l‘)

Check for
updates

Scaling Genomics Data Processing with
Memory-Driven Computing to Accelerate
Computational Biology

Matthias Becker!®), Umesh Worlikar!, Shobhit Agrawal?, Hartmut Schultze?,
Thomas Ulas®, Sharad Singhal®, and Joachim L. Schultze!:?

! PRECISE, Platform for Single Cell Genomics and Epigenomics at the German
Center for Neurodegenerative Diseases (DZNE) and the University of Bonn,
Bonn, Germany
Matthias.Becker@dzne.de
2 West German Genome Center (WGGQC),

Bonn, Germany
3 Genomics and Immunoregulation, LIMES Institute, University of Bonn,
Bonn, Germany
4 Hewlett Packard Enterprise, Ratingen, Germany
5 Hewlett Packard Labs, Palo Alto, USA

Abstract. Research is increasingly becoming data-driven, and natu-
ral sciences are not an exception. In both biology and medicine, we
are observing an exponential growth of structured data collections from
experiments and population studies, enabling us to gain novel insights
that would otherwise not be possible. However, these growing data
sets pose a challenge for existing compute infrastructures since data is
outgrowing limits within compute. In this work, we present the applica-
tion of a novel approach, Memory-Driven Computing (MDC), in the life
sciences. MDC proposes a data-centric approach that has been designed
for growing data sizes and provides a composable infrastructure for
changing workloads. In particular, we show how a typical pipeline for
genomics data processing can be accelerated, and application modifica-
tions required to exploit this novel architecture. Furthermore, we demon-
strate how the isolated evaluation of individual tasks misses significant
overheads of typical pipelines in genomics data processing.

Keywords: Computational biology - Memory-Driven Computing -
Genomics

1 Introduction

Life and medical sciences are evolving towards a data-driven research model.
The leading biological institutions face a new challenge in dealing with data.
Interdisciplinary collaborations are aimed at accelerating this digitalization of
research. The use of compute clusters and cloud services has become more com-
mon with growing data sets. High-performance computing (HPC) is relevant for

The original version of this chapter was revised: The chapter was made open access. The
correction to this chapter is available at https://doi.org/10.1007/978-3-030-50743-5_28
© The Author(s) 2020, corrected publication 2020

P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 328-344, 2020.
https://doi.org/10.1007/978-3-030-50743-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_28
https://doi.org/10.1007/978-3-030-50743-5_17

Scaling Genomics Data Processing with Memory-Driven Computing 329

many modeling and simulation aspects in the life sciences, as indicated by the
study of genome-scale biochemical reaction networks [12].

This trend towards data-driven research challenges a community that is wit-
nessing an explosion in accumulated data sizes. The European Bioinformatics
Institute (EBI) has reported [10] a growth of data stored from 120 PB to 160PB
from 2016 to 2018. The number of deposited high-throughput sequencing data
sets at the US National Center for Bioinformatics (NCBI) shows exponential
growth in the last years, as depicted in Fig.1. This can be explained by the
decline in sequencing costs, reduction in sequencing times, and availability of
diverse sequencing platforms.

Another source of increasing data sets is comprehensive collections like po-
pulation studies. These studies follow a large number of participants for a long
time and acquire different modalities, like image data and multi-omics data.
Storing and processing such data collections is challenging not only because of
their sizes but also because the data needs to be available without delays for the
researchers. While researching health-related questions, large time-series data
sets can be helpful but pose a challenge for storage systems.

400,000 —
300,000
Datasets
o
o 3e+05
$200,000
© 2e+05
o 1e+05
100,000
N ——Y | . L]
© >) -~ «) <)) ~ © >
o o - — - - - — - — - -
o o o o o o o o o o o o
o~ N N o~ N N N o~ N N N N
Year

Fig. 1. Number of high throughput sequencing (HTS) data sets uploaded to NCBI per
year. The 2019 data is still incomplete, since most studies are only uploaded to NCBI
once they are published.

In this work, we want to demonstrate how a novel architecture, named
Memory-Driven Computing (MDC), can be used for processing genomics se-
quencing data.

2 Memory-Driven Computing

While the data sets used in research are continually growing, the computing
power is not keeping up. The end of Moore’s law [31] seems to have finally been
reached. Current approaches to scaling focus on distributing workloads among
processing nodes in large clusters. However, these clusters come with growing

330 M. Becker et al.

costs, in particular from energy consumption that limits similar future scaling.
Also, genomics tasks often cannot be easily distributed among many nodes, e.g.,
gene regulation network processing deals with densely connected graphs.

2.1 Novel Architecture Tailored for Data Science

To overcome these shortcomings, Hewlett Packard Enterprise (HPE) has pro-
posed a novel architecture: Memory-Driven Computing. Unlike traditional, pro-
cessor-centric systems, it puts the memory (and therefore the user data) at the
center of the architecture [7]. This is realized by going from the traditional von
Neumann architecture, as shown in Fig. 2a, established since 1953, towards a
more memory-centric approach (Fig.2b). To eliminate overheads, remote data
access no longer has to traverse the host processor, but is handled by the memory
fabric. Traditional local storage and memory are bundled into a persistent mem-
ory pool that can be realized through technologies such as the memristor [9].
Finally, the underlying fabric between all components, including processors, will
be switching from electrical to optical connections. This is necessary to overcome
the required energy for moving growing data sets.

a) 0 b) M e Al
{I::I:E @] o2 A A A 9
= A e Uk
T
Copper %“
)
Connecting fabric Z
(GCTAACGTTA
_ R — [CTACGTCCTA
[CTACGTCACA|
x86 Arm RISC V Storage Persistent DRAM GPU FPGA Quantum
Processors Memory Accelerators Other devices

Fig.2. (a) The traditional von Neumann architecture defines the processor as the
central component. (b) MDC puts persistent memory at the center of the system.
Components are linked through an optical fabric. (¢) The connecting fabric, e.g., Gen-Z,
puts different components from the processor-, memory- and accelerator class in a single
shared address space. Other specialized devices like sequencers for data generation
could also be integrated.

2.2 Composable Infrastructure

In this composable infrastructure, compute power can be attached to the memory
as required to allow scaling. All components share the address space and are

Scaling Genomics Data Processing with Memory-Driven Computing 331

connected through a fabric like Gen-Z [13] that also controls data access and
security, which are essential properties when working with sensitive medical data.
Besides CPUs and memory, other components like accelerators and GPUs can
be integrated. Since the fabric is well-specified!, it is also possible to incorporate
more specialized data sources, e.g., sequencing machines, to avoid data transfer
to the fabric attached memory. Traditional HPC architectures typically offer
large numbers of standardized nodes, grouped into different classes, like high-
memory or GPU-nodes. Often these systems are specially tailored for simulation
applications but do not fit well to other tasks like genomics data processing. With
MDC, it is possible to group the fabric-connected components dynamically into
task-tailored systems.

2.3 Transition Path Towards MDC

The idea behind MDC touches all components in computer systems. A hard-
ware transition to MDC cannot realistically happen in a single step, but rather
is a process. The first components like Gen-Z enabled devices, are expected in
2020, and other techniques like memristor-based storage for persistent fabric
attached memory are still a few years out. Nonetheless, it is already possible to
apply MDC principles. Existing large-memory machines can exploit an abun-
dance of memory. Systems like the HPE Superdome Flex offer a shared address
space between multiple nodes for applications. Software development can also
use smaller servers or even laptops to emulate fabric attached memory using the
Fabric Attached Memory Emulation (FAME)?.

Software adapted for MDC has provided large performance gains [8] and
allows us to think in new paradigms as memory pools enable new programming
models [19]. The transition to MDC follows an iterative process of preparing and
modifying an application. The preparation starts with the definition of goals and
metrics, defining the optimization target, e.g., doubling the number of tasks per
time. This is followed by a baseline performance measurement. The results are
used to perform a cost/benefit analysis to identify the MDC modifications, e.g.,
modifications to exploit the abundance of memory through different data struc-
tures or the elimination of I/O. During the modification phase, the developers
need to apply MDC principles and modify the application. Finally, the fine-
tuning based on the initially defined metrics and goals can be performed. More
details can be found in Sect. 5.

3 Related Work

Genomics data processing is a challenging task and, therefore, an excellent use
case to evaluate MDC. In this section, we discuss prior work, beginning with
in-memory genomics data processing approaches. Schapranow et al. [29] have

! The full specification is available in [13].
2 http://github.com/FabricAttachedMemory /Emulation.

http://github.com/FabricAttachedMemory/Emulation

332 M. Becker et al.

employed an in-memory database to accelerate the alignment tool BWA on a
cluster, a method similar to MapReduce. They have reported an improvement
of 89% for a cluster of 25 machines. Firnkorn et al. [11] have followed a similar
path and compare the use of in-memory databases (SAP HANA) to a traditional
RDBMS (MySQL) for alignment focussed on direct matches. While they have
observed an acceleration factor of 27, the comparison was made against a highly
unusual tool that is not specialized in alignment. Finally, Li et al. [25] have
improved the processing of genomic data using the SPARK framework by intro-
ducing improved compression of genomic data to optimize data transfer between
the nodes. Hajj et al. [15] have demonstrated new address space concepts using
samtools.

Other approaches use specialized hardware. Luo et al. [26] have used GPUs
for alignment. Lavenier et al. [23] and Kim et al. [21] have explored the use
of completely new hardware for genomics data processing. They propose to use
processing within the memory to minimize data access time and maximize band-
width. The pre-alignment steps of Kim et al. lead to an end-to-end improvement
between 2x and 3.5x. Alser et al. [5] propose another FPGA based tool for
pre-alignment; they achieve a 10x acceleration for this task using a Virtex-7
FPGA using Xilinx VC709 board running at 250 MHz. Kaplan et al. [18] pro-
pose a novel resistive approximate similarity search accelerator (RASSA) that
exploits charge distribution and parallel in-memory processing to reflect a mis-
match count between DNA sequences. Their pre-alignment software achieves
16-77x improvements in long reads.

Finally, different programming languages have been explored to accelerate
the preprocessing of genomics data. Herzeel et al. [16] have proposed a multi-
threaded framework for sequence analysis to leverage the concurrency features
of the Go programming language. Tarasow et al. [30] have investigated the par-
allel processing features of the programming language D to improve genomics
processing speed.

4 Application in Bioinformatics

From an HPC perspective, bioinformatics applications often fall in either of
two categories: I/O-bound and compute-bound. I/O-bound applications typi-
cally transform or annotate data. They operate on significant inputs and produce
large outputs while the actual transformation task takes little to no computa-
tional effort. Compute-bound tasks are not limited by I/O, their primary work,
e.g., assembly or modeling or cellular interaction, is the limiting factor. While
many compute-bound applications operate on large data sets, the I/O part can
often be neglected in comparison to the main functionality. In previous work,
it has been shown that compute-bound applications still can benefit from the
abundance of memory available in MDC [6].

Scaling Genomics Data Processing with Memory-Driven Computing 333

4.1 Typical Preprocessing Tasks and Pipeline Structures

In this work, we will focus on optimizing an I/O-bound application since there
is a lot of overhead that can be eliminated with MDC, and such applications
are common in the typical structures of bioinformatic preprocessing tasks. The
preprocessing of next-generation sequencing (NGS) genomics data consists of
initial quality controls, demultiplexing of data from multiple experiments (which
have been multiplexed to reduce costs), alignment to a reference genome and
further quality controls as shown in Fig. 3. These steps can be performed through
several competing tools that often specialize in certain types of experiments.
Considering single-cell genomics, the number of involved tools increases, and the
pipelines become more complex. This has lead to the development of specialized
bioinformatics pipelines and dedicated workflow managers like Snakemake [22].

@ L. X
S BB amRem e
3 _

> SR~ S - B o [l
S
=

T o " \o/' memory

Fig. 3. Classical bioinformatics pipelines are a series of tools that exchange data
through large files on disk-based storage. With MDC, the data is kept in memory,
and I/O can be avoided. Parallel processing with different tools does not impose a
penalty for random data access that is known from existing storage systems that often
are optimized for serial or streaming data access.

These pipelines deal with large input files, and many tools transform the
data, annotate information, or change the order of the content. They take an
input and produce an output of a similar size. This leads to a large number of
intermediate files, and therefore these tools are often I/O-bound. The last step
in the preprocessing typically performs a data reduction, going from alignments
to gene expression information. Here, we will demonstrate the use case for the
1/0O-bound application samtools, which is a common tool for processing aligned
reads or alignments.

4.2 Application: Samtools

Samtools [24] is a standard tool for processing alignments in Structured Align-
ment Map (SAM) and binary SAM (BAM) files [2]. These files contain tens to
hundreds of millions of alignments in a single file and must be efficient to deal

334 M. Becker et al.

with growing data sets. An alignment consists of core information like genomic
position, the actual sequence, the associated quality values, and auxiliary infor-
mation, including tags to store key-value pairs of different data types.

We have evaluated the broad functionality of samtools (version 1.9) to select
commands that are used most frequently in the community as well as those
that could benefit most from eliminating I/O. In the following, we list these
commands, briefly describe their functionality, and classify the output that they
produce. A comprehensive overview of samtools and the details for each com-
mand can be found in the documentation [3].

View. Samtools provides the view command to convert between SAM and BAM
format. Often tools only support one of these formats, or conversion to BAM is
needed to reduce file sizes in storage. SAM files can be useful for visual inspection
of the data since SAM is human readable. It is also possible to specify filter
criteria, e.g., to filter for a specific chromosome.

Sort. After the alignment of input files to a reference genome, the output file
(e.g., in BAM format) stores the alignments in random order. Many downstream
steps such as read-count generation, variant calling, or visualization in IGV
require the alignments in the file to be ordered. Alignments can be sorted by
genomic order based on their coordinates on each chromosome or by read or
query names to get a technical ordering.

Markdup. The markdup function can be used to identify duplicate alignments
from a coordinate/position sorted file. The duplicate reads are referred to as the
primary reads whose coordinates are matching. The highest quality of a duplicate
is kept, and others are marked with the duplicate flag. Removal of duplicate
reads, generated due to PCR amplification or sequencing, is an indispensable
step for the processing of alignment data as it affects the overall quality and
downstream steps of NGS analysis.

Fixmate. To prepare a file for the markdup command, it has to be modified
with the fixmate command to add MS (mate score) and MC (CIGAR string for
mate/next segment) tags. The MS tag is used by the markdup function to select
the best reads to keep.

Combined Commands. Often, the functionality of samtools is not used in-
dependently, but multiple commands interact. An example is the marking of
duplicate reads in a data set. This task consists of four consecutive steps: sorting
by query name, the fixmate command, sorting by genomic position, and finally,
actual marking of the duplicates. Often these steps are connected through files
(see Fig. 4). It is also possible to connect the tools with a pipe; this avoids I/O but
still requires serialization and deserialisation of the data between the individual
steps. The serialization and deserialization steps convert between in-memory and
on-disk representation of SAM records.

Scaling Genomics Data Processing with Memory-Driven Computing 335

i
2
2 0100110 0100110 0100110 0100110 0100110
@ § | 010110 N 1010110 fixmat 1010110 "t 1010110 d 1010110
€ & | 010101 sort-n 1010101 xmate == 1910101 sort-p 1010101 markadup 1010101
9] 1101110 1101110 1101110 1101110 1101110
]
c
2 | 0100110 0100110
= | 1010110 ‘)) ’ 1010110
@ | 1010101 sort -n fixmate sort -p markdup 1010101
o
‘a 1101110 1101110
0100110 0100110
9 | 1010110) 1010110
° . -
g [1010101 —>| sort -n fixmate sort -p markdup = 1010101
1101110 1101110

Fig. 4. Samtools commands can be concatenated with multiple approaches: Data
exchange through files (top) or a pipeline (middle). We propose to share data in mem-
ory (bottom) to remove unnecessary overhead.

5 Modifications to Exploit Memory-Driven Computing

Running an unmodified application in an MDC environment already yields the
benefit of accelerated data access, since no storage systems and drivers are
involved. However, to fully exploit this environment, memory-mapping the data
is recommended and can often be easily added. Besides this, two significant
areas for benefiting from MDC exist: First, we can eliminate all I/O opera-
tions for data input and output. This also applies to temporary data and data
exchange between applications. Existing storage systems often are optimized
for serial or streaming data access. Random access from a single application
or multiple applications reduces data throughput significantly. Since the cen-
tral memory pool does not require traditional access patterns for performance
reasons (e.g., linear reading), parallel processing of data becomes feasible. This
speeds up quality control tools and preprocessing in parallel or similar use cases,
where I/0 bottlenecks are common. In a second step, the internal data struc-
tures of an application can be modified to benefit from the abundance of memory
in MDC environments. This could be, for example, extensive pre-calculation of
intermediate results to replace standard computations with a simple look-up.
We have applied these principles to samtools to benefit from I/O elimination
and improved data passing between different functionalities of the application.

5.1 Samtools

Samtools stores data in the Sequence Alignment Map (SAM)-format [2], which is
text-based. A binary version of this format (BAM) exists as well. Finally, a text-
based column-oriented version (CRAM) exists but is of no practical relevance.
In this work, we present four contributions to the main functionality of samtools
in the areas of I/O reduction that include input and output parsing, removal of
intermediate files, and the better integration of multiple commands. Samtools is
available as open source and written in C.

336 M. Becker et al.

Parallel Input Parsing. We have modified the input loading and parsing for
the two most common formats, SAM and BAM. In both formats, we first need
to parse the header information that contains reference information about the
alignment targets (e.g., chromosomes) and their sizes. Afterward, we split the
file into chunks and parse them in parallel. To fully exploit the capabilities of
MDC, we have modified all I/O to use memory-mapped files, which are based on
the posix mmap() function that establishes a mapping between an address space
of a process and a memory object. MDC already gives us the shared memory
pool for storing our data, therefore, we can avoid the introduction of additional
frameworks like MPI-IO which introduce additional layers.

Sequence Alignment Map (SAM) files are a line-based format where each
line contains a single alignment. Alignments require header information, and it
needs to be loaded first. Next, we split the file into byte-regions and process
them in parallel. Through MDC, the data is already in memory, and random
access bears no extra costs. The start of the regions does not necessarily coincide
with the beginning of a line, hence parsing only starts after the next newline.
Correspondingly, the last line is parsed beyond the end of the region to capture
the full alignment information.

Binary SAM (BAM) files consist of a series of gzip-compressed blocks that
contain the header and alignment information. Again, the header needs to be
parsed first, just like for SAM files. Next, the compressed blocks containing the
alignments can be processed. A single block can hold up to 64 KB of alignment
information. Since there is no reliable indicator for the beginning of a compressed
block, it is not possible to simply split the file into equally sized regions. There-
fore, we first create an index of all blocks. This task takes very little time since
the file is already in memory. The index is then used to distribute the contents
for parallel decompression and alignment parsing, as shown in Fig. 5a.

a) Data input b) Data output

Header Header Header Header
" Compressed blocks
Compressed blocks l Alignments — Compressed blocks CO—_M e

Compressed blocks

Compressed blocks

Compressed blocks 1 Alignments —_— Compressed blocks

Alignments — Compressed blocks /
—

Alignments Compressed blocks

2: Parsing of blocks

Compressed blocks l

1: Finding block offsets

Compressed blocks l

Threads: #1 H1H2 #3 #4 In-memory data Compression Maximal size Compacting Final file

Fig. 5. Parallel input and output. The BAM file is initially scanned for blocks and
then parsed in parallel. The output works by writing into sufficiently large regions of
the file, followed by a later removal intermediate unused spaces.

Parallel Output Writing. The process of writing alignment data starts with
storing the header information. Afterward, we estimate the average size of an
alignment to assess the overall file size. This allows us to allocate sufficient space

Scaling Genomics Data Processing with Memory-Driven Computing 337

in a memory-mapped file for the output. We split the output into parts that
are saved into different regions of the output file. Unused space remains in each
region because the estimation of the expected size is designed to overestimate so
that all alignments will fit. In the last step, we move the file parts to eliminate the
unused space, and finally, we truncate the file to the actual size. These steps are
shown in Fig. 5b. For BAM files, we estimate the required size for uncompressed
data. However, usually, good compression can be achieved, and therefore the
final file size is much smaller.

Intermediate Data Storage. The data processing commands of samtools
often require some temporary storage. The sorting command pre-sorts data in
blocks and finally merges them into the final file. For smaller files, these tem-
porary blocks are held in memory, but this no longer applies to growing data
sets. Similarly, the markdup and fixmate commands use temporary storage for
intermediate data. In our approach, we load the full data set into memory to
avoid additional I/O. We have modified samtools to remove temporary files.
With all data in memory, sorting can be easily performed without temporary
files using the C++ extensions for parallelism [17]. The temporary data storage
of the fixmate and markdup commands can be resolved by instead keeping a list
of references to the alignments that otherwise would have been written to disk.

Pipelining Commands. We have found that certain samtools commands are
often run together. We have chosen the marking of duplicates pipeline for investi-
gation and optimization. Since data parsing and I/O consume a large part of the
runtime, we have modified the commands to take a list of alignments in memory
and to work on that data. Therefore, we have modified the sorting, fixmate, and
markdup commands to work with a list of alignments that we obtain from the
input parsing. Although fixmate and markdup are sequential tasks, we still can
remove the input parsing or deserialisation.

Memory-Management. A growing number of processing threads, in particu-
lar during the input parsing, allocate many small memory parts. With massive
input files, tens to hundreds of million allocations are required during input pars-
ing. With the default allocator (from glibc), the central lock for the memory-list
is a bottleneck that significantly slows down the input parsing. The core informa-
tion for an alignment is of fixed size, and it is accompanied by a variable-length
string for storing sequence and auxiliary information. This results in two alloca-
tions per alignment. For the core information, the memory can be pre-allocated
in larger batches due to its known size, the sequence and auxiliary informa-
tion requires custom allocations. We have considered specialized allocators like
jemalloc [1] and temalloc [14] that use per-thread pools as well as a non-freeing
custom allocation solution, that acquires large portions of memory per thread
and uses them for allocations. This custom allocator is experimental only to
understand the difficulties of many small allocations from a large number of

338 M. Becker et al.

threads and should not be used in outside of experiments, since it does not track
the allocated memory, and therefore, is not able to free memory again.

These modifications are designed to be reusable and are available on Github:
https://github.com/schultzelab/samtools-mdc. This includes the parallel read-
ing and writing functions for SAM and BAM files. Samtools-mdc is designed
to be a drop-in replacement for samtools. SAM/BAM reading and writing has
been separated from the data modification (e.g. sorting) to allow re-use of com-
ponents.

6 Evaluation and Results

We have used two systems to evaluate our MDC-modifications. We took a typ-
ical Dell blade server, as it is common among bioinformatics groups, with two
sockets, 32 cores, 64 threads, and a total of 768 GB memory. As a second system,
we have used an HPE Superdome Flex, with two nodes, 16 sockets, 144 cores,
and 288 threads and a total of 6 TB memory. The abundance of memory in
this system is close to our expectation in an MDC environment, although larger
systems (up to 48 TB) exist. The Superdome Flex implements MDC principles
and provides a single address space across the nodes through a custom inter-
connect and firmware. Future systems are expected to include Gen-Z hardware.
We have collected data points for different numbers of threads, with 1, 16, 32
and 64 collected on the smaller blade system and 144 and 288 gathered on the
Superdome Flex system.

We have selected a range of samples® from the National Institutes of Health
Sequence Read Archive [4] to get coverage of typical input files sizes. These ten
samples cover different studies and multiple diseases. An overview of the samples
is shown in Table 1. We have grouped the samples by size into three categories:
small, medium, and large.

6.1 Memory Allocation

Our initial experiments show that memory allocation is a crucial factor in pro-
cessing SAM and BAM files. The loading process requires multiple allocations
per read, and this becomes an increasing challenge with a growing number of
parallel reading threads.

To test the allocations strategies, we read the three sample groups with dif-
ferent allocators and multiple thread numbers, ranging from 1 to 288, and report
the cumulated time per group. The results, differentiated between bam and sam
files, are shown in Fig.6. It can be seen immediately that the default alloca-
tor consistently shows the worst performance, both with just a single thread as
well as with large numbers of threads (144, 288). In most cases, tcmalloc per-
forms equal or worse in comparison to jemalloc. Our custom allocator shows the
best performance for most cases; however, we discarded it since it is not a full
implementation but rather a proof-of-principle.

3 We have used hisat 2.0.4 [20] to perform the alignment and to produce the BAM
files.

https://github.com/schultzelab/samtools-mdc

Scaling Genomics Data Processing with Memory-Driven Computing

339

Table 1. Ten selected samples from NCBI presented corresponding to the number of
reads contained. They are grouped by size into three categories (1, 2, 3; small, medium,

large).
Sample Number of reads | Study Group Disease
GSM1641335 397748 GSE67184 | Small Malaria
GSM1540592 950441 GSE63085 | Small Control
GSM1113415 | 9004143 GSE45735 | Small Influenza vaccination
GSM1273616 | 11215264 GSE52656 | Small AML
GSM2309852 | 20339057 GSE86884 | Medium | Kidney transplant
GSM1576441 | 21396334 GSE64655 | Medium | Influenza vaccination
GSM1521568 | 22655944 GSE62190 | Medium | AML
GSM1554600 | 34059694 GSE63646 | Large AML
GSM2324152 | 44470876 GSES87186 | Large BCG vaccination
GSM1540488 | 54561415 GSE63085 | Large Lyme disease
BAM/SMALL SAM/SMALL
1000 100
100
sl [s]10
) | | | | ‘
8T TR AR T BT 111
1 16 32 64 144 288 144 288
Threads Threads
BAM/MEDIUM SAM/MEDIUM
1000 1000
100 100
[s] [s]
1 16 32 64 144 288 144 288
Threads Threads
BAM/LARGE
10000 / 1000 SAM/LARGE
1000
100
[5]100 ‘ [s]
10
o 10111 il
L. i (111 1,,, LLEE UL B R R
1 32 144 2 32 64 144 288
Threads
Threads .
mdefault mcustom mjemalloc mtcmalloc

Fig. 6. Cumulative times to fully load the small, medium and large samples in SAM
and BAM format into memory using different allocators (see Sect.5.1, Memory-
Management) and number of threads.

340 M. Becker et al.

6.2 Samtools Commands

Next, we evaluated different samtools commands. The results present a broad
range of behavior, and we show examples in Fig.7. All examples use the large
bam sample group. The view command shows consistently better performance
for the MDC-optimised version of samtools (mdc) when compared to the orig-
inal (unmodified) samtools (orig). The fixmate use case contains program logic
that is not parallelized, and the streaming architecture of the original samtools
shows better performance than the modified version. Samtools (mdc) loads the
complete data set first, performs the fixmate operation, and then writes the com-
plete data set; samtools (orig) uses a streaming approach that is more suited for
this specific task. Finally, sorting by query name shows slightly better results of
the MDC-optimised version for smaller numbers of threads and similar perfor-
mance for larger thread numbers (64, 144, 288). With growing thread numbers,
samtools (orig) is configured to retain growing parts of the data set in memory,
similar to our approach.

view/BAM/LARGE fixmate/BAM/LARGE sort -n/BAM/LARGE

1000 350 600
300 500
750 250
400
200
500 300
150 /§

250

—rmdc orig —_— orig — mdc orig

Fig. 7. Comparison of original and mdc-modified samtools for three commands: view,
fixmate and sorting by query name. Each command uses the large bam samples and
threads ranging from 16 to 288.

6.3 Marking Duplicates Pipeline

Finally, we evaluated different choices to realize a duplicate marking pipeline:
individual calls with intermediate files, a pipeline with serialization and deseriali-
zation, and our MDC approach with all data stored in memory. The results are
presented in Fig. 8. We have evaluated all pipelines with sam and bam samples
from all three groups. The MDC pipeline is always faster than the other options.
For small files and large numbers of threads, the pipeline with serialization and
deserialization can be slower than individual tools. The measurements for the
individual tools show that the majority of processing time is spent in the fixmate
functionality. Further inspection revealed that this step is not parallelized and
it would be an opportunity for future work.

Scaling Genomics Data Processing with Memory-Driven Computing 341

10000 BAM/SMALL 1000 SAM/SMALL
1000
100
100
10
10
s) 1
o 1 16 32 64 144 288 lsl1
Threads 1 16 E?) 64 144 288
ufixmate mmarkdup msort-n W sort-p = pipeline mMDC Threads
u fixmate mmarkdup msort-n msort-p mpipeline mMDC
10000 BAM/MEDIUM 10000 SAM/MEDIUM
1000 1000
100 100
10 10 ‘l
B 16 288 E
B 32 o4 144 Threads 1 16 32 64 144 288
. ; Threads
mfixmate @ markdup @ sort-n msort -p i pipeline MMDC mfixmate mmarkdup msort-n msort-p = pipeline mMDC
100000 BAM/LARGE 10000 SAM/LARGE

10000

1000

1000
100

100
10

10
[s]1 [s]1

1 16 32 64 8 16 32 64

144 28 144 288
fixmate mmarkdup msort-n msort-p mpipeline mMDC |Te2%® mfixmate mmarkdup msort-n msort-p mpipeline @ MpC Threads

Fig. 8. Evaluation of duplicate marking using individual commands (stacked results),
a pipeline, and our MDC approach. We have tested the bam (left) and sam (right) files
of different sizes and report cumulative results per size group. Single-threaded MDC
results for sam files had to be omitted to technical problems. Sort/sort -n denotes
sorting by query name, sort -p is sorting by genomic position.

7 Discussion

Samtools is already optimized for single commands; the streaming approach of
samtools shows satisfactory performance. Some commands are not parallelized,
and the streaming might prevent this. Especially the fixmate functionality con-
sumes a significant amount of time. If we analyze not just single commands but
rather pipelines that combine multiple commands, we can see that data exchange
between the individual commands limits the throughput. Using a pipe instead
of intermediate files shows an acceleration but still comes with overhead from
serialization and deserialization.

With MDC, we can remove I/O from intermediate files, and we can share
data in native data types. This gives an additional acceleration over the pipeline
approach, and we believe this to be true of other pipelines. However, the input
and output of the current MDC version are still files and need to be parsed and

342 M. Becker et al.

written - an overhead that could be avoided by using shared memory for data
exchange between multiple tools.

Furthermore, we have found that selecting a proper allocation strategy is
crucial for parsing genomics data. A single read requires at least two allocations,
and with a growing number of threads, the synchronization overhead becomes a
bottleneck. Some of the required memory objects are already known in size so
that the pre-allocation of larger amounts is possible.

8 Outlook

A next step will be to expand the MDC optimized version of samtools to cover
more of its functionality. After focusing on the most common commands, we aim
to study the remaining commands as well. Since samtools is a central component
in many pipelines, we want to improve data exchange between tools to remove the
need for expensive serialization and deserialization and to establish a common
way of memory-based data exchange.

Besides these steps, we want to expand from genomics data preprocessing
to bioinformatics analysis, especially for the growing number of large single-cell
data sets from consortia like the Human Cell Atlas [27] which try to catalog all
cell types. For many biological questions, a large number of analysis methods
already exist. Still, for many, the performance is increasingly becoming an issue,
this has been shown for trajectory inference by Saelens et al. [28].

Furthermore, the integration of multiple data sources increases computa-
tional needs. Multi-omics data sets that combine approaches like genomics,
lipidomics, and proteomics allow gaining novel insights into biological processes.
Another domain that produces growing data sets for analysis is spatial approa-
ches that combine the capture of omics data with spatial and image information.
This also provides a link to population studies whose growing data production
poses an increasing challenge.

Acknowledgment. This work was funded in part by the HGF grant sparse2big, the
FASTGenomics grant of the German Federal Ministry for Economic Affairs and Energy,
and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy—EXC2151/1—390873048. We want to thank
Milind Chabbi, Bill Hayes, Keith Packard, Patrick Demichel, Binoy Arnold, Robert
Peter Haddad, Eric Wu, Chris Kirby, Rocky Craig from Hewlett Packard Enterprise
and Hewlett Packard Labs and the bioinformatics group at the AG Schultze at the Life
and Medical Sciences Institute at the University of Bonn.

References

. jeMalloc. http://jemalloc.net

. SAM specification (2019). http://samtools.github.io/hts-specs/SAMv1.pdf

. SAMtools 1.9 documentation (2019)

. The National Institutes of Health (NIH) Sequence Read Archive (SRA) (2019).
https://www.ncbi.nlm.nih.gov/sra/

=W N

http://jemalloc.net
http://samtools.github.io/hts-specs/SAMv1.pdf
https://www.ncbi.nlm.nih.gov/sra/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Scaling Genomics Data Processing with Memory-Driven Computing 343

Alser, M., Hassan, H., Xin, H., Ergin, O., Mutlu, O., Alkan, C.: GateKeeper: a new
hardware architecture for accelerating pre-alignment in DNA short read mapping.
Bioinform. 33(21), 3355-3363 (2017). https://doi.org/10.1093/bioinformatics/
btx342. (Oxford England)

Becker, M., et al.: Accelerated genomics data processing using memory-driven com-
puting (accepted). In: Proceedings of the 6th International Workshop on High
Performance Computing on Bioinformatics (HPCB 2019) in conjunction with the
IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2019),
San Diego, USA (2019)

Bresniker, K.M., Singhal, S., Williams, R.S.: Adapting to thrive in a new economy
of memory abundance. Computer 48(12), 44-53 (2015). https://doi.org/10.1109/
JSTQE.2012.2236080

Chen, F., et al.: Billion node graph inference: iterative processing on the machine.
Tech. rep. (2016). https://www.labs.hpe.com/publications/HPE-2016-101

Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory
18(5), 507-519 (1971). https://doi.org/10.1109/TCT.1971.1083337

Cook, C.E., et al.: The European Bioinformatics Institute in 2018: tools, infrastruc-
ture and training. Nucl. Acids Res. (2019). https://doi.org/10.1093 /nar/gky1124
Firnkorn, D., Knaup-Gregori, P., Lorenzo Bermejo, J., Ganzinger, M.: Alignment of
high-throughput sequencing data inside in-memory databases. Stud. Health Tech-
nol. Inform. 205, 476-480 (2014). https://doi.org/10.3233/978-1-61499-432-9-476
Frohlich, F., Kaltenbacher, B., Theis, F.J., Hasenauer, J.: Scalable parameter
estimation for genome-scale biochemical reaction networks. PLoS Comput. Biol.
(2017). https://doi.org/10.1371/journal.pcbi. 1005331

Gen-Z Consortium: Gen-Z core specification 1.0 (2018). https://genzconsortium.
org/specification/core-specification-1-0/

Ghemawat, S., Menage, P.: Tcmalloc: thread-caching malloc (2007). http://goog-
perftools.sourceforge.net /doc/tcmalloc.html

Hajj, I.LE., et al.: SpaceJMP : programming with multiple virtual address spaces.
In: ASPLOS, pp. 353-368, No. Section 3 (2016). https://doi.org/10.1145/2872362.
2872366

Herzeel, C., Costanza, P., Decap, D., Fostier, J., Verachtert, W.: elPrep 4: a multi-
threaded framework for sequence analysis. PLoS ONE 14(2), 1-16 (2019). https://
doi.org/10.1371/journal.pone.0209523

Programming Languages — Technical Specification for C++ Extensions for Paral-
lelism. ISO/IEC TS 19570:2018. Standard (November 2018)

Kaplan, R., Yavits, L., Ginosar, R.: RASSA: resistive pre-alignment accelerator for
approximate DNA long read mapping. IEEE Micro 39, 44-54 (2018). https://doi.
org/10.1109/MM.2018.2890253

Keeton, K.: The machine : an architecture for memory-centric computing. In:
Workshop on Runtime and Operating Systems for Supercomputers (ROSS), p.
2768406 (June 2015)

Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L.: Graph-based genome
alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.
(2019). https://doi.org/10.1038/s41587-019-0201-4

Kim, J.S., et al.: GRIM-filter: fast seed location filtering in DNA read mapping
using processing-in-memory technologies. BMC Genomics 19(Suppl 2) (2018).
https://doi.org/10.1186/s12864-018-4460-0

Koster, J., Rahmann, S.: Snakemake-a scalable bioinformatics workflow engine.
Bioinformatics (2012). https://doi.org/10.1093/bioinformatics/bts480

https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1093/bioinformatics/btx342
https://doi.org/10.1109/JSTQE.2012.2236080
https://doi.org/10.1109/JSTQE.2012.2236080
https://www.labs.hpe.com/publications/HPE-2016-101
https://doi.org/10.1109/TCT.1971.1083337
https://doi.org/10.1093/nar/gky1124
https://doi.org/10.3233/978-1-61499-432-9-476
https://doi.org/10.1371/journal.pcbi.1005331
https://genzconsortium.org/specification/core-specification-1-0/
https://genzconsortium.org/specification/core-specification-1-0/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1371/journal.pone.0209523
https://doi.org/10.1371/journal.pone.0209523
https://doi.org/10.1109/MM.2018.2890253
https://doi.org/10.1109/MM.2018.2890253
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1186/s12864-018-4460-0
https://doi.org/10.1093/bioinformatics/bts480

344 M. Becker et al.

23. Lavenier, D., Roy, J.F., Furodet, D.: DNA mapping using processor-in-memory
architecture. In: Proceedings - 2016 IEEE International Conference on Bioinfor-
matics and Biomedicine, BIBM 2016, pp. 1429-1435 (2017). https://doi.org/10.
1109/BIBM.2016.7822732

24. Li, H., et al.: The sequence alignment/map format and SAMtools. Bioinformatics
25(16), 2078-2079 (2009). https://doi.org/10.1093/bioinformatics/btp352

25. Li, X., Tan, G., Wang, B., Sun, N.: High-performance genomic analysis framework
with in-memory computing. ACM SIGPLAN Not. 53(1), 317-328 (2018). https://
doi.org/10.1145/3200691.3178511

26. Luo, R., et al.: SOAP3-dp: fast, accurate and sensitive GPU-based short read
aligner. PLoS ONE 8(5) (2013). https://doi.org/10.1371/journal.pone.0065632

27. Regev, A., et al.: The Human Cell Atlas White Paper (October 2018). http://
arxiv.org/abs/1810.05192

28. Saelens, W., Cannoodt, R., Todorov, H., Saeys, Y.: A comparison of single-cell
trajectory inference methods. Nat. Biotechnol. 37(5), 547-554 (2019). https://doi.
org/10.1038/s41587-019-0071-9

29. Schapranow, M.P., Plattner, H.: HIG - an in-memory database platform enabling
real-time analyses of genome data. In: Proceedings - 2013 IEEE International Con-
ference on Big Data, Big Data 2013, pp. 691-696 (2013). https://doi.org/10.1109/
BigData.2013.6691638

30. Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., Prins, P.:. Genome anal-
ysis Sambamba : fast processing of NGS alignment formats. Bioinformatics
31(November), 2032-2034 (2017). https://doi.org/10.5281 /zenodo.13200.Contact

31. Theis, T.N., Philip Wong, H.S.: The end of Moore’s Law: a new beginning for
information technology. Comput. Sci. Eng. 19(2), 41-50 (2017). https://doi.org/
10.1109/MCSE.2017.29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/BIBM.2016.7822732
https://doi.org/10.1109/BIBM.2016.7822732
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1145/3200691.3178511
https://doi.org/10.1145/3200691.3178511
https://doi.org/10.1371/journal.pone.0065632
http://arxiv.org/abs/1810.05192
http://arxiv.org/abs/1810.05192
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1109/BigData.2013.6691638
https://doi.org/10.1109/BigData.2013.6691638
https://doi.org/10.5281/zenodo.13200.Contact
https://doi.org/10.1109/MCSE.2017.29
https://doi.org/10.1109/MCSE.2017.29
http://creativecommons.org/licenses/by/4.0/

	Scaling Genomics Data Processing with Memory-Driven Computing to Accelerate Computational Biology
	1 Introduction
	2 Memory-Driven Computing
	2.1 Novel Architecture Tailored for Data Science
	2.2 Composable Infrastructure
	2.3 Transition Path Towards MDC

	3 Related Work
	4 Application in Bioinformatics
	4.1 Typical Preprocessing Tasks and Pipeline Structures
	4.2 Application: Samtools

	5 Modifications to Exploit Memory-Driven Computing
	5.1 Samtools

	6 Evaluation and Results
	6.1 Memory Allocation
	6.2 Samtools Commands
	6.3 Marking Duplicates Pipeline

	7 Discussion
	8 Outlook
	References

