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Abstract. Sequent calculus is a pervasive technique for studying logics
and their properties due to the regularity of rules, proofs, and meta-
property proofs across logics. However, even simple proofs can be large,
and writing them by hand is often messy. Moreover, the combinatorial
nature of the calculus makes it easy for humans to make mistakes or miss
cases. Sequoia aims to alleviate these problems. Sequoia is a web-based
application for specifying sequent calculi and performing basic reasoning
about them. The goal is to be a user-friendly program, where logicians
can specify and “play” with their calculi. For that purpose, we provide
an intuitive interface where inference rules can be input in LATEX and are
immediately rendered with the corresponding symbols. Users can then
build proof trees in a streamlined and minimal-effort way, in whichever
calculus they defined. In addition to that, we provide checks for some
of the most important meta-theoretical properties, such as weakening
admissibility and identity expansion, given that they proceed by the
usual structural induction. In this sense, the logician is only left with the
tricky and most interesting cases of each analysis.
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1 Introduction

Proof (and derivation) trees are a central structure for sequent calculus. They
are used to check validity of formulas and sequents, as well as for checking
meta-properties of the calculus (such as rule permutability, invertibility, and cut-
elimination). In the latter, trees are generally schematic, using context variables
to represent a family of trees with that shape.

When checking the validity of sequents, the required proof trees can become
quite large (both in depth and breadth) to be written on paper. At the same time,
the proofs of meta-properties may involve several (often small) proof trees to
cover all the cases. Many times they are slight variations of each other, or largely
the same across logics. Building and then verifying these proof trees is often a
tedious task. Several tiresome issues arise: symbols can easily be misplaced, look
unclear, or be confused by mistake; trees may have to be adjusted or re-sized to
fit the writing space; and the proofs themselves may not look as elegant as their
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typeset counterpart. However, a glance towards creating proof trees in a digital
environment shows a separate set of issues. Currently there are very few tools
for creating proof trees intuitively. The most common method is to write the
proofs in LATEX, or a program that produces such proofs. Even then, the process
can easily become too long and cumbersome.

Sequoia is a web application that makes sequent calculus tree building,
whether schematic or not, simple and intuitive. Sequoia is aimed at students
and academics who find the traditional methods too cumbersome, and provides
a user-friendly means to create multiple calculi specified from user-defined sym-
bols and inference rules, as well as a way to correctly build proof trees with
their defined calculi. We use a sound and complete algorithm that computes all
valid applications of a rule to a sequent. In addition, Sequoia features meta-
theoretical property checking for weakening admissibility, identity expansion,
and permutability. It provides all the straightforward cases needed for the com-
plete proofs of these properties, alleviating the user from the monotonous part,
and allowing them to focus on the interesting cases. All these features are ready
to be used now, and we are still improving Sequoia by adding more properties
to check and more proof tree building tools.

Sequoia can be accessed at: https://logic.qatar.cmu.edu/sequoia/, and the
source code is available at https://github.com/meta-logic/sequoia.

2 System Description

Sequoia consists of a front-end built in JavaScript and HTML, and a back-
end built in MongoDB and Standard ML New Jersey. The application runs in a
Node.js environment. The front-end is responsible for displaying the user defined
rules and symbols, rendering the interactive proof tree, and presenting possible
proof tree transformations for property testing, among other things. Aside from
running the server, the back-end stores the user’s defined calculi (including rules
and symbols), computes all the possible valid proof trees when a rule is applied to
a tree sequent, and constructs all possible tree derivations for a particular meta-
property. The following sections will progressively describe the design of our
system by first providing the basic representations for the datatypes in SML,
then describing the schematic tree building, and explaining our approach to
automating the meta-property tests.

2.1 Datatypes

Currently, Sequoia supports sequent calculi with multiple contexts on the left
and right. We restrict the rules in a calculus to operate on one connective at a
time. We also require that rules have no restrictions on their contexts, such as:

�Γ � A
Γ, �Γ � �A

Note that such rules can often be rewritten using multiple contexts.
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https://github.com/meta-logic/sequoia


482 G. Reis et al.

Our datatypes are defined as:

Formula F ::= p, q, ... | A, B, ... | •1(F1, ..., Fr1), •2(F1, ..., Fr2), ...
Context Γ/Δ ::= Θ1, ..., Θk, F1, ...Fl

Sequent S ::= Γ1 �1 ... �n−1 Γn � Δ1 �′
1 ... �′

m−1 Δm

Rule R ::= (rule name, Si, [S1, ...Sz])
Tree T ::= (rule name, Si, [T1, ...Ty])

Where p, q, ... are atom variables, A,B, ... are formula variables, •1, •2, ... are
connectives with arities r1, r2, ... respectively, Θ1, Θ2, ... are context variables,
� is a context separator and � is a sequent sign. Context separators are sym-
bols used to separate different contexts on either the left or right sides the
sequent. For example, in the focused system for linear logic [3], three symbols
(“;”, “⇓”, “⇑”) are used to separate different parts of the right context. Note
that all the mentioned symbols must be declared by the user and cannot contain
superscripts.

Proof trees are recursive structures made up of a sequent, the rule name (if
any) and a set of proof trees above the sequent; rules consist of a conclusion
sequent and a set of premise sequents.

2.2 Core Operations

Rule application is the most important operation of Sequoia. It relies on three
core operations: unification, substitution, and variable renaming. Rule applica-
tion is a function applied to a rule and a sequent. We will use the following
rule and sequent as our running example (assuming all the symbols have been
declared by the user):

Γ1 � A Γ2 � B

Γ1, Γ2 � A ∧ B
∧r

Δ, F ∨ G, H � X ∧ Y

Unification. The first step for rule application is obtaining the valid unifiers
between the sequent and the conclusion sequent of the rule. The reason we are not
using pattern matching is because we may have to substitute context variables
in the sequent as well as in the inference rule. For example, if the context is
Γ, r, p∧ q and the conclusion of the rule is Γ1, Γ2, A∧B, then we need: one of Γi

substituted by a context variable and r, and Γ substituted by two new context
variables. Unification of sequents and contexts is defined as:

� = �′ Γ1 �1 ...Γn =̇ Γ ′
1 �′

1 ...Γ ′
n | Σ1

∀σ ∈ Σ1

(Δ1;1 ...Δk)σ =̇ (Δ′
1;

′
1 ...Δ′

k)σ | Σ2

Γ1 �1 ...Γn � Δ1 �1 ...Δk =̇ Γ ′
1 �′

1 ...Γ ′
n �′ Δ′

1 �′
1 ...Δ′

k | Σ1 ◦ Σ2

seq

·=̇· | {} ctx0
�1 = �′

1 Γ1 =̇ Γ ′
1 | Σ1

∀σ ∈ Σ1

(Γ2 �2 ...Γn)σ =̇ (Γ ′
2 �′

2 ...Γ ′
n)σ | Σ2

Γ1 �1 Γ2 �2 ...Γn =̇ Γ ′
1 �′

1 Γ ′
2 �′

2 ...Γ ′
n | Σ1 ◦ Σ2

ctx
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Note that the symbols between contexts and the sequent sign must match
for the unification to succeed, and that contexts are ordered. The unification of
individual contexts is done through multiset unification using constraints [6].

Suppose that we want to apply the rule ∧r to the sequent in the example
above. Then, we need to get the unifiers between Γ1, Γ2 � A∧B (∧r conclusion)
and Δ,F ∨ G,H � X ∧ Y . This will produce a number of valid unifiers and a
constraint theory alongside each unifier, one of them being:

σ = {A → X, B → Y, Γ1 → [Γ ′
1, H], Γ2 → [Γ ′

2, F ∨ G]} (Δ = Γ ′
1, Γ

′
2)

Constraint theories are used to maintain consistency between a conclusion and
its premises in a proof tree. Its importance is discussed later in Sect. 2.3.

Substitution. Once unification is done, every valid unifier represents one pos-
sible way of applying the inference rule to the sequent. The premises are deter-
mined by applying the resulting unifier to the rule’s premises. For example, the
unifier above can be applied to the premises of ∧r, resulting in:

(Γ1 � A)σ = Γ ′
1, H � X (Γ2 � Y )σ = Γ ′

2, F ∨ G � Y

Which is a correct set of premises when applying ∧r to Δ,F ∨ G,H � X ∧ Y ,
given the constraint Δ = Γ ′

1, Γ
′
2:

(Γ1 � A)σ (Γ2 � B)σ

(Γ1, Γ2 � A ∧ B)σ
∧r

=

Γ ′
1, H � X Γ ′

2, F ∨ G � Y

Δ, F ∨ G, H � X ∧ Y
∧r

Variable Renaming. When applying a rule, we can assume that the sequent
and the conclusion sequent of the rule have different variable names because of
the symbol restrictions in the symbols tables. However, after applying a rule
some problems might arise. For example, applying the ∧r rule on Γ � (a ∧ b) ∧ c
would yield the premises Γ1 � a ∧ b and Γ2 � c and the constraint Γ = Γ1, Γ2.
However, applying ∧r again on Γ1 � a∧ b would cause problems in unification as
Γ1 is used in both the rule and the sequent. To avoid this problem, all context
variables are renamed after unification. To rename a context variable, we simply
add a fresh superscript to the name of the variable, or update it if the name has
one already.

2.3 Functionalities

The key features of Sequoia are that it allows the user to build ground and
schematic proof trees, and to automate the process of testing for certain meta-
properties. Currently, Sequoia is able to check rule permutability, weakening
admissibility (for each context), and identity expansion.
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Tree Building. Sequoia’s tree building relies entirely on rule application. Given
a tree, a constraint list, and a set of rules, a selected rule can be applied to an open
sequent in the tree to produce a new tree and constraints with the appropriate
updates. To do this, we first compute all possible unifiers of an open sequent
and a rule. Then for each unifier, the empty premise set of the open sequent is
replaced by the new premises obtained as explained above. The unifier is applied
to each sequent in the tree, including the open sequent, and the constraint list is
updated with the unifier’s accompanying constraint theory. The constraint list
is bound to the tree and accounts for the context variables changing at different
levels in the tree as a result of multiple rule applications. The user can undo rule
applications, as well as export the proof tree to LATEX.

Proof Transformations. In some cases (such as checking for permutability),
we need to decide whether a tree T1 with end sequent S can be transformed into
another tree T2 with the same end sequent. For that, we assume that T1 is a
closed tree, i.e., each premise S1,i in T1 has a proof D1,i. Checking if T1 can be
transformed into T2, amounts to checking that each open premise S2,j in T2 can
be proved using some D1,i. The proof D1,i for S1,i can be used to prove S2,j if:
(1) the two sequents are the same (modulo context variables), or (2) if weakening
is admissible in some contexts, that S1,i can be obtained by weakening S2,j . If
the proof can be used, we add constraints specifying which multiset of context
variables in S2,j is equal to the multiset of context variables in S1,i. Given this
set of constraints and the ones obtained from unification when applying the
rules, which are equalities between multisets, we try to find an AC11 unifier [1,
section 10.3] such that it does not map context variables of T1 to empty or a
multiset which contains more than one copy of each context. This approach to
proof transformations has its limitations, since we do not take into consideration
cases that succeed because of a rule’s invertibility or the use of cut rules. Thus,
the check is always sound, but not complete. The user needs to check by hand
the cases that Sequoia cannot infer.

Permutability. Given two rules R1 and R2, the initial rules, and the weakening
properties of the calculus, we say that R1 permutes up R2 if a proof tree T ending
with the rule R2 applied over R1 can be transformed into a proof tree T ′ ending
with R1 applied over R2. Sequoia performs this check by first generating all
derivations T where R2 is applied over R1, and all derivations T ′ where R1 is
applied over R2. Then, for each tree T , we try to find a tree T ′ such that T can
be transformed into T ′.

Weakening Admissibility. The admissibility of weakening for a calculus is
checked for each context separately. Given a context Γ in a sequent S, the
theorem states: if a sequent S[Γ ] is provable, then so is S[Γ, F ]. The usual proof

1 Associative, commutative, with neutral element (the properties of multiset union).
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proceeds by structural induction on the derivation of S[Γ ]. Sequoia is able to
check all “trivial” cases, i.e. the ones that require only the inductive hypothesis.

Identity Expansion. Identity expansion is the property that all identity rules
can be applied on atoms. The usual proof proceeds by induction on the formula
structure. Let •(F1, ..., Fn) be a formula with main connective •, [•1], ..., [•k] be
the rules for decomposing •, and [id] one identity rule. Sequoia checks if a proof
ending with [id] on •(F1, ..., Fn) can be transformed into a proof using some of
the rules [•1], ..., [•k] and [id] only on F1, ..., Fn. This is done by applying left
and right pairs of rules and trying to close the proof.

Once again, this check is sound, but not complete. For example, take the LJ
calculus for intuitionistic logic with the following rules for conjunction left:

Γ, A1 � C

Γ, A1 ∧ A2 � C
∧1

r

Γ, A2 � C

Γ, A1 ∧ A2 � C
∧2

r

Sequoia is not able to infer identity expansion because it will not apply contrac-
tion arbitrarily. Instead, if the following rule is used:

Γ, A1, A2 � C

Γ, A1 ∧ A2 � C
∧r

Then Sequoia succeeds in showing identity expansion for the case of ∧.

3 Usage

Sequoia was made with the goal in mind that a calculus construction and tree
building tool should have a nice design and an intuitive interface for students
and academics. All input is compiled in LATEX, as it is a familiar typesetting
language with a vast access to symbols.

Symbols Table. Before creating rules and building trees, users must declare
the symbols to be used and their types. A symbols table consists of the symbol
(input in LATEX) and its type (chosen from a drop-down menu). Symbols can
be updated by changing their type or simply deleted. There are two symbols
tables: a rule one (symbols used for the rules in a calculus) and an end-sequent
one (symbols used on the end-sequent of a proof tree). The following restrictions
apply to both tables: the same symbol cannot be assigned different types (per
calculus), and symbols cannot contain superscripts. Moreover, the symbols used
for context variables and formulas in rules and end-sequents must be disjoint.

Calculus Specification. The homepage displays a user’s defined calculi, a form
to create new calculi, and buttons to add sample calculi that are available by
default. Each calculus will have a card. Clicking on a calculus card will direct
the user to the main page for that calculus, which contains all its rules and
the rule symbols table. “Add Rule” directs the user to the rule creation page,
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where they see the input fields for a rule: name, main connective, conclusion, and
premise(s). There is also a drop-down menu for indicating on which side of the
sequent the rule operates (left, right, or none). After filling in the information,
clicking on “Preview” will show a rendering of the rule compiled in LATEX and
the rule symbols table from the calculus page. When all symbols in the premises
and conclusion are in the table, the new rules can be added to the calculus.

Tree Building. Clicking on “Proof Tree” (upper right corner) takes the user to
a page where they can build proof trees using the calculus rules they have defined
(listed on the right). After entering an end-sequent and clicking on “Preview”,
they will see a rendering of the sequent in LATEX and the end-sequent symbols
table. Once all the context variable and formula symbols are declared in the
table, the user can begin building the tree. The constraint list (initially empty)
is shown on the left. To build on a proof tree, the user selects a leaf premise in
the tree and a rule to apply on it. If the rule is not applicable, the user will be
informed. Otherwise, the user is prompted with a selection of all the possible
premise sets that result from applying the rule. Selecting a premise set renders
the appropriate tree with these premises and the constraint list is updated with
the associated constraint. In case the selected rule is cut, the user is prompted
for the substitution to be used. They must type the cut-formula variable (used
in the rule), and the cut-formula to be used for that variable.

Properties Testing. The properties page allows the user to test certain meta-
properties for a sequent calculus system. Currently, the implemented meta-
properties are: weakening admissibility, identity expansion, and permutability.

By clicking on “Weakening Admissibility” or “Identity Expansion”, the user
is presented with several cards representing contexts or connectives, respectively.
Clicking on a card will show all its proof tree transformations for that property.
By clicking on “Permutability”, the user is shown all rules and must select two
to perform the check. After clicking on “Permute Rules”, Sequoia shows all the
successful and failed proof transformations for permutability between them.

4 Related Work

There are several other tools for constructing and visualizing proofs. We will
focus on the ones that are interactive and offer support for sequent calculi.

Closest to our approach is Carnap.io [5], a web-based tool built using proofJS
and Haskell. Carnap supports different deductive systems and allows users to add
their logic by implementing it in Haskell with the help of Carnap’s type classes.
Proof tree construction is done by typing the proof, while Carnap checks each
step. The sequent calculus calculator [4] has an interface similar to Sequoia, and
also allows the user to build proof trees in four different logics. The user needs
to instantiate the rules before applying them. Axolotl [2] is a Java applet and
mobile app for constructing proofs. It can handle proofs in sequent calculus,
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natural deduction, or Hilbert systems. Sequent calculus rules are displayed on a
one-dimensional notation, and proof goals may not contain context variables.

Both Carnap.io and the sequent calculus calculator require manual input
from the user when building proofs, which are checked. Sequoia instead computes
all possibilities for a correct rule application, and prompts the user to choose
one. This is less tedious for experienced users, and more user friendly for those
not versed in sequent calculus. This is also the approach used in Axolotl.

Concerning different logics, while Carnap.io allows the user to add more cal-
culi, this requires expertise with Haskell and type classes, which most undergrad-
uate students lack. We believe that the approach of inputting sequent calculus
via LATEX will be more appealing for those users. The other systems only work
on a pre-determined set of calculi.

Different from all the aforementioned systems, Sequoia allows users to build
schematic proofs, using context variables. The reason for including this feature
is that, most of the time, logicians “play” with proofs using schemas as opposed
to concrete formulas since they are trying to see patterns or investigate proof
transformations regardless of concrete terms.

Tatu [7] and Quati [8] are web-based tools that allow users to check for cer-
tain meta-properties of sequent calculus systems. Tatu allows the user to check
for identity expansion and cut admissibility, while Quati allows the user to check
if rules permute over each other and shows the proof tree transformations ren-
dered from LATEX. To use those tools, users have to define their sequent calculus
system in linear logic with subexponentials, a non-trivial task that cannot be eas-
ily automated. Another approach for checking meta-properties is using rewrite
logic. In [9] the authors used Maude to automate the checking of permutability,
admissibility and invertibility of rules. Although there is no user interface, the
technique seems powerful and could be used in Sequoia for other checks.

Sequoia improves on Tatu and Quati by facilitating considerably the input of
systems. The main difference between Sequoia and the tool based on Maude is
that Sequoia displays the proof transformations that were found, thus showing
the user how they work and increasing the trust in the system.

5 Future Work

There are a number of features and improvements we plan to add to Sequoia.
We have recently finished the implementation of two new features: checking

cut admissibility (using Gentzen-style proofs), and supporting rules with context
restrictions (such as the one mentioned in Sect. 2.1). These will be added to the
website soon. The next meta-property we would like to add support for is rule
invertibility. It should not be hard to check the simplest cases, which use a
short derivation with cut. Most, if not all, of the operations needed are already
implemented. We also plan to add support for first-order systems, but this will
be more challenging, since it requires changes to some of the core operations. It
will also result in more prompts to the user.

To improve usability, we are investigating the possibility of inputting sequent
calculi or proofs by taking pictures of hand-written objects. We believe this
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feature will make the system much more appealing, specially to undergrads who
do their work by hand, and need to type it in LATEX afterwards. A simpler
addition that increases usability is allowing that rules be reused between calculi.

Concerning the meta-property proofs, we want to give the user the ability to
export (incomplete) proofs to LATEX. Given a stable framework for formalizing
meta-properties, one could also think of exporting these proofs into partial proof
scripts to be completed by the user.
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