the problem has attracted interest from a logical perspective.
In earlier work [2] we proposed bottom-up model computation with a Hyper
Tableaux prover [4,23] as a component for data aggregation. In a related context
of conformance checking, the authors of [7] propose if-then rules for validating
process execution traces by means of a Prolog interpreter. Other approaches for
conformance checking include planning [9] and diagnosis of discrete dynamical
systems [8,21].

To sum up, the main novelty of our approach lies in the combination of
the possible model semantics with specific concepts of stratification and model
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revision. The combination is designed to enable simple fixpoint algorithms that
are sound and complete for a not too complicated declarative semantics. This is
the main theoretical contribution.

On the practical side we offer a (publicly available) implementation of our
calculus, as a shallow embedding into the Scala programming language. Some-
what related, a shallow embedding into Scala has been used for monitoring event
streams over Allen’s temporal interval logic [17]. Yet, it is an uncommon imple-
mentation technique for automated reasoning systems. The practical advantages
are described in Sect. 6.

2 Preliminaries

We assume the reader is familiar with basic notions of first-order logic and answer
set programming. See [6] and [13], respectively, for introductory texts.

A first-order logic signature Σ = ΣP � ΣF is comprised of predicate symbols
ΣP and function symbols ΣF of fixed arities. We assume N ⊆ ΣF , i.e., the natural
numbers are also constants of the logical language, and that ΣP contains the
arithmetic predicate symbols ΣN = {<,≤,=, �=}. The ordinary predicate symbols
are ΣP \ΣN. Let X be a countably infinite set of variables. Instead of introducing
a two-sorted signature we assume informally that all terms and formulas over Σ
and X are built in a sorted way.

The letters s and t usually stand for terms, x and y stand for variables, and p
and q for ordinary predicate symbols. We speak of ordinary atoms and arithmetic
atoms depending on whether the predicate symbol is ordinary or arithmetic,
respectively. For a set A of atoms let ord(A) be the set of all ordinary atoms in
A.

Intuitively, N represents timestamps (points in time), and < and ≤ stand for
the strict and non-strict earlier-than relationships, respectively. We assume every
ordinary predicate symbol has arity ≥ 1 and its, say, first argument ranges over N.
For any ordinary atom a = p(t1, . . . , tn) let time(a) = t1 be its timestamp. The
function symbols ΣF may contain arithmetic operations as needed to compute
with timestamps, but ΣF may not contain uninterpreted operators with N as
the result sort.

We assume the ordinary predicate symbols are partitioned as ΣP \ ΣN =
ΣEDB�ΣIDB. The symbols in ΣEDB are called extensional database (EDB) pred-
icates, and the symbols in ΣIDB are the intensional database (IDB) predicates.
An EDB is a finite set of ground ΣEDB-atoms, and an IDB is a finite set of
ground ΣIDB-atoms. We may think of an EDB as a timestamped sequence of
external events, and an IDB as higher-level conclusions derived from that EDB.
Below we will exploit this distinction for computing models in a stratified way
and for defining a model revision operator.

As usual, a substitution σ is a mapping from the variables to terms. A sub-
stitution is identified with its homomorphic extension to terms. Substitution
application is written postfix, i.e., we write tσ instead of σ(t). The domain of σ
is the set dom(σ) = {x ∈ X | xσ �= x} and is always assumed to be finite.
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When z is a term, an atom, a sequence, or a set of those, let var(z) denote
the set of variables occurring in z. We say that z is ground if var(z) = ∅. A
substitution γ is a grounding substitution for z iff zγ is ground. In this case zγ
is also called a ground instance of z (via γ). Let gnd(z) denote the set of all
ground instances of z.

3 Stratified Programs

We are now in a position to define our main modeling tool, a variation on if-then
rules as popularized in the area of disjunctive logic programming.

A positive body is a list �b = b1, . . . , bk of atoms with k ≥ 0. If k = 0 then �b is
empty otherwise it is non-empty. (The list represents a conjunction.) A negative
body literal is an expression of the form not�b, where �b is a non-empty positive
body. A body is a list b1, . . . , bk,not�bk+1, . . . ,not�bn comprised of a (possibly
empty) positive body and (possibly zero) negative body literals. It is variable
free if var(b1, . . . , bk) = ∅. A head is one of the following:

(a) an ordinary head : a disjunction h1 ∨· · ·∨hm of IDB atoms, for some m ≥ 1,
or

(b) a fail head : an expression of the form fail(�e) where �e = ±1 e1, . . . ,±k ek, for
some k ≥ 0, EDB atoms ei and ±i ∈ {+,−}. If k = 0 then �e is the empty
sequence ε, and fail(ε) is usually written as fail().

A rule consist of a head H and a body and is commonly written as an implication

H ← b1, . . . , bk,not�bk+1, . . . ,not�bn . (5)

By an ordinary rule (fail rule) we mean a rule with an ordinary head (fail head),
respectively. A fail set is a (possibly empty) set of ground fail heads.

Let r be a rule (5) and �b = b1, . . . , bk its positive body. We say that r is
variable free iff var(H) ∪ var(�b) = ∅. This notion of variable-freeness is justified
by the fact that the extra variables var(�bi) \ var(�b) in the negative body literals
not�bi are implicitly existentially quantified, see Definition 5 below. We say that
r′ is a variable free instance of r via σ iff r′ = rσ is variable free and dom(σ) =
var(H) ∪ var(�b). Notice that σ must not act on the extra variables as these are
shielded by quantification.

A program is a set of rules. It is variable free if all of its rules are. Semantically,
every program R stands for the (possibly infinite) variable free program vfinst(R)
that is obtained by taking all variable free instances of all rules in R.

The rules are to be evaluated in a bottom-up way. If a current model candi-
date satisfies a rule body then its head needs evaluation. An ordinary rule extends
the current model according to the possible model semantics as explained below
and a fail rule rejects the current model. If a fail rule’s head is fail() it acts like a
traditional rule with an empty head, as an integrity constraint. If the argument
list �e is non-empty the fail rule “fixes” the current EDB by adding (“+”) or
removing (“−”) EDB atoms and starting a new model computation.
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In order to admit effective model computation our rules will be stratified.
Stratification means range-restrictedness and other restrictions on variables and
negation.

Definition 1 (Stratified rule). Let r be a rule (5) with positive body �b =
b1, . . . , bk and y be a variable. The rule r is stratified wrt. y if there is a b ∈ �b
such that time(b) = y and the following holds:

(i) var(�b) ⊆ var(ord(�b)),
(ii) for every ordinary atom b ∈ �b,

time(b) = y or time(b) = x and x � y ∈ �b for some variable x and � ∈ {<
,≤},

(iii) every negative body literal not�bk+1, . . . ,not�bn is stratified, and
(iv) the head H is stratified.

In the above, a negative body literal not�bi is stratified if the following holds:

(i) var(�bi) \ var(�b) ⊆ var(ord(�bi)),
(ii) for every EDB atom b ∈ �bi,

time(b) = y or time(b) = x and x � y ∈ �bi for some variable x and � ∈ {<
,≤}, and

(iii) for every IDB atom b ∈ �bi,
time(b) = x and x < y ∈ �bi for some variable x.

The head H is stratified if the following holds:

(i) var(H) ⊆ var(ord(�b)),
(ii) if H is an ordinary head h1 ∨· · ·∨hm then time(h1) = · · · = time(hm) = y.
(iii) if H is a fail head fail(�e) then for all ±e ∈ �e, time(e) is an arithmetic

expression and time(e) � y ∈ �b, for some � ∈ {<,≤}.
A rule is stratified if it is stratified wrt. some variable y. A program is stratified
if each of its rules is stratified.1

Definition 1 expresses conditions on rules in terms of time-restrictedness and
range-restrictedness. The variable y stands for the latest of all timestamps among
all timestamps of the ordinary atoms in the rule body. This is made sure by
constraints x � y in the various parts of the definition where � ∈ {<,≤}. More
precisely, ordinary atoms in the positive body are timestamped “≤”; ordinary
heads are timestamped “y” so that no literals timestamped in the past can be
inserted into the model (this would defy stratification); and restarts can modify
only the past. For the ordinary atoms in negative body literals we distinguish
between EDB and IDB atoms. EDB atoms cannot be derived in heads of rules,
which affords “≤”, whereas IDB atoms must be “<”.

1 Usually, stratification is defined as a property of the program as a whole, via its
call-graph.



344 P. Baumgartner

Fig. 1. Supply chain program. See Example 2 for explanations.

The remaining conditions force range-restrictedness. In the first part, condi-
tion (i) says that every variable in a positive body atom appears also in some
ordinary positive atom; similarly for condition (i) for heads. Condition (i) for neg-
ative body atoms says that every extra variable in a negative body atom appears
also in some of its ordinary body atoms. Together these conditions make sure
that matching a rule’s ordinary atoms against a ground candidate model always
removes all variables. This way, all arithmetic expressions can be evaluated and
only ground heads can be derived.

Example 1 (Stratified rule). Let ΣEDB = {p} and ΣIDB = {d}. The rule
d(x3, x1) ← x1 < x3, p(x1), p(x3),not (x1 < x2, x2 < x3, p(x2)) is stratified
wrt. x3 (= time(p(x3))). It collects in d the timestamps between consecutive
p-events. For example, given the set I = {p(2), p(4), p(7), p(13)}, the rule when
applied exhaustively derives d(4, 2), d(7, 4) and d(13, 7) but not, e.g, d(7, 2).
The extra variable x2 in its negative body literal is implicitly existentially
quantified. 
�
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Example 2 (Supply chain). The program in Fig. 1 illustrates a possible use of
our approach in a supply chain application. It is written in the concrete input
syntax of our implementation, the Fusemate system (Sect. 6).

The signature is ΣEDB = {Load,Unload,SameBatch} and ΣIDB = {In}. A
fluent Load(time, obj, cont) expresses that at the given time an object obj is loaded
into a container cont, similarly for Unload. A fluent In(time, obj, cont) says that
at the given time an object obj is inside the container cont.

With this interpretation, the rules (1) and (2) for the In relation should be
obvious. Rule (3) is a frame axiom for the In relation. That is, it states when an
In-fluent carries over to the next timestamp: an object remains in a container if
neither it nor a container containing it is unloaded from the container. The body
atom Step(time, prev) holds true if prev is the most recent timestamp preceding
time. The Step relation is “built-in” into Fusemate for convenience.

Rule (4) fixes the problem of a “missing” unloading event by inserting one
into the EDB at a speculated time (time+prev)/2. This rule will become clearer
in Example 3 below, where we discuss the program in conjunction with a concrete
EDB.

Rule (5) says that only items that are in a container can be unloaded in the
next step. Rule (6) demands loading prior to unloading. The other rules will also
be discussed below. 
�

4 Semantics

The possible model semantics [26,27] associates to a disjunctive program sets of
possible facts that might have been true in the actual world. (This is already a
good fit for situational awareness.) We extend it to our stratified programs with
fail rules.

Let Th(ΣN) be the set of all ground time atoms that are true in the standard
model of natural number arithmetic. For a set A of ground ordinary atoms define
I(A) = A∪Th(ΣN) which represents the Herbrand Σ-interpretation that assigns
true to a ground atom a if and only if a ∈ I(A).

Definition 2 (Rule semantics). A set A of ground ordinary atoms satisfies
a variable free body B = b1, . . . , bk,not�bk+1, . . . ,not�bn, written as A |= B, if
{b1, . . . , bk} ⊆ I(A) and (gnd(�bk+1) ∪ · · · ∪ gnd(�bn)) ∩ I(A) = ∅.

The set A satisfies a variable free ordinary rule h1 ∨ · · · ∨ hm ← B if A |= B
entails {h1, . . . , hm}∩I(A) �= ∅. It is a model of a set R of variable free ordinary
rules, written as A |= R, iff it satisfies every rule in R.

The fail set of A and a set of variable free fail rules R is the set F = {fail(�e) |
there is a rule fail(�e) ← B ∈ R such that A |= B}. This is written as A |=fail

R F .

Satisfaction of a variable free body according to Definition 2 is equivalent to
satisfaction of the first-order logic formula b1 ∧ · · · ∧ bk ∧ ¬(∃ �xk+1. ∧�bk+1) ∧
· · · ∧ ¬(∃ �xn. ∧�bn) in the interpretation I(A), where �xj = var(�bj), for all j =
k + 1, . . . , n. .
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Definition 2 is, in fact, somewhat more general than needed for defining the
possible models semantics of logic programs. Possible models interpret disjunc-
tive heads inclusively, in all possible ways. This is expressed in the following
definition.

Definition 3 (Split program [26,27]). Let R be a variable free program. A
split program of R is any program obtained from R by replacing every ordinary
rule h1 ∨ · · · ∨ hm ← B by the normal ordinary rules (called split rules) h ← B,
for every h ∈ H, where H is some non-empty subset of {h1, . . . , hm}.
In [26,27], Sakama et al. define the possible model semantics (also) for disjunctive
programs without negation. Our stratified case admits a similar definition.

For any program R let R+ (R−) be the set of all ordinary (fail) rules of R,
respectively.

Definition 4 (Satisfication of stratified programs). Let P be a stratified
program, F a fail set, E an EBD and I an IDB. We write (E, I) |=fail

P F if there
is a split program S of vfinst(P ) such that all of the following hold:

(i) E ∪ I |= S+ (E ∪ I is a model of the ordinary rules)
(ii) E ∪ J |= S+ for no J � I (I is minimal)
(iii) E ∪ I |=fail

S− F (F is the triggered fail heads)

If F = ∅ then we say that (E, I) satifies P and writte (E, I) |= P .

As an example (without time), if E = {p} and R = {q ∨ r ← p, q ← r, s ← s}
then {p, q, s} |= R, but only ({p}, {q}) and ({p}, {r, q}) satisfy R in the sense of
Definition 4.

The purpose of a program P is to compute all extensions (E, I) of a given
EDB E that satisfy P . For failed such attempts, P also specifies ways to revise
E, if any, as early as possible, leading to new tries. The following Definition 5
make this precise.

For a ground fail head fail(�e) and ground EDB E let upd(E,�e) be the EDB
obtained from E by first adding all EDB atoms e such that �e contains the
expression +e, and then deleting all all EDB atoms e such that �e contains −e. For
any set A of ground ordinary atoms and t ∈ N let A≤t = {a ∈ A | time(a) ≤ t};
analogously for A<t.

Definition 5 (Possible models of stratified programs). Let P be a strat-
ified program and Einit an EDB. Let E be the smallest set of EDBs containing
Einit and satisfying, for all E ∈ E, timestamps t in E, IDBs I and fail sets F :

If (E≤t, I) |=fail
P F and there is no J ⊆ I and G �= ∅ such that (E<t, J) |=fail

P G
then {upd(E,�e) | fail(�e) ∈ F and �e �= ε} ⊆ E.

The set E is called the restart EDBs induced by P and Einit. Any pair (E, I)
such that E ∈ E and (E, I) |= P is called a possible model of P and Einit, written
as (Einit, E, I) |= P . Let modsP (Einit) = {(E, I) | (Einit, E, I) |= P} be all such
possible models.
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The set E in Definition 5 contains a restart EDB E apart from Einit if and only
if E is obtained from some earliest time fail set F from another restart EDB
in E . This excludes fail sets that may otherwise be additionally derivable at a
later time. This was a design decision in support of “anytime” reasoning, for not
having to consider future events.

Example 3 (Supply chain, Example 2 continued). Consider the following EDB
Einit consisting of loading and unloading events:

SameBatch(10,Set(tomatoes, apples)) Load(40, container, ship)
Load(10, tomatoes, pallet) Unload(60, apples, pallet)
Load(20, pallet, container)

The intuitive meaning of the Load atoms between times 10 and 40 should be
obvious. All what is reported at time 60 is that apples are unloaded from the
pallet. However, this is suspicious from a (practical) completeness and consis-
tency perspective. First, it can be alleged that some unloading events went under
unreported. Before an item (apples) can be unloaded from a pallet that was
loaded earlier into a container, the pallet needs to be unloaded from the con-
tainer first, and that container must have been unloaded from the ship. Such
reports are missing. Second, loading of tomatoes does not go together well with
the unloading of apples later. This could be a reporting inconsistency or a report-
ing incompleteness if indeed apples were (also) loaded earlier.

All these plausible explanations are provided by (E1, I1), (E2, I2), and
(E3, I3), the three possible models of Einit and the program in Fig. 1. For space
reasons we list only their EDB components, which are as follows:

E1

Load(10, tomatoes, pallet)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, tomatoes, pallet)

E2

Load(10, tomatoes, pallet)
Load(10, apples, pallet)
Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

E3

Load(10, apples, pallet)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

In each of these models, the missing unloading events Unload(45, container, ship)
and Unload(50, pallet, container) are added by repeated application of rule (4).
Generally speaking, rule (4) inserts an Unload of the “containing container” the
object to be unloaded from is in. The rules (7) – (9) all fix the “unloading
apples vs. loading tomatoes” problem. Rule (7) leads to (E1, I1), rule (8) leads
to (E2, I2), and rule (9) leads to (E3, I3). Each of these rules tests whether an
object (apples) is swappable with another object (tomatoes) for the purpose of
model revision, which is the case if the SameBatch relation says so. Notice that if
Einit had, say Unload(60, oranges, pallet) instead of Unload(60, apples, pallet) then
none of the rules (7) – (9) is applicable and no possible model exists. 
�

5 Model Computation

This section introduces our calculus for computing possible models of stratified
programs. It borrows some terminology from tableau calculi. A path p is a triple
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(E, I, t) where E is an EDB, I is an IDB and t ∈ N is a timestamp. Intuitively, p
represents the interpretation I((E∪I)≤t). An initial path is of the form (E, ∅, 0).
A tableau is a finite set of paths.2

Let B = b1, . . . , bk,not�bk+1, . . . ,not�bn be the body of a variable free
stratified rule and A a set of ground ordinary atoms. A substitution σ with
dom(σ) = var(b1, . . . , bk) is a body matcher for B on A, written as (B, σ) � A,
if the following holds:

(i) {b1σ, . . . , bkσ} ⊆ A ∪ Th(ΣN), and
(ii) for no i = k + 1 . . . n there is a grounding substitution γ for �biσ such that

�biσγ ⊆ A ∪ Th(ΣN).

Note 1 (Computing body matchers). The definition of body matchers only
applies to bodies of stratified rules. It is easy to see that a body matcher σ,
if any exists, can be found by computing a simultaneous matching substitution
σ for the ordinary atoms among b1, . . . , bk to A. Similarly for the substitution
γ in condition (ii). Furthermore, stratification guarantees that all arithmetic
atoms for testing conditions (i) and (ii) are necessarily ground and hence can be
evaluated. 
�

An inference rule is a schematic expression of the form p ⇒ p1, . . . , pk where
p and pj are paths, for all 1 ≤ j ≤ k, where k ≥ 0. It means that the premise p
is to be replaced by the conclusions p1, . . . , pk. An inference is an instance of an
inference rule.

In the following, P is a stratified program and σ is a substitution such that
rσ is a variable free instance of a rule r that is clear from the context.

Ext: (E, I, t) ⇒ (E, I ∪ H1, t), . . . , (E, I ∪ Hk, t)
if P contains an ordinary rule h1 ∨ · · · ∨ hk ← B such that
{H1, . . . ,Hk} = {H | (B, σ) � (E ∪ I)≤t and ∅ � H ⊆ {h1σ, . . . , hkσ}}

Restart: (E, I, t) ⇒ (upd(E,�e1), ∅, 0), . . . , (upd(E,�ek), ∅, 0)
if k ≥ 1 and {�e1, . . . , �ek} = {�eσ | fail(�e) ← B ∈ P, �e �= ε and (B, σ) �
(E ∪ I)≤t}.

Fail: (E, I, t) ⇒
if P contains a rule fail() ← B and there is a σ such that (B, σ) � (E ∪ I)≤t.

Jump: (E, I, t) ⇒ (E, I, s) if s is the least timestamp in E with t < s.

The Ext rule extends I to satisfy all split rules for each case H of some instance
of an ordinary rule in P whose body is satisfied by (E ∪ I)≤t; Restart replaces
the current path with all initial paths as per the non-empty fail rules after
Ext is exhausted; Fail also terminates the current path but is to be applied

2 This terminology is inspired by visualizing a set of paths as a tableau in the usual
sense. For that, a path (E, I, t) leads to a branch whose nodes are labeled with
the atoms E ∪ I and the branch as a whole is labeled with t. Moreover, the way
the calculus constructs these paths sets indeed corresponds to a typical tableau
construction. See, e.g., [3].
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only if Restart doesn’t; Jump advances the current time bound t. The following
formalizes this intuition.

An initial path (E, ∅, 0) is new wrt. a tableau T iff there is no I and no t such
that (E, I, t) ∈ T . Let Einit be an input EDB. A derivation D (from Einit and P )
is a sequence (T )i≥0 of tableaus D = (T0 = {(Einit, ∅, 0)}), T1, T2, . . . such that,
for all i ≥ 0, there is a selected path p ∈ Ti and Ti+1 = (Ti \ {p}) ∪ {p1, . . . , pk}
where:

(a) p ⇒ p1, . . . , pk by Ext and {p1, . . . , pk} �⊆ Ti,
(b) p ⇒ q1, . . . , qm by Restart and {p1, . . . , pk} = {p ∈ {q1, . . . , qm} |

p is new wrt. Ti},
(c) p ⇒ by Fail and k = 0, or
(d) p ⇒ p1 by Jump and k = 1.

In addition, the inference rules must be prioritized in this order. That is, if Ti+1 is
obtained from Ti by, say, case (c) , then there is no tableau that can be obtained
from Ti by case (a) or case (b) with the same selected path p; analogously for
the other cases.

The derivation D is exhausted if it is finite and no inference rule is applicable
to its final tableau Tn, for no p ∈ Tn. In this case the computed models of D is
the set M(D) = {(E, I) | (E, I, t) ∈ Tn for some t ∈ N}.

Figure 2 is a graphical illustration of a derivation and its computed models.

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is
labeled with the EDB in that sub-derivation. The first sub-tableau has two Restart
inferences, leading to the second and third sub-tableau, where E1 = upd(Einit, �e

0
0),

E2 = upd(Einit, �e
1
0). The isolated fail()s do not cause a Restart, they cause Fail. The

computed models are (Einit, I
0
0 ), (Einit, I

1
0 ), (E1, I

0
1 ), etc.

Theorem 1 (Soundness and completeness). Assume a signature Σ without
k-ary function symbol, for k > 0. Let P be a stratified program and Einit an
EDB. Assume an exhausted derivation D from Einit and P . Then M(D) =
modsP (Einit).
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Proof. (Sketch) Let Tn be the final tableau of D. For soundness, assume M(D) �=
∅ and chose any (E, I) ∈ M(D) arbitrary. That is, (E, I, t) ∈ Tn, for some t. We
have to show (E, I) ∈ modsP (Einit), equivalently (Einit, E, I) |= P .

The EDB E is either Einit or derived from Einit through, say, k > 0 interme-
diate EDBs by Restarts. By induction on k one can show that, on the semantic
side, E is a restart induced by P and Einit, i.e., E ∈ E in Definition 5. This follows
from the definition of derivations. In particular, the earliest-time requirement in
Definition 5 is matched by prioritizing Restart over Fail and Jump.

With the EDB E traced down in E , it remains to prove (E, I) |= P .
With the stratification of P (Definition 1) this is rather straightforward. Range-
restrictedness makes sure that only ground heads are derivable. The Ext inference
rule achieves on-the-fly splitting and only for those variable-free instances of rules
whose body is satisfied, which are the only ones that count (details in [26,27]).
The requirements on EDB/IDB atoms in negative body literals (≤ vs. <) in
Definition 1 entail that utilizing body matchers in derivations is correct wrt. the
rule semantics in Definition 2.

The timed setting requires a layered fixpoint iteration. Stratification makes
sure that stepwisely incrementing in derivations the time bound by Jump infer-
ences is all that is needed to comply with the “unstepped” possible model
semantics in Definitions 4 and 5. In particular, no ordinary rule can derive in
its head a conclusion with a timestamp earlier than the latest timestamp in
its body. This makes the derivability relation monotonic wrt. increasing time
stamps (usual stratification by predicates is covered in [26]). Moreover, because
the given derivation is exhausted, no fixpoint iteration can stop prematurely.

For completeness, assume modsP (Einit) �= ∅ and chose any (E, I) ∈
modsP (Einit) arbitrary. We have to show (E, I) ∈ M(D). The first step is to
locate in D the sub-tableau with E at its root, by tracing E ∈ E from Einit. The
next step then is to argue for the completeness of the sub-tableau construction
with that fixed E, giving (E, I) ∈ Tn. All that uses similar considerations as the
soundness proof above.

One important detail is that Ext is the highest-priority inference rule. This
makes sure that no model candidate is terminated too early, so that all possi-
ble branching out takes place. As a consequence, all possible fail heads for the
current time point will be derived. The requirement that there are no proper
(non-constant) function symbols make sure that the layered fixpoint computa-
tion of derivations terminates and finds (E, I). 
�

6 Implementation

It is not too difficult to translate the model computation calculus of Sect. 5 into
a proof procedure. Tableaux can be represented in a direct way, as a set of paths
(E, I, t). In terms of Fig. 2, the proof procedure can implement a one-branch-at-
a-time approach for one sub-tableau at a time, for space efficiency, embedded
in an adapted given-clause loop algorithm. Only the EDBs, not the full models,
need to be remembered to implement the “Progress” condition for derivations
(cf. Sect. 5).
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A concrete implementation could based on, e.g., hyper resolution with split-
ting [5] or hyper tableaux [3] calculi. Our implementation however is imple-
mented in an unusual way, by shallow embedding in Scala.3

Scala [28] is a modern high-level programming language that combines
object-oriented and functional programming styles. It has functions as first-class
objects and supports user-definable pre-, post- and infix syntax. With these
features, Scala is suitable as a host language for embedding domain-specific lan-
guages (DSLs). (See, e.g., [16] for a Scala DSL for runtime verification.) In our
case, the logic program rules are nothing but partial functions, instantiating and
evaluating a rule body reduces to partial function definedness, and deriving a
rule head reduces to executing a partial function on a defined point. An advan-
tage of the DSL approach is that is is easy to interface with external systems,
e.g., databases, in particular if they have a Java interface.

Moreover, it is easy to make the full Scala language and its associated data
structure libraries available for writing rules. (There is no theoretical problem
doing that as long as all Scala expressions are ground and, hence, can be eval-
uated.) For example, the EDB in Example 3 has the Scala-set forming term
Set(tomatoes, apples), and the rules (7) - (9) in Fig. 1 test in their last lines
membership in such sets by Scala expressions.

While EDBs are naturally written as Scala source code, logic program rules
are usually written in a (much) more convenient syntax and translated into the
required format by the Scala macro mechanism. See Listing 1.1 for an example.4

Listing 1.1. Sample EDB/IDB declarations and a rule. Some unimportant declarations left away.

1

2

3

4

5

6

In Listing 1.1, line 1 sets the concrete type for time to Int, the Scala integers.
A realistic application could use a rich time class like java.time.OffsetDataTime.
Lines 2, 3 and 4 define the EDB and IDB signature of the supply chain Example 2
by extension of the Scala classes EDBAtom and IDBAtom. The Load relation
says that the object obj was loaded into the container cont at time time. The
In relation says that obj was in container cont at time time. The time argument
must be named time, but all other arguments and their types can be freely
chosen. For simplicity we used strings, except for the SameBatch relation, which
has a set of strings for its objs parameter.

Line 6 defines a list with one rule that expresses the transitivity of the In
relation (rule (2) in Fig. 1). Line 5 is an annotation that tells the compiler to

3 Our implementation, the Fusemate system, is available at https://bitbucket.csiro.
au/users/bau050/repos/fusemate/.

4 Scala case classes are records in language agnostic terminology.

https://bitbucket.csiro.au/users/bau050/repos/fusemate/
https://bitbucket.csiro.au/users/bau050/repos/fusemate/
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expand the subsequent definition by a macro named rules. Indeed, without the
help of a macro the rule would not compile because of undefined variables in the
rule. The macro expansion of the rule in line 6 is the Scala function in Listing
1.2.

Listing 1.2. Macro expansion of the transitivity rule.

1

2

3

4

The anonymous function in Listing 1.2 is passed in its formal parameter I a
set of atoms which will always be the “current interpretation” (E ∪ I)≤t where
p = (E, I, t) is the current path. The set I is needed for evaluating negative
body literals and is not relevant for this example. The function returns a partial
function in the form of a case expression. The pattern in the case expression are
the ordinary atom of the positive body literals. These are the ones that need
to be matched to the atoms of (E ∪ I)≤t for rule evaluation (see Note 1). The
matching is done by applying the partial function to all tuples (of the proper
arity) of elements from the current interpretation. If the application succeeds,
i.e., if the case pattern match succeeds and the additional if -condition is satis-
fied, the partial function body (to the right of =>) is executed, which results in
an instantiated head. If the head is disjunctive, all non-empty subsets are taken.
This gives all split programs (cf. Definition 3) on the fly. The resulting sets are
collected in one sweep for each rule and are candidates for extending the current
path. fail-rules are processed in a similar way.

Notice that the pattern of a case expression needs to be linear, hence
the renaming apart of pattern variables and the obvious equalities in the if -
condition. Notice also that substitutions are not explicitly represented, they are
hidden in the Scala runtime system.

It remains to be explained how arithmetic atoms and negative body literals
are macro-expanded. By way of example, consider, say, rule (7) in Fig. 1. Its
arithmetic condition t < time is simply conjoined to the if-condition of the rule’s
case expression. An if-expression like if((b contains obj) and (b contains o)) is
a backdoor for adding arbitrary Boolean-valued Scala code to that condition
(“contains” belongs to the Scala library and tests set membership). Recall that
all variables in arithmetic atoms will always be ground instantiated by matching
and hence can be evaluated. This must be be extended to Scala conditions. In
the implementation, any such free variable would be detected as a compile time
error.

The body literal not(load(t, obj, cont), t< time) is expanded into a partial fun-
ction .
It is structurally the same as the one in Listing 1.1 except that the binding
of the variables obj and cont in the surrounding context need to respected, giv-
ing the stated equalities. Now, the if-condition of the case expression of the
surrounding rule (i.e., rule 7) is conjoined with a Scala expression for testing



Possible Models Computation and Revision – A Practical Approach 353

that the partial function does not return Abort, for no tuple of elements from
the set I explained above.

The implementation supports some more features not further discussed here:
rules can be defined locally within case classes; literals – possibly negated atoms –
can be used anywhere instead of atoms; a “strong fail” head operator terminates
a model candidate without restarts, e.g., for classical negation: a and ¬a together
is unfixable; and Scala conditions can access the interpretation (E ∪ I)≤t for,
e.g., concise data aggregation.

7 Conclusions

This paper presented a novel calculus and implementation for situational aware-
ness applications. The approach is meant to be practical in three ways: first,
realistic situational awareness requires being able to reason with incomplete
or erroneous data. Moreover, “anytime” reasoning is needed, meaning that a
model can be derived, rejected or repaired at any current time. Our approach
supports these needs with a (disjunctive) logic programming framework with
timed predicates, stratified negation and a novel model revision operator. Sec-
ond, thanks to implementation on top of Scala, it is trivial to attach arbitrary
Scala code and Java libraries. (It would not be difficult to extend the calculus
respectively.) For instance, reading in XML data and making them available as
terms (Scala case classes) is easy. Third, we strived for a “cheap” model compu-
tation procedure that makes do without additional generate-and-test needs. As
such, it is perhaps more adequately seen as study in pushing bottom-up first-
order logic model computation technology rather than slimmed down answer-set
programming.

As for future work, one interesting idea is to add probabilities to the picture,
say, in the way ProbLog extends Prolog. This is obviously useful because, e.g.,
some explanations (models) or repairs (restarts) are more likely than others.
Another idea is to view the model computation as runtime verification. This view
suggests that (probabilistic) linear temporal logic could serve as an additional
useful high-level specification language component.

Acknowledgements. I thank the reviewers for their constructive comments. Yuzhou
Chen discovered an error in an earlier version of the paper.
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1. Alchourròn, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Logic 50, 510–530 (1985)

2. Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 77–92.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1 7

3. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
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